
U.P.B. Sci. Bull., Series C, Vol. 87, Iss. 2, 2025 ISSN 2286-3540

ANALYSIS OF VERSION CONTROL IN CONTINUOUS

INTEGRATION AND DELIVERY

Oana-Anastasia MINCIU1*, Beatrice-Nicoleta CHIRIAC2, Florin Daniel

ANTON3, Anca Daniela IONITA4

The adoption of version control has been essential to software development

dynamics, which are shifting considerably towards increasing delivery quality and

speed. Continuous integration and continuous deployment / delivery require further

improvements in this regard. This aim of this paper is to analyse the characteristics

of version control and continuous practices, and to identify the key elements of

interaction in the process of code integration and delivery. Considering commits,

branches, artefacts, triggers, pipeline and other automations, the connecting points

were extracted to portray differences between practices and their intricate

collaboration and dependency with version control.

Keywords: software configuration management, version control, continuous

integration, continuous deployment/delivery

1. Introduction

Software artefacts are subject to a multitude of changes during

development, and programmers end up having multiple versions of the same file

because of constant changes. Saving intermediate versions of a file with different

names, or in different paths, is repetitive work and a very poor way of managing

intermediate versions relying mostly on human memory. Thus, this versioning

strategy is error prone and, moreover, only addresses individual work management.

Naturally, for managing work originating from multiple people who contribute to

the same files, has led to the creation of better and objective strategies, which take

user memory and self-defined logic out of the equation to obtain structured and

strictly defined mechanisms known as version control systems. A typical approach

is to have a central server embodying a single source of truth of file versions, which

1 Corresponding author
1 PhD student, Automation and Industrial Informatics Department, National University of Science

and Technology POLITEHNICA Bucharest, Romania, e-mail: oana.anastasia.minciu@gmail.com
2 PhD student, Automation and Industrial Informatics Department, National University of Science

and Technology POLITEHNICA Bucharest, Romania, e-mail: chiriacbeatrice96@gmail.com
3 Reader, Automation and Industrial Informatics Department, National University of Science and

Technology POLITEHNICA Bucharest, Romania, e-mail: florin.anton@upb.ro
4 Prof., Automation and Industrial Informatics Department, National University of Science and

Technology POLITEHNICA Bucharest, Romania, e-mail: anca.ionita@upb.ro

mailto:anca.ionita@upb.ro

74 Oana Minciu, Beatrice Chiriac, Florin Anton, Anca Ionita

resulted in central version control systems. Another approach is to have multiple

sites with copies in a peer-to-peer setup which encompass distributed version

control systems. Central and distributed version control systems are compared to

show that central ones are suited for projects which allow contributions from few

users from a single site, while distributed ones can accommodate multiple users

from small or big teams, located in multiple sites [1].

Version control as part of Software Configuration Management (SCM) has

been treated as a development support discipline [2] with the role to help in

coordinating software product changes. Conradi and Westfechtel provide an

overview of how version models were implemented in the 90s [3] and mention that

many existing systems were file-based, like ClearCase, a versioning system with a

long history, which still uses file-based versioning. Version control systems are

essential over the lifetime of any software project for allowing tracking of

simultaneous work from multiple developers, therefore they have become a

necessity in software development with their applications and use cases increasing.

The purpose of this paper is to analyse how version control expands beyond regular

source code management. The first generation of version control systems was

focused on allowing collaboration with separate tracking, only for one developer at

once, whereas the next generation has used the concept of a central repository with

remote access, where multiple developers could contribute at the same time [4].

Moreover, the present generation is focused on a central repository and multiple

local copies owned by developers. Due to the necessity to accelerate the software

development life cycle, Continuous Integration (CI) and Continuous Delivery /

Deployment (CD) have become more and more used [5]. Using CI tools accelerates

the software release process and helps avoiding introduction of faulty code helping

with detection and prevention [6].

This paper is divided in five sections. After this introduction, the second

section describes background information regarding version control. The third

section exposes the aspects of security control and different types of version control

regarding both code and artefacts. Then, it presents the interdependency between

continuous practices and version control with a comparative analysis. The fourth

section starts from the four criteria identified in the previous analysis, which show

differences between CI and CD, and it presents a practical demonstration of them.

