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ACCURATE ELEMENT METHOD STRATEGY FOR THE 
INTEGRATION OF FIRST ORDER ORDINARY 

DIFFERENTIAL EQUATIONS 

M. BLUMENFELD1  

Metoda intitulată “The Accurate Element Method” dezvoltată recent de către 
autor  poate rezolva in acelaşi mod toate problemele legate de integrarea ecuaţiilor 
diferenţiale ordinare: Problema cu valori iniţiale (IVP), cea bilocală (BVP) si cea a 
valorilor proprii (EVP) [1,2]. Pentru problema cu valori initiale (IVP) mai multi 
specialişti în domeniul analizei numerice au considerat necesar un studiu mai 
dezvoltat privind două aspecte esenţiale: stabilitatea metodei şi capacitatea sa de a 
înlocui soluţia exactă a  unei ecuaţii diferenţiale ordinare prin polinoame. Articolul 
de faţa este rezultatul acestui studiu. 

The Accurate Element Method (AEM) developed recently by the author can 
solve in the same way all the problems connected to the Ordinary Differential 
Equations (ODE) namely the Initial Value Problem (IVP), the Boundary Value 
Problem (BVP) and the Eigenvalue Problem (EVP) [1,2]. Connected to the IVP 
problem several academics considered necessary a more elaborate study 
concerning two essential problems: the stability of the method and its capacities to 
replace the exact solution of an ODE by several polynomials. The paper is the result 
of this study.  

Keywords: Ordinary Differential Equation, Accurate Element Method,  
                    Implicit Methods, Target Value Problem, Field Polynomial Solution 

1. Introduction: Problems to be solved 

 Consider a first order Ordinary Differential Equation (ODE) 
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where E1(x), E0(x), EF(x) are three known functions. This ODE has to be 
integrated between a start (initial) point xS and a target (final) point xT, leading 
to two different problems that will be analyzed below: 

1. Supposing the initial value ( )SSS xx =φ=φ=φ )0(  as known one has to 

calculate the value of the function ( )TTT xx =φ=φ=φ )0(  at the target point, no 
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matter how far this point is. This will be considered as a Target Value Problem 
(TVP), being in fact the trivial approach of an Initial Value Problem (IVP).  

2. Supposing the integration field xS – xT  divided in a small number NE of 
sub-intervals (elements), find NE polynomials φn(x) (n=1,2…NE) that can be 
considered as accurate solutions of the ODE on each element. This problem that 
can have an important use for a wide class of real time simulation programs like 
SIMULINK and AMESim2, will be referred as a Field Polynomial Solution 
(FPS). 

It will result that the strategy for solving these two problems leads to 
different approaches that can be nevertheless controlled and optimized. The 
Accurate Element Method (AEM), which can usually give good answers to both 
TVP and FPS will be compared with the "classic" fourth–order Runge-Kutta 
method, which is not always able to solve a TVP and whose results are only 
discrete (non-continuous) values. 

2. ODEs to be integrated 

 Three linear ODEs will be integrated below. For all of them the functions 
E1(x), E0(x), EF(x) are represented by polynomials. 

2.1 ODE1  
The ODE1 is a “build-up” problem for which a solution has been chosen 

as a nineteen-degree polynomial given by the product  
    φ(x) = (FA) (FB)          (2.1) 

where    FA = (x-1) (x-1.6) (x-1.7) (x-1.8) (x-2.02)(x-3.05) (x-3.2) (x-3.6) (x-4.3) 
 FB = (x-4.55) (x-4.86) (x-5.2) (x-5.64) (x-6.02)(x-7.03)(x-8)(x-9) (x-9.78) (x-10) 
If  E1=1 + 2 x – x2 + 3 x3 + x4  and  E0= 5 – 2 x + 3 x2 + 4 x3 + x4 , the free term 
EF(x) results as a twenty-three degree polynomial. The starting value φS of the 
function results from (2.1) by replacing x ⇒ xS. 

 
Fig.2.1 From x=1.5 to x=3.5         Fig.2.2 From x=3.5 to x=6 
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 The function φ(x) that has 18 extremes is represented between x=1.5 – 3.5 
in Fig 2.1 and between x=3.5 – 6 in Fig 2.2. Because the solution (2.1) is known, 
it possible in this case to compare the TVP result (φcomputed) to the accurate one 
(φaccurate), by calculating an actual relative error given by 

accurate

accuratecomputederroractual
φ

φ−φ
=     (2.2) 

2.2 ODE2 
 The second ODE is taken at random being given by 

(1.1–0.1x) φ(1) + (5–2x+3x2+4x3+x4) φ(0) +2+3 x+2x2+x3 = 0                     (2.3) 
 The integration will start from xS=0, for which φS is chosen as   

              φS=φ(x=xS) = φ(0) = 1                 (2.4) 
No closed solution is known by the author for ODE2 (2.3). The graphic of the 
solution obtained by using the strategy described later on is given in Fig.2.3. 

