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ANALYTIC EXPRESSIONS FOR CURRENT-VOLTAGE

CHARACTERISTICS FROM THE QUANTUM HYDRODYNAMIC

EQUATIONS

Josipa Pina Milǐsić1

We consider a simplified one-dimensional steady-state quantum hydrody-

namic (QHD) model in which the real-valued potential V is given and not self-consistently

coupled to the electron density. The Madelung equivalence between the QHD model and

the Schrödinger equation, as well as the appropriate choice of the potential V , allow

us to treat the corresponding exactly solvable Schrödinger equation instead of solving a

third-order nonlinear QHD system. For a given choice of potential, we give the ana-

lytical expression for the current-voltage characteristic. The obtained curves show the

effect of negative differential resistance (NDR), where the electric current decreases with

increasing bias voltage.
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1. Introduction

When dealing with complete quantum models, it is worthwhile to examine the steady-

state simulation results (current-voltage curves, possible bistabilities). More specifically, we

consider the stationary QHD model in which the real-valued potential V (x) is given and not

self-consistently coupled to the electron density. It is well known that the QHD model can be

obtained from the Schrödinger equation using the Madelung transformation (3). Instead of

solving a third order nonlinear QHD system, one can deal with the equivalent Schrödinger

equation, which can be solved exactly for a given potential, and give an explicit formula

to calculate the corresponding current-voltage characteristic. When developing algorithms

or modeling physical systems, analytical solutions often offer important advantages. They

provide direct insight into the effects of the various variables and their interactions on the

outcome. The study of exactly solvable Schrödinger equations in the QHD context began

in [4], where the author derived the analytical expression for the reduced QHD model with

V (x) = 0, and was continued by [8], where the linear potential was used. In this article, we go

a step further and consider the nonlinear potentials: the monomial and the Morse potential.

The inclusion of the pressure term introduces a nonlinearity in the Schrödinger-like equation,

which means that we cannot obtain an explicit formula for the current-voltage curve. In
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this case, we give an existence result using the theory for monotone nonlinear operators.

We also numerically investigate the influence of the pressure term on the current-voltage

characteristic.

The work is organized as follows. After the introduction in section 1, section 2 is

devoted to the analytical expressions of the current-voltage curves for the unpressurized QHD

model with the monomial and the Morse potential, connecting the Schrödinger equation with

the Airy differential equation on one side and the confluent hypergeometric equation on the

other. Finally, in section 3 we discuss the influence of the pressure term in the QHD model

on the JU curves by performing numerical simulations.

The three-dimensional, time-dependent, nonlinear one-particle Schrödinger equation

is as follows:

iℏ∂tψ = −ℏ2

2
∆ψ +

[
V (x) + f(|ψ|2)

]
ψ, (1)

where ψ = ψ(x, t) ∈ C is the wave-function, t ≥ 0, x ∈ R3, ℏ is the reduced Planck constant

and V (x) is assumed to be a real function that represents the potential energy of the system.

The density dependent pressure term p(n) is defined by p′(n) = nf ′(n), where the function

f : (0,+∞) → R is the enthalpy of the system. In this article we are interested in the

isentropic case, where one has

p(n) = ηnγ , where 1 < γ < 3 and f(n) = η
γ

γ − 1
nγ−1, (2)

with η a (scaled) temperature constant. Assuming that the equation (1) has a solution,

Madelung’s idea was to write the complex-valued wave function in the polar form

ψ(x, t) = R(x, t)e
iS(x,t)

ℏ , (3)

where R(x, t) represents the amplitude and S(x, t) is the action function. It is assumed that

R is nonnegative at every point. The probability density associated with the wave function

is denoted by n(x, t) = |ψ(x, t)|2 = R(x, t)2. By inserting (3) into (1) we obtain a system of

two coupled partial differential equations:

∂tn+ div(n∇S) = 0, (4)

∂tS +
|∇S|2

2
+ f(n)− ℏ2

2

∆
√
n√
n

+ V = 0. (5)

We note here that if the pair (S, n) solves the Madelung system (4)-(5), then the complex-

valued wavefunction ψ(x, t) given by (3) solves the Schrödinger equation (1). After we

denote the velocity field by v = ∇S, we obtain the quantum hydrodynamic model (QHD),

which consists of the continuity equation and the momentum equation with an additional

third-order quantum term:

∂tn+ div(nv) = 0, (6)

