U.P.B. Sci. Bull., Series D, Vol. 70, No. 3,2008 ISSN 1454-2358

INFORMATIC SYSTEM FOR NUMERICAL COMMAND
PROGRAMS AUTOMATIC GENERATION

Corneliu NEAGU', Victorin CONDEI?

Existenta unei mari diversitati de produse CAD/CAM comerciale, avind
caracteristici de utilizare echivalente, genereaza dificultati pentru firme in alegerea
celui mai potrivit produs pentru nevoile sale concrete. Pe de alta parte, produsele
software oferite de producdtorii consacrati necesita investitii substantiale de
achizitie si de formare a personalului desemnat sda le utilizeze. De aceea, in cazul
intreprinderilor mici §i mijlocii se recomandd dezvoltarea personalizata a unor
solutii de generare automata a programelor ‘NC’, utilizdand librarii grafice gratuite
de tipul ‘Open’ (OpenGL, OpenCascade) si un limbaj de programare adecvat
aplicatiilor grafice. In baza acestui obiectiv major, in lucrarea de fatd se propune
un sistem informatic pentru generarea automatd a programelor ‘NC’, destinate
prelucrarii prin frezare a suprafetelor de geometrie complexd, utilizand algoritmi
proprii de generare §i simulare a traseelor de prelucrare.

The existence of a great diversity of commercial CAD/CAM products, having
equivalent usage features, generates difficulties for the companies in order to
choose the most suitable product for theirs specific needs. On the other side, the
‘well-known companies’ sofiware product proposals require substantial investments
for acquisition and nominated users training. Therefore, in the case of the small and
medium enterprises, it is recommended the development of customized solutions for
automatic generated NC programs, using shareware graphical libraries like ‘Open’
type (OpenGL, OpenCascade) and a proper programming language for graphical
applications. On the ground of this major objective, this study is proposing an
informatic system for automatic generating NC programs. These programs are
meant to complex surfaces milling, using customized algorithms for tool path
generation and simulation.

Keywords: numerical command; packet diagram; class diagram; tool path;
graphical library; programming language.

1. Introduction

The existence of a great diversity of commercial CAD/CAM products,
having equivalent usage features, generates difficulties for the companies in order
to choose the most fitted product for their specific needs. This issue disposes
numerous studies and researches, performed at world-wide level.

! Prof., Dep. of Manufacturing, “Politehnica” University of Bucharest, ROMANIA
? Eng., Geci Engineering Bucharest, ROMANIA

62 Corneliu Neagu, Victorin Condei

CETIM magazine (Centre Technique des Industries Mecanique) has
published a study which brings up and compares, from technical and
performances specifications point of view, 11 most used CAD/CAM systems
from the industry [1]: CATIA, CAMeLOT, EUCLID MACHINIST, GOELAN,
HYPERMILL, POWERMILL, TEBIS, UNIGRAPHICS, VISI-CAM, WORK-
NC, SURFCAM.

Having similar features series, almost all of the above software systems
provide 2D drafting, 3D modeling or 3D surface modeling facilities. For surface
development there are available advanced functions like Bezier, B-Spline or
NURBS to generate the interpolation, and again the 3D modeling could be
parametrical or variational.

Regarding the manufacturing side, the programmer has available an
important technological data base, including machine-tools, tools and process
rating parameters.

Most of all the above mentioned systems have, also, robotic programming
modules. The models for data exchange between different software systems are
using special interfaces like IGES, DXF, STEP or STL [2,3,4].

All CAD/CAM systems listed above, require substantial investments for
acquisition and nominated users training. Therefore, in the case of the small and
medium enterprises, it is recommended the development of customized solutions
for automatic generated NC programs, using shareware graphical libraries like
‘Open’ type (OpenGL, OpenCascade) and a proper programming language for
graphical applications, like C++.

In compliance with the above paragraphs, the major target in this work
will become the development of automatically generated NC programs
application, for milling manufacturing of complex geometrical shapes, using
personalized algorithms for tool path computation or simulation [5]. In the
development process it will be used the OpenCascade graphical library shareware
environment and Visual C++ programming language [8]. The final product will
try to achieve the following purposes:

e definition of an interactive graphical context for the diversity of
geometrical shapes visualization;

e automated generation of numerical command programs for 3 axes milling,
needed at rough cutting and finishing operations from manufacturing process
applied to the geometrical shapes already loaded into the graphical context;

e tool paths simulation, for the inside instructions of generated NC
programs.