 
Fig.2.3. ODE2 from x=0 to x=5    Fig.2.4.ODE3 from x=0 to x=5 

 
2.3 ODE3 

 The ODE3 is similar to ODE2 (2.4), but with a modified first term E1(x) 
( 6–5x +x2 ) φ(1) + (5–2x+3x2+4x3+x4) φ(0) +2+3x+2x2+x3 = 0             (2.5) 

The integration starts from xS=0, for which φS is chosen as  
           φS=φ(x=xS) = φ(0) = 0           (2.6) 

No closed solution is known by the author for ODE2 (2.5). The graphic of the 
solution obtained by using the strategy described later on is given in Fig.2.4.  

3. The complete transfer relation and concordant functions 

 Since 1768 the one-step "classical" methods used for the integration of 
ODEs (like Euler, Heun, Runge-Kutta) carefully avoid integration. On the 
contrary, the Accurate Element Method (AEM) starts by an accurate integration 
of the ODE, being based on two concepts: 
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 1. The COMPLETE TRANSFER RELATION (CTR) , represents the 
result of an accurate integration that leads to one or more integral equations. For 
instance, the first order ODE (2.1) can be integrated between xS and xT leading to 
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If the coefficients E1=constant and E0=constant, the first integral is performed 
straightforward3 
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The only difficulty (typical for an integral equation) is the first integral that 
includes the unknown function φ(x) under the integral sign. This integral can be 
performed by replacing φ(x) by an approximation function )x(~

φ . Seemingly, for a 
first order ODE the only possible approximation is the linear interpolation 
function 

xKKx 21)(~
+=φ      (3.3)  

where  ( ) ( ) )(/;)(/ 21 STSTSTSTTS xxKxxxxK −φ−φ=−φ−φ=      (3.4) 
If such function is replaced in (3.1) it will lead to poor and unacceptable result, 
similar to those obtained by using Euler's method. 
 2. The CONCORDANT FUNCTION (CF) is a higher order polynomial 
that can be used as a replacing function )x(~

φ  instead of (3.3), without modifying 
the number of the end unknowns, which remain φS and φT. Suppose, for 
instance, that the ODE2 (2.3) has to be integrated between xS=1 and xT=2, for 
which it will be used a Concordant Function represented by a third-degree 
polynomial referred as CF4 

3
4

2
321)(~ xCxCxCCx +++=φ     (3.5) 

whose derivative is         2
432 32/)(~ xCxCCdxxd ++=φ        (3.6) 

In order to obtain the four unknown constants Ci ( i = 1,2,3,4 ), two end 
conditions are obvious: 
x=xS=1 ⇒ 4321 CCCCS +++=φ (a) ; x = xT = 2⇒ 4321 842 CCCCT +++=φ  (b) 

                                                            
3 For the general case when E1=E1(x) and E0=E0(x) the relation (3.2) becomes [1] 

( ) ( )
∫∫ −φ⎟

⎠
⎞

⎜
⎝
⎛ −−φ=φ

xT

xS
F

xT

xS

1
0SS1TT1 dx)x(Edx)x(

dx
xdExEEE          (3.2a) 

where E1S=E1(x=xS) and E1T=E1(x=xT) are two constants resulting from E1(x). 
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The two other conditions are obtained by AEM from the derivative (3.6), which is 
also transferred at both ends by replacing in (3.6) the two end abscissas 
x=xS⇒( ) 432 32/)(~ CCCdxxd S ++=φ (c); x=xT   ⇒( ) 432 124/)(~ CCCdxxd T ++=φ    (d) 
The four conditions (a), (b), (c), (d), represent a system of 4 equations from which 
it result the 4 constants Ci. They depend at this stage not only on the initial 
unknowns φS and φT but also on the two unknown end derivatives.  The Accurate 
Element Method eliminates accurately these new unknowns by using the 
governing equation itself. The equation ODE2 (2.3) considered here applied at 
both ends leads to 
x=xS=1⇒  ( ) ( ) 811/)(~0811/)(~

−φ−=φ⇒=+φ+φ SSSS dxxddxxd    (3.7a)    
x=xT  ⇒   ( ) ( ) )9.0/24()9.0/61(/)(~02461/)(~9.0 −φ−=φ⇒=+φ+φ TTTT dxxddxxd    (3.7b) 

If (3.7a) and (3.7b) are replaced in (c) and (d), respectively, all the four 
constants Ci will depend only on the initial unknowns φS and φT being given by  
C1= -59 φS + (1184/9) φT + (40/3)  ;  C2= 144 φS – (2978/9) φT – (112/3)       (3.8) 
C3= -108 φS +(2395/9) φT + (104/3)     ;       C4= 24 φS – (601/9) φT – (32/3) 

Now (3.5) is replaced in (3.1), leading finally to a single equation with two 
unknowns (φS, φT). Because the initial (start) value φS is known the target value φT 
results immediately.  

This methodology allows the use of higher degree polynomials by 
applying a similar methodology [1]. For instance for CF6 (a five-degree 
polynomial with 6 constants) it is necessary to use besides the first derivative of 
the ODE, also its second derivative. This procedure (increasing by two units the 
degree of the polynomial and adding simultaneously a higher order derivative, 
which applied at both ends give two new accurate conditions) may continue 
similarly for polynomials of any degree. Below will be analyzed the influence on 
the precision of 7 different Concordant Functions (CF4, CF6, CF8, CF10, CF12, 
CF14, CF16). The smallest degree of the replacing polynomial corresponds to 
CF4 (4 constants, third degree) and the highest to CF16 (16 Ci, fifteen-degree).  
Remark. The derivatives mentioned above concern only the functions E1(x), E0(x), 
EF(x), independently of each other. This task is processed by a program without 
any intervention of the user [1]. 