The experiments follow a GitLab pipeline developed by installing and configuring

a GitLab server and runner, defining the requirements for a project, and then

designing and writing the implementation. Afterwards, the process was executed in

multiple scenarios meant to showcase and discuss the results for the chosen criteria.

The fifth section contains the conclusions.

Analysis of version control in continuous integration and delivery 75

2. Background

In comparison with traditional software development, a faster integration,

realized through DevOps introduces a series of challenges, which also concern

versioning [7]. One must maintain control over various elements, from projects,

tests and integration code to documentation and build artefacts. Whereas version

control is sometimes interchanged with source code management, DevOps

practices have accelerated the extension of version control beyond just code.

Continuous practices have introduced the importance of managing build artefacts,

but moreover, version control actions have become triggers for these practices.

Paez also covers the importance of defining versioning strategies for all artefacts

used in DevOps [8], whether they are configuration text files, or source code files.

Practices like infrastructure as code and continuous delivery lead to creating new

artefacts that are to be versioned, therefore artefact versioning has become an

essential part of managing DevOps practices and will continue to do so.

2.1. Version control in source code management

Source code versioning is the traditional use case in development, mainly

to address coordinating user changes and multiple versions. Currently, most open-

source projects adopt distributed versioning systems, because central ones come

with the risk that, if the server is unavailable, developers cannot fetch the history

and work on the correct code versions [1]. Nevertheless, both types of systems are

in use, with central systems like Concurrent Versions System (CVS), Perforce,

Subversion, or ClearCase, and distributed ones like Git, Mercurial, or Bazaar.

Regardless of their type, they organize code in databases named repositories and

portray version trees where individual nodes are distinct versions, which represent

the submitted changes to the repository at one point in time. Each commit is a

version, but versions meant for release are usually marked with a tag. Version trees

can have multiple branches for separated lines of development, but at least one

central branch is meant to always store stable code, and it is usually the target of CI

practices, and subject to additional protections. All branches must be subject to the

integration process, but the final goal is to keep stable code in the same state,

therefore protected branches can have further restrictions.

2.2. Artefact version control

During software development, one project produces a large variety of

artefacts beyond source code. In [8], Paez mentions that within the development

process there are both source code artefacts and documentation artefacts, the former

refers to application or infrastructure code, scripts, configuration files, binaries,

while the latter is represented by requirements or diagrams. In CI/CD an artefact is

any file generated during the process with some being intermediary with a short

lifespan and others meant for long-term storage. For the first category, no version

76 Oana Minciu, Beatrice Chiriac, Florin Anton, Anca Ionita

control is needed, as the data can simply be discarded afterwards, but for the second

one, some kind of version control is required. A few examples of files meant for

storage in version control are metadata, version specific identifier elements,

container images, executables.

Code in its essence is merely text, regardless of language specific syntax,

while other elements like metadata can also refer to text files, but most artefacts do

not share the same format. Jones et al. emphasize the difference in complexity

between text-based code files and other types, like for example CAD (Computer

Aided Design) files, containing commands trees for three-dimensional models [9].

Thus, tracking artefact changes is different than tracking code changes; for code,

small text changes known as deltas can be monitored, while for artefacts, any

change results in an entirely new instance. Version control meant for code can

handle binary files as well, but they are rather handled as singular units. Thus, two

important challenges of artefact versioning are that binaries can be significantly

bigger than code and that some kinds of artefacts can require different types of

storing regarding structure. Regardless of size, any modifications in a binary lead

to that file being completely replaced, as opposed to just a few lines of code.

Considering version control systems work with code snapshots, whenever a

new change is transferred, the bigger the files are, the slower the data transfer will

be between users and servers. For example, the JFrog product Artifactory, a tool for

artefact storage, uses a file store and database system to pair each binary with its

identifying checksum along with generic metadata like artefact names, size,

creation dates, but also with specific package metadata [10]. This is because each

type of artefact has different elements, generic files are single units, but other

packages may be collections of different types of files, while container images are

stored in layers. Consequently, although version control systems are great options

for storing code, configuration, small files, more complex artefacts such as binaries

should be stored separately, using tools tailored for larger artefacts with essential

extensions that allow classifying and storing accordingly based on type.