∂t(nv) +∇ · (nv ⊗ v) + n∇V −∇p(n)− ℏ2

2
n∇

(∆√
n√
n

)
= 0. (7)
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By J = nv we denote the electron current density, which can be expressed in terms of the

wave function by the following expression:

J = − iℏ
2

[
ψ∇ψ − ψ∇ψ

]
= ℏ Im

(
ψ∇ψ

)
. (8)

We note that the boundary conditions for the Schrödinger equation, used in this article,

given by

ψ(0) = 1, ψ(1) = e
iU
ε (9)

are motivated by the boundary conditions used for the QHD model. More precisely, we

consider the stationary, one-dimensional QHD model. The corresponding scaling is discussed

in [4] and it leads to a model of the form

Jx = 0, (10)(J2

n
+ p(n)

)
x
+ nVx − ε2

2
n
( (√n)xx√

n

)
x
= 0, (11)

where ε is a scaled Planck constant. Let the device domain be represented by the spatial

(scaled) interval (0, 1). The QHD formulation is equivalent to (10)-(11) reads:

(nSx)x = 0, (12)

S2
x

2
+ f(n) + V (x)− ε2

2

(
√
n)xx√
n

= 0. (13)

We impose that

V (0) = 0, V (1) = U, (14)

where U ∈ R is the applied potential. Physically relevant hypotheses for deriving the

boundary conditions for n and S

n(0) = n(1) = 1, S(0) = 0, S(1) = U, (15)

can be found in [5, 8].

2. Analytic JU-curves for QHD models

We are interested in deriving an analytical expression for the current-voltage curve

for a given QHD model directly from the corresponding Schrödinger equation. Let us be-

gin with the simple case where the special form of the potential (linear and monomial)

in the Schrödinger equation and the absence of the nonlinear enthalpy term given by the

function f allow us to rewrite the Schrödinger equation into an Airy differential equation

solvable exactly in terms of Airy functions. Next, we move on to other potentials for which

the corresponding Schrödinger equation has an explicit solution. In this direction, we take

advantage of the fact that certain Schrödinger-like equations can be transformed into the

hypergeometric equation by a gauge transformation and by a certain change of variables.

The connection between the one-dimensional Schrödinger equation and the hypergeomet-

ric equation was first made by Natanzon, [10]. One of the most important references on

hypergeometric functions is the classical book [1].
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Our general procedure is to solve the corresponding Schrödinger equation with the

given potential V (x) satisfying (14) and the boundary conditions (9), then calculate J

with the formula (8) and finally develop the JU curve. We start with the stationary QHD

problem (10)-(11) where x ∈ (0, 1) with boundary conditions (15). In [4] the author derives

the analytic expression J(U) = ε sin
(
U/ε

)
for the reduced QHD model resulting from the

system (12)-(13) by assuming f(n) = 0 and V (x) = 0, using the boundary conditions (15).

2.1. QHD model with the monomial potential

In this section we consider the QHD model (10)-(11) with given linear and monomial

electric potential V (x) and without the pressure term, with x ∈ (0, 1), where a small pa-

rameter ε is the scaled Planck constant. This scaling leads to a corresponding stationary

equation of Schrödinger type,

ε2

2
ψxx − V (x)ψ = 0, x ∈ (0, 1), (16)

which can be solved explicitly in terms of Airy functions using the boundary conditions (9).

We mention here the following result from [8].

Proposition 2.1. For the quantum hydrodynamic model (10)-(11) with p(n) = 0 and bound-

ary conditions (9), with linear electric potential V (x) = xU , the current-voltage character-

istic J = J(U) is given by

J(U) =
ε

π

β(U) sin(U/ε)

Ai(0)Bi(β(U))−Ai(β(U))Bi(0)
. (17)

where β(U) = (2U/ε2)1/3. Moreover,

J(U) → 0, as U → 0 and J(U) → 0, as U → ∞. (18)

The generalization to the monomial potential V (x) = xmU , form ∈ N follows directly.

We consider the Schrödinger equation

ε2

2
ψxx − xmUψ = 0, x ∈ (0, 1), (19)

with the same Dirichlet boundary conditions (9).

By substituting y = βx, β2+m = 2U/ε2 and ψ(x) = φ(βx), the Schrödinger equation

(19) can be rewritten as

φ′′(y)− ymφ(y) = 0, on (0, β) (20)

with the boundary conditions φ(0) = 1, φ(β) = e
iU
ε . The equation (20) is an extension of

Airy’s differential equation [12]. It has two independent solutions Am and Bm which are

real for real arguments and agree with the Airy functions for m = 1.