  4. The Accurate element method is an implicit method thus generally stable  

 The stability of the procedure for solving numerically an ODE is a term 
not always clearly specified. Usually a procedure is considered as unstable if 
errors introduced at some stage of the calculation are propagated without bound 
throughout subsequent calculations. A large number of studies have been 
dedicated to the methodologies establishing the conditions that secure the stability 
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of the Runge-Kutta method, which is an explicit method. Usually they lead to the 
limitation of the length of each step, possibly imposing a great number of steps. 

 The Accurate Element Method is an implicit method. In fact the integral 
equation (3.2) shows that the target value φT depends on the first integral that 
includes φ(x). The function φ(x) is replaced by (3.5), where the constants Ci that 
depend on φS and φT are given by (3.8). After performing the integration the result 
will finally include only three terms : K1 φS + K2 φT +K3 , where K1, K2, K3,  are 
three constants depending on each specific problem4. Consequently (3.2) becomes 

∫−+φ+φ−φ=φ
xT

xS
FTSSSTT dxxEKKKEE )()( 32111     (4.1) 

 It results that the target value φT is included on both left and right sides of (4.1). 
The target value results by solving (4.1) 
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This represents a specific form of an implicit solution that is generally or 
unconditionally stable5. For instance an integral using a single element starting 
from xS=0 and having as target xT=10 000 was perfectly stable (see[1], page 118). 
It is important to underline that for a linear ODE the Accurate Element Method 
obtains φT directly, without any iterative approach or any procedure for 
solving a system of equations usually specific for the implicit methods.  

5. Preliminary step for solving an ODE: finding the roots of E1(x) 

 The procedure for obtaining a CF is conditioned by the computation of the 
end derivatives as it results from (3.7a) and (3.7b) [see [1], page178]. This remark 
is also valid for Euler or Runge-Kutta methods. Consequently, it is necessary to 
know before starting to solve an ODE the roots of E1(x) in order to avoid them 
during the computation. For the three ODEs analyzed here it results: 
ODE1: two real roots,  x1= – 3.43, x2= – 3.67,  outside the integration interval; 
ODE2: one real root,  x1=11, outside the integration interval; 
ODE3: two real roots, x1= 2, x2=3, both of them inside the integration interval. 
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It results that this aspect has to be taken into consideration only for ODE3. 

6. Parameters that can be chosen: Concordant function and/or 
number of elements(NE) 

 In order to improve the results the user that tries to integrate an ODE can 
modify the CF and/or the number of sub-intervals (elements) on which the 
integration is performed. This double possible choice is benefactor, but raises a 
dilemma: which parameter has to be modified and how? The short time since 
AEM has been developed [2] and the relatively small number of examples 
analyzed by the author are not enough to give a definite answer. Nevertheless 
below is outlined a strategy that can be a guide for the users (or for possible 
researchers) in order to find a good answer to the above question. Before 
presenting the strategy, it deserves to underline some aspects, which will simplify 
the search: 
 1. Though the number of CFs is here limited to 7, there is a huge 
difference between the behavior of a third degree (CF4) and a fifteen-degree 
(CF16) polynomial. The lower value CF4 leads to results that are better but not far 
from those obtained by using the fourth-order Runge-Kutta [1]. The results 
improve usually when a higher CF is used, but not always steadily so that a good 
estimation of the precision during the computation is compulsory. 
 2. The estimation of the precision is based on the comparison between two 
successive computations: the new and the previous. This approach is not time-
consuming due to the small number of elements involved. As it was shown in §4 
AEM is unconditionally stable so that the computation starts usually by using a 
single element (NE=1), no matter the length of integration interval. The number 
of elements that have to be used in order to obtain good results (if possible 
accurate) is quite small: usually under 10 elements, seldom more than 30. 

7. The target value problem (TVP) 

 Our experience has shown that for the Target Value Problem the results 
improve (usually but not always) when the order of the CF increases. In order to 
appreciate the efficiency of each CF, below are presented the values of φT 
obtained by using all the seven-CFs mentioned above. Obviously, such an 
approach represents only an "academic" approach, because for practical problems 
only some of the CFs are considered. The user has to be sustained – in order to 
choose an appropriate CF and the smallest number of elements – by some 
quantitative criteria that can be moreover included in a the program: using a small 
number of criteria is good; using a single criterion is for the best. 
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7.1 Criteria for choosing an efficient concordant function and a small 
number of elements (NE) 
 As it will result below from all the numerical experiments the results of 
TVP usually improve when the degree of CF increases. Consequently, based on 
our experience it is advisable to start the computation by using a higher order CF 
(for instance CF16) and NE=1.  