3. Analysis of specific aspects in version control

3.1. Security for version control

While control version systems save change history of different information

entities, the security component is indispensable for this process. Thus,

cybersecurity models should be applied over the stored information, for

maintaining the integrity, confidentiality and the availability of the data. These

security measures are taken based on the specific of the versioning tool as well as

based on the importance of the information kept inside the repository. Complex

repositories face with multiple users and different methods of authentication based

on the type of the version tool [11].

Analysis of version control in continuous integration and delivery 77

Centralized version control tool uses a client-server configuration. The

central server hosts the repository and manages the users’ access to it. Files and

their versions that are stored in this central database can be accessed using a user

ID and a set of access rights that are given by an administrator of the system. For

example, IBM Rational ClearCase has a remote repository named Versioned Object

Base (VOB) and each user owns a workspace that is associated with a view. Inside

VOB, each file has its own version tree, and the users can have a dynamic view

which permits them to visualize the modifications made into repository in real-time

or a snapshot view which implies a local copy of the VOB. As a superior level of

security, the VOB and VOB objects are using Access Control Lists (ACL). For

each file hosted on the central server granular rules of access are given by the

administrator depending on each view [12]. These kinds of ACLs contain rules

applying to resources and a relevant example is that every user that owns a view in

a ClearCase repo can visualize the modifications made by other users on their

private views, but they are not able to make changes on another user’s workspace.

On the contrary, distributed systems apply the advantages of the secured

communication protocols like SSH or HTTPS used for the remote connections and

the model of copy-modify-merge for preventing conflicts between multiple users.

All transferred data is encrypted, and the commit process maintains its transactional

characteristic. The control access to the remote repository via SSH is based on the

allocation of private/public key pair to each user for authentication. The public key

is shared and used for handshaking, while the private one is never shared and unique

for each user. If the encryption-decryption algorithm is not working properly, the

connection is stopped [13]. HTTPS approaches this aspect differently by using a

password-based authentication. During HTTPS handshaking the server provides a

list of digital certificates together with the public key to the communication partner.

The client verifies the validity of the certificate and if it is valid, the client

exchanges its key. After this step, the connection is established. For a higher level

of security this kind of traffic can be monitored and analysed using security tools

like firewall, IDS [14].

3.2. Version control in continuous practices

Continuous Integration is a concept part of the DevOps chain of tools and

practices, meant to accelerate code integration between developers, while ensuring

high software quality within several code validation and verification steps.

Software development methodologies focus on the evolvement of procedures

adapting to modern times [15]. Continuous Delivery extends this to ensure rapid

package delivery, either to a central artefact server, or directly to a client. A simple

description of both would be that Continuous Integration consists of the steps

sequence beginning from a published code change of a project and ending with the

deployment of the built artefact to an artefact server, while Continuous Delivery is

78 Oana Minciu, Beatrice Chiriac, Florin Anton, Anca Ionita

the same process, but executed on code ready to be officially delivered to clients.

Their implementations vary, but the process is called a pipeline modelled upon

project requirements. New code is submitted through commits to a version control

system, starting continuous integration, which consists of the following steps: build

– to obtain build artefacts such as executables, analysis - static code analysis and

test execution, integration result - gather the analysis results and provide a decision

of whether the code fulfils the requirements to be integrated in a stable branch in

version control.

CI/CD is considered a feedback loop, starting with submitted code changes

and ending with the acceptance or rejection of these changes. Upon acceptance, the

code is successfully integrated into the main branch in development, and

executables are allowed to be uploaded to an artefact server, to be delivered either

to functional testing teams or clients, if the process is for integration or delivery.

The flow of CI/CD flow implies that the version control system is part of the starting

point, the end of continuous integration and a part of continuous delivery. The

commit in version control is the trigger of the process, so the start is associated with

a version control action, while the end of continuous integration is the registration

of the result in version control. For the delivery part, some additional steps are

considered, from introducing release commits back to the version control system to

simply deploying a suite of artefacts to an artefact server. The delivery pipeline

extends the integration one to provide a final report to the code version control

server to notify the process success or failure.