Proposition 2.2. For quantum-hydrodynamic model (10)-(11) with p(n) = 0 and the bound-

ary conditions (9), with monomial electric potential V (x) = xmU , m ∈ N, U > 0, the
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current-voltage characteristic, J = J(U), is given by

J(U) =
2ε sin(π/(m+ 2))√

m+ 2π

β(U) sin(U/ε)

Am(0)Bm(β(U))−Am(β(U))Bm(0)
. (21)

where β(U) = (2U/ε2)1/(2+m). Moreover,

J(U) → 0, as U → 0 and J(U) → 0, as U → ∞. (22)

Proof. The proof of the expression (21) and the limit U → 0 is based on the expression

J = ε Im(ψ(0)ψ′(0)) = εβ Im(φ(0)φ′(0)).

and properties of the functions Am and Bm, notably (see [12]), for p = 1/(m+ 2), one has

Am(0) =
p1−p

Γ(1− p)
, Bm(0) =

p1/2−p

Γ(1− p)
,

A′
m(0) = − pp

Γ(p)
, B′

m(0) =
pp−1/2

Γ(p)
.

The limit as U → ∞ relays on the fact that Am(u) goes to zero as u → ∞, and Bm(u)

exponentially grows as u→ ∞. That is a consequence of asymptotic formulas (see [12]):

Am(u) = (p/π)1/2 sin(pπ)u−m/4e−w(1 +O(1/w)),

Bm(u) = π−1/2u−m/4ew(1 +O(1/w)),

for w = 2/(m+ 2), u(m+2)/2. This completes the proof. □

2.2. QHD model with the Morse potential

There are a number of nonlinear potentials from quantum mechanics for which the

Schrödinger equation is exactly solvable. We mention here the Morse, Poschll-Teller, Eckart,

and Manning-Rosen potentials (see [2] and references therein). More precisely, according to

[9], in each of the above cases there is a gauge function σ(z) and a change of variable z = z(x)

such that the solutions of the corresponding Schrödinger equation ψxx(x)− V (x)ψ(x) = 0,

are of the form ψ(x) = exp[σ(z(x))]φ(z(x)). Here φ(z) is either the Gaussian hypergeometric

function or the confluent hypergeometric function, recently interesting for researchers both

from theoretical and numerical point of view, [6, 3].

In this section we focus on the current-voltage characteristics for the Schrödinger

equation with the Morse potential. This potential is globally increasing and has no singular-

ities, which makes it suitable for calculating the JU curve. The solution of the Schrödinger

equation with the Morse potential can be written in terms of confluent hypergeometric

functions, i.e. Kummer and Tricomi functions (see [7, 11]).

Let us consider the Schrödinger equation (16) where the potential V (x) is given by

the Morse potential (see [2, 9])

Vε(x) = −ν
2
c−x
ε +

1

4
c−2x
ε +

α2

4
, cε = e

√
2/ε, (23)

which is a function of two parameters, ν and α.
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Since we consider the potential V (x) to satisfy V (0) = 0, we set α =
√
2ν − 1, which

leads to the one-parameter potential

Vε(x) =
ν

2
(1− c−x

ε )− 1

4
(1− c−2x

ε ). (24)

By imposing V (1) = U we get that we can express the parameters ν and α as functions of

U :

ν =
2U

1− c−1
ε

+
1

2
(1 + c−1

ε ) ≥ 1

2
(1 + c−1

ε ),

α =
√
2ν − 1 >

√
4U + c−1

ε .

By simple calculation it can be shown that the solution of (16) with the potential (24) can

be written in the form

ψ(x) = Hε(x)ϕ(c
−x
ε ), Hε(x) = c−αx/2

ε e−c−x
ε /2, (25)

where the function ϕ is a solution of the confluent hypergeometric equation

zϕ′′ + (b− z)ϕ′ − aϕ = 0, (26)

with coefficients b = 1+α, a = (b−ν)/2 which are also functions of U . Solution to equation

(26) is of the form

ϕ(z) = C1M(a, b; z) + C2U(a, b; z) (27)

where M(a, b; z) is the Kummer function, and U(a, b; z) is the Tricomi function, [1]. Finally,

the solution of (16) with the potential (24) can be written as

ψ(x) = Hε(x)[C1M(a, b; c−x
ε ) + C2U(a, b; c−x

ε )]. (28)