Obviously no criterion is available in order to appreciate how good is the 
value of the φT obtained with NE=1. Consequently, it is necessary to proceed to a 
second computation by increasing NE with an increment that can be 1 element or 
many elements. The computation can be continued in a first attempt by using 
NE=2, 3, 4... elements. Starting from N=2 one can have a first appreciation of the 
precision of the whole procedure by calculating a relative error similar to (2.2). 
This time the comparison is made between the new computed value (φnew) and the 
value already known from the previous computation (φprevious). This criterion will 
be referred as the estimated error [1,2] 

new

previousnewerrorestimated
φ

φ−φ
=    (7.1) 

It is useful to observe that the value resulted from (7.1) gives a good 
estimation of the number of digits that can be considered as accurate [1]. Usually 
an estimated error having as exponent e-6 or e-7 can be considered as satisfactory 
because 6 or 7 digits of the result are expected to be accurate. For a given Imposed 
Estimated Error (IEE) the program is able to stop automatically the computation 
at a desired level of precision (for a first attempt one can use IEE = 1e-6 (10-6) or 
IEE = 1e-7 (10-7), but other values can also lead to good results). This procedure 
is based on the presumption that the computed value of φT converges towards an 
accurate value, which means that the estimated error decreases when the number 
of elements NE increases. Or, as it resulted from some numerical experiments, 
this tendency is true only up to a certain number of elements, then the values of 
the estimated error become to oscillate [1]. In such case the computation with a 
chosen CF can be stopped by the program, the result retained being for instance 
the last value of φT before the starting of the oscillations. 
 Being used for a single CF the criterion (7.1) can be considered as being 
an internal evaluation of the precision. It is possible to use an external criterion, 
by choosing another CF and performing the same procedure as that described 
above. In this case one can on one side compare the results obtained with the two 
CFs (consequently to verify the first computation) and on another side try to 
overcome the oscillation of the results. 
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7.2 The ODE1 solved as a target value problem 
7.2.1 Accurate element method 
 For ODE1 two analysis will be performed starting from xS=1 and having 
as targets xT=6 (Table 1) and xT=11 (Table 2), respectively. The results include: 
the estimated error (7.1), the actual error (2.2) for NE = 1,3,5 and  the target 
value φT obtained for NE=5 given in the last column. It is useful to observe: 
 1. The actual error (2.2) is given only for ODE1 because the solution (2.1) 
is known. 
 2. The estimated error decreases when the degree of CF increases.  

3. For CF4, CF6, CF8 the results obtained for a small number o elements 
NE are quite far from the accurate values. 

Table 1 
                  ODE1  (xS=1  ;   xT=6); φT,exact= 5.833807525634766 e+4           

NE⇒ NE=1 NE=3 NE=5 
CF ⇓ Act.err. Est.err. Act.err. Est.err. Act.err. φT(x=6) 
CF4 -488 27.52 -8.89e-1 2.87e-1 -7.18e-1 1.8462353339e+4 
CF6 3426 -32 -8.62e-1 2.68e-1 -3.12e-1 3.3250465205e+4 
CF8 -10836 8.90e-1 2.53 -3.98e-1 1.38e-1 6.5017232134e+4 

CF10 19148 3.53 -6.61e-1 3.58e-2 -5.48e-3 5.8121358160e+4 
CF12 -19497 7.69e-1 1.89e-2 -2.13e-3 2.75e-5 5.8339409129e+4 
CF14 10973 1.00e-2 -6.54e-3 -6.23e-4 -1.30e-4 5.8331752647e+4 
CF16 -2914 -2.78e-3 -2.75e-3 -6.72e-4 -1.26e-4 5.8331974901e+4 

 
Table 2 

ODE1  (xS=1  ;   xT=11); φT,exact=  3.9563530203 e+13             
NE⇒ NE=1 NE=3 NE=5 
CF ⇓ Act.err. Est.err. Act.err. Est.err. Act.err. φT(x=11) 
CF4 1.44 -2.16e-1 6.58e-1 -9.85e-2 2.36e-1 5.893854401e+13 
CF6 -2.91 1.11 -5.14e-1 1.04e-1 -8.84e-2 3.645999924e+13 
CF8 5.16 -6.10e-1 1.55e-1 -2.69e-2 1.07e-2 3.998864283e+13 

CF10 -5.15 2.75e-1 -2.81e-2 3.02e-3 -7.22e-4 3.953891953e+13 
CF12 2.79 -6.92e-2 2.31e-3 -1.35e-4 1.51e-5 3.956412986e+13 
CF14 -1.20 6.94e-3 -8.90e-5 2.35e-6 -1.43e-7 3.956352454e+13 
CF16 2.93e-1 -2.20e-4 9.40e-7 -9.62e-9 5.57e-9 3.956353038e+13 

 

7.3 The ODE2 solved as a target value problem 

            7.3.1 Accurate element method 
 The ODE2 (2.4) will be integrated on two different intervals: between xS = 
0, xT = 5 (Table 3) and xS = 0 , xT = 10 (Table 4). The results given in both two 
tables represent the estimated error  (7.1) for NE = 2,3,4,5. The target values φT 
given in the second column are obtained by using NE=2.  