The first stage in application development is to draw up the static diagrams
for system internal structure description. This kind of description is made by
identification of: application classes, attributes and operations, and also the
relationship between classes. Static diagrams are constituted from:

Informatic system for numerical command programs automatic generation 63

e package (module) diagram: it shows the application classes groups and
relations between them; each package contains related classes;
e class diagram: it shows all the classes that compose the application and the
relationship between them.
The diagram process elaboration must include all the concepts that
participate to the accomplishment of the anterior objectives:
e to give the means for 3D geometrical models with complex shape to be
loaded inside of an interactive graphical context;
e to give the methods (functions) to automatically generate numerical
command programs for 3 axes milling manufacturing of already loaded parts.
Discovering the concepts, the relationships and interactions between them,
will finally carry out the informational data flow from the application running
phase. The analysis presented in this study is made using UML (Unified Modeling
Language) notions, which are usually used at object oriented application
development [7].

2. Application class packages diagram

All of the application components can be grouped into object classes
standalone packages, which can interact with each other by instancing (appealing
the class with ‘new’ operator, or class data member initialization with specific
values, generates an object class instance). The developed informatic system main
components call a set of concepts from inside of development environment
software packages, such as: Visual C++ with the object library MFC (Microsoft
Foundation Class), can be fit in MFC package; OpenCascade’s graphical objects
library, can be fit in OpenCascade package; OpenGL’s graphical objects library,
can be fit in OpenGL package.

These three big components can be considered like specific packages
owned by the application development environment. These components assure
several computing functions, needed for all specific application software
components. In Fig. I is presented a graphical display for the application package
diagram.

According to the diagram and, also, specific to the developed informatic
system (named ‘Milling’), there are present the following application component
packages:

e Milling — contains the application main classes;
e Simulation — contains the simulation process classes;
e Auxiliary — contains classes for application messages view.

All the Milling application components (classes) are also included inside
of above class packages (Milling, Simulation and Auxiliary). Between these there
are interdependence relations through contents and instances. The application

64 Corneliu Neagu, Victorin Condei

type, from Visual C++ point of view, is a MDI project (Multiple Document
Interface), and the project’s software structure is elaborated in conformity with
‘document-view’ architecture.

]]]

MFC OpenCascade OpenGL

Development environment N
class packages /
------ Milling T T T T T T T T T T Simulation |
—_— — — =
\/ _— —
/ _— - \
— o — ~
o ™~ —
Aplication class packages AN auxiliar

Fig. 1. Application class packages diagram

CMillingApp is the class which launches the application in execution and,
also, manages the application interaction with the operating system. This
application component is extended from CWindApp MFC’s standard class.
Following this pattern, Fig. 2 shows the application general class diagram
elaborated for the ‘document-view’ like interaction structure type. Resulted
application class diagram shows all the four main typical concepts for this kind of
software architecture: document class, visualization class, frame class and
application class.

3. Application class diagram

Inside Milling package it can be found all the application components,
which are transformed into classes instance (objects) and, also, are managed by
the application class extended from CWinApp.

The Table 1 shows the application components names, and, also, the
suitable program source file names from the application sources distribution.

Informatic system for numerical command programs automatic generation

65

Diagram class components

Package Component (class) Source file (.h, .cpp)
Milling CMillingApp Milling
CChildFrame3D ChildFrm3D
CMillingView3D MillingView3D
CMillingDoc MillingDoc
CMainFrame MainFrm
CMessageView MessageView
CDialogDegrosare DialogDegrosare
CDialogFinisare DialogFinisare
CDialogNCSimulare DialogNCSimulare
Simulation NCprog NCprog
NCinstr NCinstr
CutterGeom CutterGeom
ToolShape ToolShape
CPostPro CPostPro
ViewManager ViewManager
CONSTANTS CONSTANTS
Auxiliar CsizingControlBarCF scbarcf
CsizingControlBarG scbarg

Table 1

The general application class assembly and the interaction between them
have a simplification description in Fig. 2. The figure diagram brings up all the
relationship between concepts and, also, their specific attributes (class data and
operations members). The class linking relations assure collaboration possibility
among classes instance (objects) in application running time.