Proposition 2.3. For the quantum hydrodynamic model (10)-(11) with p(n) = 0 and the

boundary conditions (9), with the Morse potential (24), the current-voltage characteristic,

J = J(U), is given by

J(U) =

√
2

Γ(a)

1

Hε(0)Hε(1)

sin(U/ε)

[M(1)U(c−1
ε )− U(1)M(c−1

ε )]
, (29)

for U ∈ [0, Uε
max], where U

ε
max = (1− c−1

ε )(3 + 2
√
2− c−1

ε )/4. Moreover,

J(U) → 0, as U → 0 and J(U) → 0, as U → Uε
max,

Proof. We begin with the formula for current density J = ε Im(ψ(0)ψ′(0)). With the formula

(28) we get

ψ′(x) =H ′
ε(x)[C1M(a, b; c−x

ε ) + C2U(a, b; c−x
ε )]

−
√
2

ε
c−x
ε Hε(x)[C1M′(a, b; c−x

ε ) + C2U ′(a, b; c−x
ε )].

Direct calculation gives

ε Im(ψψ′) = −
√
2c−x

ε H2
ε (x) Im(C1C2)W

(
M(a, b; c−x

ε ),U(a, b; c−x
ε )

)
.
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Considering that the Wronskians of the Kummer and Tricomi functions can be written in

terms of the Gamma function:

W (M(z),U(z)) = M(z)U ′(z)−M′(z)U(z) = −z−bez/Γ(a),

we get

J = ε Im(ψψ′) =

√
2

Γ(a)
Im(C1C2). (30)

To calculate the complex-valued constants C1, C2, we use the boundary conditions ψ(0) = 1

and ψ(1) = eiU/ε. In this way we obtain the following linear system for C1 and C2:

ψ(0) = Hε(0)[C1M(a, b; 1) + C2U(a, b; 1)] = 1,

ψ(1) = Hε(1)[C1M(a, b; c−1
ε ) + C2U(a, b; c−1

ε )] = eiU/ε,

with solution given by:

C1 =
1

Hε(0)Hε(1)

U(c−1
ε )Hε(1)− U(1)eiU/εHε(0)

M(1)U(c−1
ε )− U(1)M(c−1

ε )
,

C2 =
1

Hε(0)Hε(1)

−M(c−1
ε )Hε(1) +M(1)eiU/εHε(0)

M(1)U(c−1
ε )− U(1)M(c−1

ε )
.

Direct calculation gives

Im(C1C2) =
1

Hε(0)Hε(1)

sin(U/ε)

[M(1)U(c−1
ε )− U(1)M(c−1

ε )]
. (31)

Note that

Hε(0) = e−1/2, Hε(1) = c−α/2
ε e−c−1

ε /2.

By inserting the expression (31) in (30) we finally get (29).

We point out that J(U) depends on U only through the terms Γ(a) and Hε(1). Let

us consider first the case U → 0:

ν(U) =
2U

1− c−1
ε

+
1

2
(1 + c−1

ε ) → 1

2
(1 + c−1

ε ), α =
√
2ν − 1 → c−1/2

ε ,

a =
1

2
(1 + α− ν) → 1

4
+
c
1/2
ε − 1

2cε
> 0.

The values of Γ(a) and Hε(1) remain finite in the limit U → 0 and then, due to sin(U/ε) → 0

we get J(U) → 0 as U → 0. Next, consider the case U → Umax. Then ν(U) and α(U)

converge monotonically to ν(Umax) and α(Umax) but a(Umax) =
1

2
(1+α(Umax)−ν(Umax)) →

0. We find that Hε(1) remains finite with U → Umax, but Γ(a) is unbounded in the limit

U → Umax. Consequently, J(U) → 0 when U → Umax. □
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3. The influence of the pressure term on JU-curve

When treating the QHD model with the pressure term, the explicit expression for

the JU curve cannot be obtained, so we discretized the corresponding Schrödinger equation

using finite differences and obtained the JU curve numerically. With respect to Madelung’s

equivalence between the Schrödinger equation and the QHD system, we start with the

following nonlinear Schrödinger equation:

−ε
2

2
ψxx +

[
V (x) + f(|ψ|2)