For the case xT = 5 (Table 3) it is useful to observe: 
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 1.Based on the estimated errors one can divide the CFs in two groups: 
those with poor or medium errors (CF4, CF6, a little better CF8) and those errors 
indicating accurate results (CF10 to CF16). 
 2. The value that can be considered as accurate is φT = – 0.1606841854, 
which is confirmed by all the CFs between CF10 and CF16.  
 3. This value is obtained starting with NE=2 for CF10 to CF16. 
 4. In this case the precision does not increase with the rise of the degree of 
the CF, because seemingly the best value corresponds to CF12 (the smallest 
estimated error). 

Table 3 
                              ODE2  (xS=0  ;   xT=5)                              

CF φT Estimated errors 
NE=2 NE=2 NE=3 NE=4 NE=5 

CF4 -0.160  1813334619398 3.25 e-3 1.76 e-3 7.31 e-4 1.91 e-4 
CF6 -0.1606  830756433705 -1.97 e-5 1.11 e-5 -6.09 e-6 8.53 e-7 
CF8 -0.16068418  29643502 2.13 e-8 1.37 e-8 1.21 e-9 9.20 e-10 

CF10 -0.1606841854  438049 -9.02 e-11 2.37 e-11 -8.63 e-12 -1.28 e-13 
CF12 -0.1606841854  464673 -1.82 e-12 -3.45 e-12 3.44 e-12 -8.23 e-13 
CF14 -0.1606841854  524707 -5.78 e-11 -6.81 e-10 1.69 e-11 5.01 e-12 
CF16 -0.1606841854  007920 7.09 e-11 1.43 e-10 1.77 e-10 -2.04 e-11 

 
For the case xT = 10 (Table 4) the conclusions are somehow different: 

 1.The smaller degree CFs that give poor results are CF4 and CF6 (better) 
 2.The value that can be considered as accurate is φT = – 0.086244366353 
(CF8,CF10,CF12) 

Table 4 
ODE2  (xS=0  ;   xT=10)                      

CF φT Estimated errors 
NE=2 NE=2 NE=3 NE=4 NE=5 

CF4 -0.0862  3535064991550 7.91 e-5 3.26 e-5 2.19 e-5 1.65 e-5 
CF6 -0.086244366  06473081 -9.03 e-9 6.63 e-9 -5.05 e-9 3.19 e-9 
CF8 -0.086244366353  17155 7.33 e-14 2.39 e-14 7.21 e-14 8.24 e-15 

CF10 -0.086244366353  20805 1.08 e-13 2.59 e-13 -6.27 e-13 1.54 e-13 
CF12 -0.086244366353  60698 6.52 e-12 -2.23 e-12 -1.71 e-12 -1.59 e-12 
CF14 -0.08624436635  569120 -5.42 e-12 -3.53 e-11 2.93 e-12 3.10 e-12 
CF16 -0.0862443663  4221143 -8.31 e-11 1.81 e-10 6.85 e-14 -1.25 e-10 

 3.The results given by CF14 and CF16 are a little worse (the accuracy 
does not increase steadily in this case together with the degree of CF) 
 4. The above value of φT corresponds to NE=2. For nearly all CFs the 
accuracy does not increase significantly when the number of elements increases. 
 
  7.3.2 Runge – Kutta method 
 This time the values given in Tables 3 and 4 will be compared to those 
given by the Runge – Kutta method with constant steps. In the last case the results 



Accurate element method strategy for the integration of first order ODEs 37

are disappointing (if not useless) due probably to the instability. In fact, for the 
case xT = 5, for NE=500 and NE=1000 the code MATLAB gives a harsh verdict: 
NaN (Not a Number), resulting from operations which have undefined numerical 
results. If one increases NE the answers continue to be wrong: for NE=2000, φT = 
– 1.874 e+141 (?); for NE=3000, φT = – 2.835 e+13 (?). Only starting from 
NE=4000 the result becomes credible φT = – 0.1606841935, being not far from 
NE=5000 for which φT = – 0.1606841868. This last result that coincides with 8 
digits to the value given in Table 3 needs duration 80 times greater then that 
corresponding to AEM. 

 For the case xT = 10 the Runge – Kutta method with constant steps gives 
no answer, because for NE=5000, NE=10000, NE=15000 steps the result is 
invariably NaN. 
        7.3.3 Comparison between CFs and Runge-Kutta for accurate solutions 

Two integration of ODE2 have been performed both starting from xS=0 
but with targets having smaller values xT=1 and xT=2, respectively (Table 5). 

Table 5 
ODE2                                  

 xS = 0    ;     xT = 1 xS = 0    ;     xT = 2 
NE φT(x=1) NE φT(x=2) 

CF16 4 -0.7529609952  579179 3 -0.3965673643  553024 
CF14 4 -0.7529609952  655538 4 -0.3965673643  558060 
CF12 5 -0.7529609952  683732 5 -0.3965673643 549966 
CF10 7 -0.7529609952  746303 6 -0.3965673643  793142 
CF8 11 -0.7529609952  928821 9 -0.3965673643  194347 
CF6 29 -0.7529609952  965156 18 -0.3965673643  988034 
CF4 82 -0.752960995  9757841 131 -0.3965673643  954343 