3.3. Comparison of version control in CI vs. CD

Version control and CI/CD are linked by actions that may be either

automated, or manual operations. Triggers, result publishing and artefact

deployment are automated, but actual merging of code includes manual tasks. This

is completely normal as besides code and test analysis, projects can also have a

manual review in place, after a successful pipeline to assess errors unrelated to code

compilation, execution and testing. A continuous integration process can only do

so much as to assert whether the code is ready to be integrated, but it cannot

establish whether the code respects functionality requirements. Decisions to

perform code merging rely on developers in the end, but CI/CD interacts closely

with version control to ensure the completion of code merging and release.

For this analysis, version control has been split between source code

management also known as Version Control System (VCS) and Artefact

Management (AM). Considering how CI/CD connects with version control, the

following criteria have been chosen to compare them: interaction with VCS

elements, with artefacts, automation in relation to version control. The VCS

elements studied include commits, pull/merge requests, branches and

communication elements for notification. For AM, the relation to both temporary

Analysis of version control in continuous integration and delivery 79

and long-lived artefacts were analysed. Automation was also a subject of interest

as it is at the core of DevOps practices, especially for CI/CD pipelines. Table 1

presents the comparative analysis between Continuous Integration and Continuous

Delivery regarding how they interact directly with but also depend on version

control for code and artefacts. No specific automation server, version control

system or artefact storage solution were considered in building the analysis.

Table 1

Comparative Analysis of Version control in CI vs CD

Criterion CI CD Explanation

C1: VCS trigger Yes Yes Code commits and merge or pull requests are triggers for the

process.

C2: VCS commit

and tags

No Yes CI pipelines cannot push commits or tags to VCS, because this

is not part of their functions.

CD pipelines can push one or more commits during the process

of a release, either release commits or preparation for the next

development version commits.

C3: VCS

notification

Yes Yes A build result is returned to the VCS server to alert developers

on the success or failure of the process.

C4: VCS branch

specific

operations

No Yes CI pipelines do not depend on the type of branch as all branches

rely on the same base process for code integration.

CD pipelines depend on branch type: release branches produce

official versions; some branches produce intermediate

versions; others cannot deliver any versions.

C5: Temporary

build artefacts

Yes Yes Intermediate artefacts are generated, but are meant to be

discarded upon the process completion and they include

intermediate analysis results and package dependencies

C6: Deployment

artefacts

No Yes CI produces artefacts (executables or packaged elements) that

can be deployed, but it does not upload artefacts to a storage

server because it only deals with code.

CD produces and uploads artefacts to a storage server: both

intermediate versions and official release artefacts.

C7: Test reports

artefacts

Yes Yes Both produce test reports or logs; these artefacts are also

temporary but have a longer lifespan than temporary build

artefacts. Their contents are displayed in automation servers for

a time, but not uploaded to an artefact server

C8: Complete

automation

No Yes The CI pipeline process is automated, but it relies on a final

peer review step in SM.

CD is completely automated as it runs on code already

reviewed.

Version control has also expanded beyond usage for software development

code, with terms like GitOps being introduced. The combination between

Infrastructure as Code and Continuous principles lead to the concept of a GitOps

pipeline with Git as the single source of truth for DevOps operations [16]. However,

regardless of the technology name, they all share common or close definitions for

80 Oana Minciu, Beatrice Chiriac, Florin Anton, Anca Ionita

elements, like commits, branches, repositories, tags, or merge requests and pull

requests to ensure seamless integration with software development. Thus, CI/CD

pipelines are modelled on these generic elements and only their implementation is

technology specific.