This class diagram shows three main relation types:

e dependency: when a class call another class instance (object) attributes, or
in the class operation will be created instances (objects) for another class; this
type of link is used when the modification of class behaviour has as result the
modification of the behaviour for another class;
e association: when a class have another class like attribute types, or have a
group of attributes data with another class type;
e extension (generalization): when a class expanded from a parent class, and
inherits all the parent class attributes; in C++ it is possible that more than one
class to be extend from the same parent class.

66

Corneliu Neagu, Victorin Condei

CWinApp

from Application Archite.
CMDIChidwnd | |
from Frame Wind.

CMillingApp

C MillingApp()

M nitinstance() : BOOL

CChildFrame3D

B5m_wndToolBar3d : CToolBar
E8m_wndMessageView : CMessageView

CView
from Vie..
——
—

incarc;ﬂnsele de meniu

CDocument

(from Application Architer..)
—
|

WonCreate()
+cadnnpentru \
fearca v
V CMillingView3D L
CMessageView CMillingDoc
o OnBUTTON...() BBy AlSContexy : AIS_InteractiveContext
ioi?r%‘sr::::ua(e() incarca fesurse toolbar SHMGUSE' 0
nLButton...() Monobject...()
WOnMButton...() FonUpdate...(
CMDIFramewnd BRedraw() WOnFile...()
—— U Honselect...)

]

CMainFrame

[EBm_AlSToolBar : CToolBar*

MCMainFrame()

MOnCreate(LPCREATESTRUCT) : int

NCinstr
(from simuation)
sint
int
int
int
sint
sint
double
B8y : double

: double
[E5:0 : double
B5Y0 : double
B850 : double

RegeEgaEg

HPrelucrarel nstructiune()
MAttachvalue()

/o
/ |

Cbialog
(from Dialog B..
1

[<——<{Biprog : CList

L/

CPostPro
(from simulation)

MNCprog()
MincarcareProgram| SO()

CViewManager

(from simulation)

) int
EHavansR : int

& my Doc : CMillingDoc

ESmy CurrentIC : AlSInteractiveContext

: char*
char*

MU pdateAl SShape()
MshowAlSShape()

E&fileName : char*

M uildISO()

ClmportExport /
CDialogSimulare CDialogDegrosare CDialogFinisare
MR ead|GES()
MR eadBREP() s 0 Mistar 0 s 0
MSav eBREP() MonBnClicked...() MonBnClicked...() MWonBnClicked..()
s StopThread() MU pdateAlS() MUpdateAlS()
MUpdateAlS() i sStopThread() i sStopThread()
S / / /
(from simulation)
Eline : int N 72

Fig. 2. Application main class diagram.

The class diagram elaboration for each of the application components
package will allow to understand the object instance from any class inside the
package. The class group that builds up the ‘document-view’ project’s structure
architecture is shown inside the class diagram from Fig. 3. The class document
role is taken by CMillingDoc and this class manages the program data. The
visualization class, which has the function to manage the interaction between user
and document is assured by CMillingView3D. The frame class, which includes
visualization context and user interface elements, is defined by the
CChildFrame3D class structure. The last one, CMillingApp, takes the role of the
application class, which have to launch the application in running stage.

Informatic system for numerical command programs automatic generation 67

CWinApp
(from Application Architex...

CMDIChildwnd | CMillingApp

(from Frame Wind...)

FCMillingApp()
®initinstance() : BOOL

\ CDocument

(from Application Architex...)

CcChildFrame3D

ESm_wndToolBar3d : CToolBar . CView \
EBm_wndMessageView : CMessageView from Vie..) incarca rairsehe de meniu

®OnCreate() N ‘
/ +cadrpentru \
ncarca v
VA

CMillingView3D
CMessageView \ CMillingDoc
®OnBUTTON...() -
™ . B5my AlSContexy : AIS_|InteractiveContext
‘AddLlne(). incarca Yesurse toolbar HonMouse...()
Onlnstantiate() SonLButton...() SOnObiect...()
FonmMButton...() SonUpdate...()
CMDIFrameWnd \ SRedraw() SonFile...()
from Frame Windk.. ®onUpdate...()
(from Frame Windk...) tratate pﬂﬂ ‘OnSeIeCI...()

|

CMainFrame
ESm_AlSToolBar : CToolBar*

®CMainFrame()
SOnCreate(LPCREATESTRUCT) : int

Fig. 3 ‘Milling’ package class diagram.