Runge-Kutta 320 -0.752960995  0214358 1500 -0.3965673643  917458 
 
 These integration intervals allow a normal behavior of the Runge-Kutta 

method, so that a comparison between this last method and AEM with different 
CFs is possible. The comparison is based on the number of elements NE 
necessary to obtain accurate results. For each case the results with 10 digits 
have been considered as representing the accurate value: 

for xT=1, φT(x=1) = -0.7529609952    ;    for xT=2,   φT(x=2) = -0.3965673643 

7.4 The ODE3 solved as a target value problem 

 The ODE3 will be integrated between xS=0 and xT=5. As it was shown in 
§4 solving ODE3 rises a special problem: E1(x) has two real roots (x1= 2, x2=3), 
both of them inside the integration interval. The Runge-Kutta method tries to find 
the value of φ at the end of each step, by using the value of the derivative at the 
beginning of the same step. Or, when the abscissa x tends to the value of the 
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smallest root (in our case x = 2), E1(x) tends to zero. In such case the value of the 
first derivative – that results from a computation where E1(x) is the denominator 
[see (3.5a)] – tends to infinity. Consequently the Runge-Kutta method stops at the 
smallest root. This can be observed quite clearly from Table 6 where, in order to 
obtain credible results when x increases towards 2, it was necessary to rise the 
number of steps up to NE = 5000. For x = 1.998 no credible value of φ has been 
obtained even for NE=10000. 

Table 6 
ODE3                    

x AEM Runge-Kutta 
φT   (NE=2) Estim.er. NE=1000 NE=5000 NE=10000 

1.9 -0.41533884308 1.98 e-10 -0.4153388 * * 
1.95 -0.40407866493 1.41 e-10 -0.4040787 * * 
1.98 -0.39762555610 2.75 e-11 -0.19122 (?) -0.39762555695 * 
1.99 -0.39552244408 -6.10 e-11 -2.77 e+10 (?) -0.39552245265 * 
1.995 -0.39447964673 1.35 e-10 * -0.39535726520 * 
1.998 -0.39385674271 1.42 e-10 * -5.2695 e+10 (?) -0.92980 (?) 

 The AEM leads to good estimated errors up x = 1.998, but when x tends to 
2 the computation fails due to a division by E1=0.  For instance if xT=5 and NE=5, 
the right end abscissa of the second element will be x=2, so that for this case no 
answer can be obtained. The problem of avoiding x=2 (or x=3) can be solved by 
modifying slightly the "target" abscissa (for instance xT=5.23). If not, one can use 
the Non-symmetrical Concordant Functions [1], which are not affected by the 
coincidence with the roots of E1(x). 
 The computation for finding the target value φT(x=5) has been performed 
for NE=1, 2, 3, 4 then stopped in order to avoid NE=5 (see above). From the 
values given in Table 7 it results: 
 1.The higher order CFs (CF16,14,12,10) lead to very good values of the 
estimated errors. 

Table 7 
      ODE3 (solved by AEM)                                 

 NE=3 NE=4 Convergence criterion 
 φT(x=5) Estim.err. φT(x=5) Estim.err. NE=3 NE=4 

CF16 -0.1608168891606 1.78 e-7 -0.1608168493921 -2.47 e-7 1.36 e+3 3.01 e+2 
CF14 -0.1608168378795 -7.50 e-8 -0.1608168502207 8.67 e-8 1.41 1.01 
CF12 -0.1608168491291 -6.20 e-9 -0.1608168475431 -9.86 e-9 1.34 e-2 6.12 e-3 
CF10 -0.1608168552608 9.20 e-8 -0.1608168259850 -1.82 e-7 1.70 e-2 6.09 e-3 
CF8 -0.1608172920844 2.62 e-7 -0.1608172320923 -3.73 e-7 2.53 e-2 8.16 e-3 
CF6 -0.1608399995519 2.70 e-4 -0.1608374059234 -1.61 e-5 5.36 e-2 1.35 e-2 
CF4 -0.1621552942969 1.00 e-4 -0.1602284414990 -1.20 e-2 7.48 e-2 3.23 e-3 
 2.It can be considered as accurate value φT(x=5)= - 0.1608168 , value for 
which all the above mentioned CFs coincide for NE=4. 
 Because none of the NEs used lead to end abscissas x=2 or x=3, AEM 
"jumps" beyond them without any trouble.  
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8. The field polynomial solution (FPS) 
 Though finding polynomial solutions for an ODE is not always necessary, 
the analysis of the procedure is very instructive making clearer the behavior of 
AEM. The problem has already been formulated in §1: finding Polynomial 
Solutions φn(x) (n=1,2…NE), each one being valid on a single element from the 
integration field.  

8.1 A single polynomial function cannot usually be a solution for a 
longer field 
 It is seldom possible to find a single polynomial solution of an ODE valid 
on a great integration field. Suppose for instance ODE1 having as accurate 
solution the 19th degree polynomial (2.2). It is obvious that the solution obtained – 
for instance – by using a third-degree polynomial (CF4) cannot accurately replace 
(2.2). Both functions have been drawn between x = 3.92 and x = 5.54 in Fig.8.1: 
the exact solution (2.2) as a continuous line and CF4 as a dotted line. Any 
comment concerning their coincidence is useless.  
 Nevertheless it is remarkable the fact that though CF4 has a completely 
different trajectory than the exact solution, they both tend to meet (with a certain 
error) at the target point. This is due to the stock of information detained by 
CF4 that includes not only the target function φT but also its first derivative6.  