4. Experiments of version control in CI/CD

4.1. Method

A combination of separate free tier git, automation and artefact servers was

considered with GitLab or Bitbucket, and Jenkins plus Nexus, but no combination

offers the seamless integration GitLab provides between the three essential version

control pillars in CI/CD in one server: code, automation and artefact storage. GitLab

has the major advantage of delivering all three and mitigating network traffic delay

and deployment complexity. Thus, the GitLab platform was installed and

configured using a Docker container with the 17.3.6-ee.0 version on a virtual

machine with Ubuntu 22.04 and a similar machine for the GitLab runner. The target

project is a personal Java application using Java 17 and Maven 3.6.3. The pipeline

was developed with five stages to build, test, deploy the code and ensure release

and tag pushing. Conditions are applied to control how and when the stages are

executed based on the project requirements: on the experiment the main and

develop branches are protected and require merge requests for changes, the main

branch is allowed to deploy artefacts, while the develop branch runs only the

integration steps. These actions conclude the environment installation and the

continuous processes implementation.

4.2. Results and discussion

Inside the deployed environment the processes were executed to further

study the differences of behaviours and results between CI and CD. Thus, from the

previous chapter the following five criteria were explored: C2, C4, C6 and C8. The

integration process includes the build and test stages, while the delivery process

includes the update-versions, push-tag and deploy-jar stages. The delivery is split

between the release and main branches because the project only allows artifact

deployment from branch main and version changes from branch release. The

automated triggers are also implemented by the authors with specific conditions

depending on branches, pipeline parameters and already existing tags.

The release process execution shows how criterion C2 can be observed

within the pipeline behaviour. The release branch is configured to allow upgrading

the project to a stable version inside the project configuration. Also, this change is

committed and tagged in version control only from this branch. Fig. 1 shows the

implemented pipeline execution and the results for the release branch which has the

specific operations of updating the version and committing and pushing the tag to

the repository, while another branch, like develop, has its own set of stages.

Analysis of version control in continuous integration and delivery 81

Therefore, the criterion C4 can also be observed here, but also in the experiment

from Fig. 2, which shows the pipeline execution for a tag.

Fig. 1. Commit actions and branch specific operations in CI vs CD

Fig. 2. Branch and tag specific operations

For the next evaluation the delivery behaviour was observed when new code

was merged to the main branch, thus triggering the pipeline for that branch, which

is the delivery pipeline responsible for deploying artefacts. Fig. 3 displays the

pipeline execution reports as part of the implementation results, and the difference

between CI and CD is shown in the absence of the deploy stage for the develop

branch compared to the main branch. The develop branch process was executed

earlier as part of the integration process. Thus, Fig. 3 displays the two criteria C4

and C6.

82 Oana Minciu, Beatrice Chiriac, Florin Anton, Anca Ionita

Fig. 3. Deployment of artifacts in CI vs CD

The uploaded artefacts belonging to the delivery section are displayed in

Fig. 4. The pipeline generates and uploads automatically a .pom file and a .jar file

for each version, but only from the main branch of the repository as this branch is

meant for the delivery process, thus displaying the observation of criterion C6.

Fig. 4. Delivered artefacts by the CD pipeline

For the study of criterion C8 the aspect of merge requests and code review

were employed by starting a merge request for a code change meant to be included

in a delivered artefact. All the stable branches of the repository are marked as

protected to prevent the introduction of unverified code. While the delivery process

is shown to be fully automated from the pipeline, the acceptance of code into a

Analysis of version control in continuous integration and delivery 83

stable branch requires a final manual verification before allowing the merge

request.

Fig. 5. Merge request review process developer in CI

Fig. 5 offers an important overview of the manual review process: the

assignee of this change is a user with no permission to merge, while the other user

has permissions to merge to the protected branch. Thus, a manual review is required

since the reviewer will be the one to merge the code and is responsible for it. The

challenges on a real or bigger application are not different, this aspect being proven

by the code review process showing a multi-user project behaviour.

5. Conclusions

This paper focused on the link between CI/CD and version control in all its

aspects, from source code to build artefact management. The contributions of the

authors are highlighted by the evaluation of security importance for maintaining

repository integration, by identifying specific points in eight criteria of comparison

and performing a parallel analysis and by the practical experiments to show

different behaviours between CI and CD. The experiments include a pipeline

developed in GitLab consisting of five stages that embody the software lifecycle of

a personal application. The analysis exposed several aspects like individual commit

behaviour, branch specific operations, artefact delivery and code review. The

analysis proved that CI/CD processes are heavily linked to code version control,

addressing not only source code fetching, but also the necessity of process

reproduction at any time. Moreover, the start triggers rely on version control, with

integration starting after a new code change is published, and delivery starting upon

merging code to certain branches.