Once the application is started in execution (Fig. 4), it will be created a
CMillingApp class instance (which inherit CWinApp MFC’s class). The generated
object will begin the application main classes calling process, and so the resulted
instances will perform the interaction between operating system, application
functions and user. Like in the above paragraph, the main classes are:
CChildFrame3D (inherit CMDIChildWind), CMillingView3D (inherit CView)
and CMillingDoc (inherit CDocument). The class CMillingApp loads all the
application main window menu resources, and the menu options selection events
are solved inside the document class CMillingDoc.

Through CChildFrame3D there are loaded the toolbars (Fig. 4). Toolbars
option selection events are solved by the visualization function (operation) class
members. Through CChildFrame3D there will be generated the application frame
needed for CMillingView3D instance, which will give the operations required to
answer at the main window toolbar selection events (Fig. 4). All the events, which
manage the user application interaction through the menu or toolbar option
selection, are solved by calling the CMillingDoc and CMillingView3D class
instances. The last one object (CMillingView3D) has also the role to ask on the
events generated by the: mouse movement, mouse buttons pushing or keyboard

68 Corneliu Neagu, Victorin Condei

buttons pushing. The CMessageView class assures the messages sent by the
application functions to be shown in the text context window, placed on the
bottom side of the main application frame.

CMillingDoc CMillingView3D CChildFrame3D
\ {

Eln| mi=|8] @ 2o}
olale| ¢ olslels|s|e]s| =] [o]

ey [
Fig. 4 The ‘document-view’ architecture for Milling application.

Another class assembly is the one grouped inside the ‘Simulation’
package. The class attributes included there assures the numerical command (NC)
program instructions reading and parsing process, for each sequence line. The
class diagram for this package is displayed in the Fig. 5.

The parsing process for only one NC program sequence line is made
within the NCinstr class. Inside this class frame there are class operation
members, which read the NC program line and extract the tool centre geometrical
position coordinates, and also the type of manufacturing movement.

The NCprog class is composed of NCinstr type items collection. This
items collection is a simple linked list type CList (structure type from MFC
package). Therefore, it can be considered that NCprog class is an aggregate of
NCinstr class.

The CONSTANTS class contains static data members, with constant data
values, which are used in the computing process, by a variety of functions from
application classes.

Informatic system for numerical command programs automatic generation 69

The ToolShape class structure has methods for tool path segment
computation, starting from the NC program successive instructions, and also has
methods for building of the geometrical shape generated by tool movement along
the tool path segment, described by NC sequence instruction.

The CPostPro class structure has the needed methods in writing the
resulted output NC program file. For a specific milling operation, this processing
phase is started after the end of the tool path generating process.

NCprog NCinstr ViewManager
Bline - int BN : int ES*myDoc : CMillingDoc
BSprog : Clist +c¢ontine B5T: int EZ*myCurrentIC : AlSInteractiveContext
< B5F : int
$NCprog() &S : int $UpdateAlSShape()
®incarcareProgramISO() & int $ShowAISShape()
BEH : int
X : double
B3y : double CutterGeom
Bz : FjOUble BEmainAx : gp_Ax
X0 : double B5L : double
B5Y0 : double B5D : double
520 : double B5R - double
CL : Pnt
$Prelucrarelnstructiune() %ﬁrstc?_p'_gp Pnt
WAttachValue() BjlastCL - gp_Pnt
/N
1 ®FlatFunction()
—_— SFilletFunction()
ToolShape SsphereFunction()
B%instr : NCinstr Sisinside()
B8 diam : double
B raza : double \L
gt—c')‘;?g T:;;Slse Shape CONSTANTS CPostPro
BjtoolPath : TopoDS_Edge BSundefint : int BavansL : int
- —— —— —— —— >EjundefDouble : double ESavansR : int
®GetToolPath() : TopoDS_Edge B5PI : double l%l@neStart : char*
SiPerformToolShape() : bool &lineEnd : char*
EHfileName : char*
®BuildISO()

Fig. 5 ‘Simulation’ package class diagram.

Inside Fig. 6 it is shown the class diagram, requested by the system, to
accomplish the user application interface, through the application main frame
menu options. Basically, the menu is a command messages list, which can be
selected and send to the active window frame. The menu is associated to the
application main window frame. Each menu item option requests a particular class
member operation, contained by the document class. The description of these
operations, will show the programming mechanism used to achive the interaction
between user and application at the menu level. Throught these command
messages sent to the application it will start running also other different user
interface types, named dialog box. This kind of user interfaces allow to collect

70 Corneliu Neagu, Victorin Condei

multiple input data, of various data types, allowing input data validation at input
or choosing it from predeterminate data lists.