8.2 The CF curves converge towards the exact solution 
When NE=2 the trajectory of CF4 becomes to tend towards the accurate 

solution. This is due to the fact that now the first step calculates φ at the right end 
of the first element (x=4.73) so that CF4 forcibly comes near to the exact 
solution. As it results from Fig.8.2 the error in the middle point becomes smaller 
than that corresponding to NE=1, having as consequence the reducing of the error 
at the target point as compared to Fig.8.1. 

 
Fig.8.1      Fig. 8.2 

 

                                                            
6 For the higher CFs also the second, third or higher order derivatives 
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Fig. 8.3      Fig. 8.4 

 
Fig. 8.5      Fig. 8.6 

 
For NE=3 (Fig.8.3) the errors of CF4 at the right ends of element 1 

(x=4.46) and element 2 (x=5) are quite small, so that the target value φT(x=5.54) 
becomes more credible. This tendency continues for NE=4 (Fig.8.4), NE=5  
(Fig.8.5), NE=6 (Fig.8.6). What is important is that each time when NE is 
increased there is a new point that comes near to the exact solution, which 
seemingly makes that for NE=6 (Fig.8.6) the two curves coincide. From this 
analysis it results that when the number of elements increases the CF curve 
converges towards the exact solution. But the visual examination of a graphic is 
not enough to decide if a CF curve is satisfactory convergent, because the 
qualitative appreciation can be roughly delusive. A numerical criterion becomes 
necessary in order to decide if the convergence process has reached a satisfactory 
level. 

8.3 The function φ~  in natural coordinates 
 In order to simplify the approach the Concordant Function has been given 
in §3 as (3.3), which is a function of x. Because according to the methodology of 
AEM the constants Ci are obtained by calculating the inverse of a square matrix, 
this procedure becomes difficult (even inaccurate) when the degree of CF 
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increases beyond CF18 [1]. This problem is eliminated if φ
~  is expressed in 

natural (dimensionless) abscissas given by 
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=η  (8.1)    ,           where        LR xxh −=      (8.2) 

xL being the Left end abscissa, respectively xR the Right end abscissa of the 
element. It is obvious that for x = xL,    η = 0, while for  x = xR, η = 1. By using 
(8.1), the function φ~  (3.3) becomes [1] 
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The use of the natural abscissas is necessary because the inverse of the 

matrix that allows obtaining the coefficients Ci is always the same regardless of 
the Cartesian end abscissas of the elements. Consequently the inverse has been 
calculated once and for all7, being given (for all CFs between CF4 and CF16) in 
the Appendix A of [1]. The coefficients included in (8.3) being known, φ~  can be 
written as function of x by using (8.1)  
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This function (used for drawing all the graphics) can also be written as  
  [ ][ ]CxTXx =φ )(~          (8.5),    where   
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8.4 A numerical criterion for establishing the level of convergence 
 The convergence process of the CF curves towards the exact solution can 
be established by comparing two curves based on an increasing number of 
elements. If one notes φprevious and φnew the two solutions of two successive curves, 
there are many possibilities to establish a criterion of convergence. Though the 
number of elements is different between the two cases, one can calculate the 
ordinates of the two curves at the same abscissa xtest by using (8.5). Here will be 
accepted the criterion used with good results in [2, page 160] 
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where NP is the number of test points xtest  and φmean=(φprevious + φnew) / 2. 
 The most difficult problem is to choose the value of the criterion (8.9), 
which can be considered as a conventional frontier between "unacceptable" and 

                                                            
7 for a CF16 the inverted matrix is [16 × 16] 
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"acceptable". This value chosen by the author based on some numerical 
experiments is  

allowable convergence criterion = 9.9 × 10-3        (8.10) 
Obviously this value is disputable. 
Remark. It is important to observe that the continuity between two elements is 
secured (regardless the number of elements) as it follows: for CF4, continuity C1 
(function and its first derivative), for CF6, continuity C2 (function and the 
derivatives 1 and 2), for CF8, continuity C3 (function and the derivatives 1, 2 and 
3) and so on [2]. 
 

8.5 A strategy for finding a field polynomial solution 
 As it was shown in §4 there are two parameters that can be chosen by the 
user: CF and/or NE. The strategy used for TVP in §7 was simple: because the 
precision resulted by using a low degree polynomial is usually unsatisfactory, one 
starts by using CF16 (or other high order CF), the parameter to be modified being 
the number of elements. The same procedure is repeated (if necessary) for smaller 
degrees CF. Usually two such attempts are enough. 
 The strategy for solving a FPS is totally different because it is not obvious 
which CF will lead to better results. Apparently the problem is to find two 
successive numbers of elements that leads to a good convergence criterion for a 
given CF. In fact this is not enough, because the solution has to be the minimum 
set of polynomials giving an analytic form valid on the integration field. 
Consequently the strategy presented here includes the following steps: 
 1. Choosing a value of the allowable convergence criterion that is 
considered as suitable. 
 2. Making a "transverse cut" throughout all the CFs, by testing the 
behavior of each CF based on the criterion (8.9). 
 3. Selecting the minimum number of elements Nmin that satisfies the 
chosen convergence criterion. 
Remark. The last decision has to take also into account the estimated error of the 
computed target value. 
 