84 Oana Minciu, Beatrice Chiriac, Florin Anton, Anca Ionita

R E F E R E N C E S

[1] N.N. Zolkifli, A. Ngah, A. Deraman, Version control system: A review, Procedia Computer

Science, 135, 2018, pp. 408-415.

[2] P. Müller, Configuration Management – A Core Competence for Successful through-life

Systems Engineering and Engineering Services, Procedia CIRP, vol. 11, 2013, pp. 187-192.

[3] R. Conradi, B. Westfechtel, Version Models for Software Configuration Management, ACM

Computing Surveys, vol. 30, no. 2, June 1998.

[4] L. Bulteau, P.Y. David, F. Horn, The Problem of Discovery in Version Control Systems,

Procedia Computer Science, 223, 2023, pp. 209-216.

[5] M. Shahin, M. Ali Babar, L. Zhu, "Continuous Integration, Delivery and Deployment: A

Systematic Review on Approaches, Tools, Challenges and Practices," in IEEE Access, vol.

5, 2017, pp. 3909-3943.

[6] T.A. Nitescu, A.I Concea-Prisacaru, V. Sgarciu, Test Automation for Continuous Integration in

Software Development, U.P.B. Sci. Bull., Series C, vol. 84, iss. 4, 2022, pp. 95-106.

[7] A.V. Jha, R. Teri, S. Verma, S. Tarafder, W. Bhowmik, S. Kumar Mishra, B. Appasani, A.

Srinivasulu, N. Philibert, From theory to practice: Understanding DevOps culture and

mindset, Cogent Engineering, 10:1, 2251758, 2023.

[8] N. Paez, Versioning Strategy for DevOps Implementations, 2018 Congreso Argentino de

Ciencias de la Informática y Desarrollos de Investigación (CACIDI), Buenos Aires,

Argentina, 2018, pp. 1-6, doi: 10.1109/CACIDI.2018.8584362.

[9] D. Jones, A. Nassehi, C. Snider, J. Gopsill, P. Rosso, R. Real, M. Goudswaard, B. Hicks, Towards

integrated version control of virtual and physical artefacts in new product development:

inspirations from software engineering and the digital twin paradigm, 31st CIRP Design

Conference 2021, Procedia CIRP 100 (2021) 283–288.

[10] Y. Chaysinh, Best Practices for Managing Your Artifactory Filestore, Available at

https://jfrog.com/whitepaper/best-practices-for-managing-your-artifactory-filestore-2/, 2023

[11] R. Oberhauser, VR-Git: Git Repository Visualization and Immersion in Virtual Reality,

Proceedings of the the Seventeenth International Conference on Software Engineering

Advances, 2022, pp. 9-14.

[12] M. Girod, T. Shpichko, F. Izquierdo, T. Rydiander. IBM Rational ClearCase 7.0: Master the

Tools that Monitor, Analyze, and Manage Software Configurations Packt Publishing, 2011

[13] P. Späth, Git and Subversion, Pro Jakarta EE 10: Open Source Enterprise Java-based Cloud-

native Applications Development, Berkeley, CA: Apress, 2023, pp. 27-42.

[14] B.N. Chiriac, F.D. Anton, A.D. Ionita, A hybrid IDS Architecture, U.P.B. Sci. Bull., Series C,

vol. 85, iss. 1, 2023, pp. 77-90.

[15] I.I. Anghel, R.S. Calin, M.L Nedelea, I.C. Stanica, C. Tudose. C.A Boiangiu, Software

Development Methodologies: A Comparative Analysis, U.P.B. Sci. Bull., Series C, vol. 84,

iss. 3, 2022, pp. 45-58.

[16] F. Beetz, S. Harrer, GitOps: The Evolution of DevOps?, IEEE Software, vol. 39, no. 4, July-

Aug 2022, pp. 70-75, doi: 10.1109/MS.2021.3119106.