]
ψ = 0 on (0, 1), (32)

with boundary conditions (9). We note that a simple application of the Browder-Minty

theorem for monotone nonlinear operators [13] yields that the equation (32) with boundary

conditions (9) has a unique weak solution, for f nonnegative and monotonically increasing,

considering that V (x) ≥ 0 on (0, 1). More precisely, using the notation ψ = u+iv, u = (u, v),

we rewrite the complex equation (32) as a real system:

−ε
2

2
uxx +

[
V (x) + f(|u|2)

]
u = 0, −ε

2

2
vxx +

[
V (x) + f(|u|2)

]
v = 0,

on (0, 1) with boundary conditions

u(0) = 1, u(1) = cos(U/ε), v(0) = 0, v(1) = sin(U/ϵ). (33)

We define a weak problem as follows: find u = (u, v) ∈ H1(0, 1) ×H1(0, 1), satisfying the

boundary conditions such that∫ 1

0

(
ε2

2
(uxϕx + vxψx) +

[
V (x) + f(|u|2)

]
(uϕ+ vψ)

)
dx = 0,

for all (ϕ, ψ) ∈ H1
0 (0, 1)×H1

0 (0, 1). We note that the variational formulation for all locally

bounded functions f : [0,∞) → R and V : [0, 1] → R is well defined due to the embedding of

H1(0, 1) ⊂ L∞(0, 1).

Let us define operator A : H1
0 (0, 1)×H1

0 (0, 1) → H−1(0, 1)×H−1(0, 1),

⟨Aw,v⟩ =
∫ 1

0

(
ε2

2
ux · vx +

[
V (x) + f(|u|2)

]
u · v

)
dx

where u = w +G and G = (1 + x(cos(U/ε)− 1), x sin(U/ε)). Monotonicity and coercivity

of the operator A follow directly from the assumption that the function f is monotonically

increasing and nonnegative, and V (x) ≥ 0. Namely, let w, z ∈ H1
0 (0, 1) × H1

0 (0, 1) and

v = z + G. The direct calculation gives ⟨Aw − Az,w − z⟩ ≥ α∥w − z∥2H1
0 (0,1)

2 , where

α = CP ε
2/2 and CP is the constant from the Poincaré inequality. On the other hand, the

coercivity follows from the estimate

⟨Aw,w⟩ =
∫ 1

0

(
ε2

2
|wx|2 +

ϵ2

2
Gx ·wx +

[
V (x) + f(|u|2)

]
(w +G) ·w

)
dx

≥ ε2

2

∫ 1

0

|wx|2 dx− C

∫ 1

0

|wx| dx+

∫ 1

0

[
V (x) + f(|u|2)

]
(|w|2 − |G||w|) dx,
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where w ∈ H1
0 (0, 1) × H1

0 (0, 1) and u = w + G. Under the assumptions on f and V (x),

for sufficiently large ∥w|∥H1
0 (0,1)

2 the last integral is positive and the coercivity then follows

from the Poincaré inequality. In this way we have proved the following existence theorem:

Theorem 3.1. Let the function f : [0,∞) → R be nonnegative and nondecreasing and

V (x) ≥ 0 a bounded potential. Then the equation (32) with boundary conditions (9) has a

unique solution.

Figure 1. The JU-curve for system (10)-(11). Left: the monomial poten-

tial, right: the Morse potential. The curves show the NDR effect and the

influence of the pressure term on the shape of the JU-curves.

To discuss the numerical results for JU curves for the QHD model with the pressure

term, we discretize the problem (32), (9) using the finite differences. To consider the influence

of the pressure term in the isentropic case, we assume that the enthalpy function f is scaled

with a parameter η, and we consider the behavior of the current-voltage curves when η

increases from zero (no pressure case). Figure 1 shows the JU curve resulting from the

monomial potential V (x) = xmU , m = 3 and the Morse potential. Comparing the JU curve

for the QHD model with and without pressure, our simulations show that the pressure

term strongly affects the peak-to-valley ratio of the JU curves. The peak of the JU curves

decreases compared to the no-pressure case when the η parameter is increased. In summary,

our numerical results show that the convexity of the enthalpy function f strongly affects the

peak-to-valley ratio of the JU-curves, as shown in Figure 1.
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[5] A. Jüngel, A steady-state quantum Euler-Poisson system for semiconductors, Commun.Math.Phys. 194

(1998), 463-479.
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