8.6 Field polynomial solutions for ODE2 and ODE3 
 The strategy sketched above has been applied to ODE2 (2.3) and ODE3 
(2.5) for an integration interval between xS=0 and xT=5. The results given in Table 
8 and Table 9 include for each CF: the pair of elements for which the (8.10) 
allowable convergence criterion is reached {NE(conv)}, the computed value of 
the (8.9) convergence criterion {Conv.} and the (7.1) estimated error {Est.er.}. As 
it results for both cases the better results are those corresponding to the middle 
values of the concordant functions (CF10 with Nmin=4 for ODE2, CF8 with 
Nmin=6 for ODE3). The  value  of the estimated  error  is  very  good for   ODE2  
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(3.69 e-13) but only satisfactory for ODE3 (2.61 e-6). The graphics given in 
Fig.2.3 and Fig.2.4 correspond to these two cases. 
       ODE2        Table 8                 ODE3           Table 9 

CF NE(conv) Conv. Est.er.  
 
 
 
 
 
 
 

CF NE(conv) Er.pat. Est.er. 
CF4 14/15 7.60 e-4 5.73 e-7 CF4 12/13 7.33 e-4 -2.39 e-4 
CF6 7/8 7.81 e-4 -4.89 e-8 CF6 8/9 6.21e-4 5.22 e-7 
CF8 5/6 7.59 e-4 -5.52 e-10 CF8 6/7 8.60 e-4 2.61 e-6 

CF10 4/5 9.79 e-5 3.69 e-13 CF10 8/9 1.46 e-5 3.32 e-9 
CF12 5/6 3.99 e-4 1.25 e-13 CF12 15/16 7.41 e-4 -3.46 e-8 
CF14 17/18 1.02 e-4 -5.53 e-13 CF14 10/11 4.72 e-2 -3.92e-7 
CF16 29/30 1.91 e-3 5.13 e-13 CF16 * * * 

 
 It is interesting to observe from Table 9 that for NE<30 the value (8.10) 
has not been reached for CF14, while for CF16 no result has been obtained though 
the value of the allowable convergence criterion has been reduced to 9.9 × 10-1. 
Or the value of the convergence criterion = 4.72 e-2 for CF14 (see Table 9) is not 
enough to lead to a good convergence, as it results clearly from Fig.8.7. On the 
other hand the estimated error for the target value is very good (-3.92e-7). 

 
Fig.8.7  

9. The analytic form of the solution 

 Obtaining a graphic that confirms the convergence tendency by the 
superposed curves is not the goal of the Field Polynomial Solution approach. 
After finding the minimum number of elements Nmin from which on the 
convergence tendency is considered as satisfactory for a chosen CF, the answer 
has to be the polynomial function based on which the graphic has been drawn. At 
this stage the problem is solved because the constants included in  [CxT] (8.7) are 
already obtained during the computation procedure.  
 Suppose it is necessary to describe the solution of ODE2. In order to 
simplify the exposure the integration interval is considered only between xS=0 
and xT=0.8. If CF10 is used for this reduced interval it results Nmin=1, because the 
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convergence criterion between NE=1 and NE=2 is 2.74 × 10-5. In this particular 
case the Left end abscissa used in (8.2) is xL = xS = 0, so that η= x / h. 
Consequently, the analytic function results directly as a polynomial given by 
(3.3), but obviously including 10 terms that corresponds to CF10 
 )x(~
φ =1–6.363636363636363 x+13.71900826446281 x2–25.32682193839218 x3+  

          +36.49204289324499x4–42.19755051295832 x5+40.21378331540018 x6 –   
           – 26.78179129972301x7+10.03215529655342x8–1.540291191858282 x9 

How accurate this solution is? A quick answer can be obtained by 
calculating the function at the middle of the integration interval, where the 
possible error is supposed to have a great value. If one replaces xM=0.4 in )(~ xφ  it 
results 3422291815.0)4.0(~

−=φ=φM . A better result is obtained if the 
integration is performed directly between xS=0 and xT=0.4 in which case it results 

3423036660.0−=φT . The error of Mφ is -2.17 e-4 , which is satisfactory.  
 A better answer can be obtained by using a more general method: verify if 
the polynomial solution (8.11) satisfies the ODE2 (2.3). This problem will be 
analyzed elsewhere. 
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10. Conclusions 

The paper identifies two types of problems connected to the integration of the 
Ordinary Differential Equations: the Target Value Problem (TVP) and the Field 
Polynomial Solution (FPS). The Accurate Element Method is an implicit method 
thus generally stable, which makes possible the integration over long intervals 
leading to accurate solutions with a small number of elements. 

R E F E R E N C E S 

1. Blumenfeld M., The Accurate Element Method for solving Ordinary Differential Equations, 
Editura JIF, Bucharest 2005 (in English). Large excerpts from this book can be found on the 
site   www.blumenfeld.ro 

2. Blumenfeld M., A New Method for Accurate Solving of Ordinary Differential Equations, 
Editura Tehnica, Bucharest 2001 (in English). 