CDocument
(from Applic...)

L

CMillingDoc
@myAISContexy : AIS_InteractiveContext

¥Oonobject...()

®onuUpdate...() o
onFile...() ialog
$onselect...() (from C...)

TN

S

ClmportExport

WReadIGES()
WReadBREP()
¥SaveBREP()

N\

CDialogSimulare

CDialogDegrosare

WstartSimulateNC()
®onBnClicked...()
®isStopThread()
WUpdateAlS()

WstartGenerareSC()
WonBnClicked...()
FUpdateAlS()
FsStopThread()

CDialogFinisare

¥startGenerareSC()
¥onBnClicked..()
®UpdateAlS()

®IsStopThread ()

Fig. 6 Main menu options class diagram.

The above diagram presents these structures data type, extended from
CDialog MFC class, which is met into the following classes: CDialogDegrosare,
CDialogFinisare and CDialogSimulare. These classes launch the tool path
generation computing process, for specific milling operation, using the ‘execution
thread’ programming method [8, 9].

The ‘working function’ from inside the execution thread, used within the
class, follows an alghorithm rule illustrated in the logical scheme displayed in
Fig. 7.

The output of the processing made inside these functions, is a segment
collection, ordered and oriented, which is generated starting from the intersection
curve group between part’s free form and the machining planes. This segment
collection is postprocessed in order to obtain the appropriate numerical command
program. The ‘working function’ processing intrerruption or termination will save
the generated segments assembly as output, using a BREP format file.

The ClmportExport class assures the methods for /GES or BREP file
format reading, and also the saving of the geometrical objects using BREP file

Informatic system for numerical command programs automatic generation 71

format. These methods give the possibility to import free forms into the
application interactive graphical context, taken from different CAD systems.

Dialog Box for |

technological Tl . .

data input T Working Function
‘thread’

<&
«

A

Toolpath
Computation

End/Stop
Computation
Process

Segment
Collection

Post-
Processing

Fig. 7 Logical scheme follow by the functions for tool path computation.

4. Conclusions

The development of an informatic system intended to automatically
generate numerical programs for the 2.5 or 3 axis milling process, becomes an
available activity by using of free graphical objects library like OpenCascade or
OpenGL. This activity can be a viable solution for small and medium companies,
which have a low or insignificant budget allocated for the numerical command
development of manufacturing department. The application, that was illustrated in
this study, intends to answer to the following particular issues, like any other
CAM application:

e self-determining to any CAD solution, by availability of /GES file format
importing;

e availability of a graphical interactive context, for geometrical objects
visualization and manipulation;

e functions for numerical command generation needed in rough cutting and
finished milling;

72

Corneliu Neagu, Victorin Condei

e function for resulted tool path simulation.
The application development can be made in compliance with the existing

machine tools central unit particularities, and also in conformity with the more
often used milling operation types (contouring, cavity or boss manufacturing, and

SO on).
BIBLIOGRAPHY

[1]. Zapciu M., Fabricatia asistatd de calculator, Editura POLITEHNICA PRESS, Bucuresti, 2003

[2]. Ivan N. V., s.a., Sisteme CAD/CAP/CAM. Teorie si practicd., Editura Tehnicd, Bucuresti,
2004

[3]. Machover, C., The CAD/CAM handbook, McGraw Hill, 1996.

[4]. Udroiu., R., Conceptia si fabricatia pieselor de forma complexa., Teza de doctorat, 2003,
Conducator stiintific: Prof. dr. ing. N.V. Ivan

[5]. Condei., V., Contributii la generarea automatd a programelor CNC pentru prelucrarea prin

frezare a suprafetelor complexe., Referat nr.3 la teza de doctorat, UPB 2006, Conducator
stiintific: Prof. dr. ing. C. Neagu

. *¥*¥*% _ OpenCascade, http://www.opencascade.com/pub/doc/OCC62_Overview.pdf, 2007.
. Bell,D.,UML Basics, IBM Rational Software, http://www.ibm.com/developerworks/rational ,

2003.

. Williams, B., Bazele Visual C++, Editura Teora, 1997.
. *¥*% _MSDN Library, http://msdn2.microsoft.com/en-us/library/69644x60(VS.80).aspx, 2007.

