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ON A CLASS OF MULTITIME VARIATIONAL PROBLEMS
WITH ISOPERIMETRIC CONSTRAINTS

Ştefan Mititelu1, Ariana Pitea2, Mihai Postolache3

În această lucrare, stabilim rezultate privind eficienţa şi dualitatea pentru

o clasă de probleme de control multitemporal cu restricţii izoperimetrice, folosind

tehnici de calcul variaţioanl. Mai ı̂ntâi, introducem condiţii de optimalitate pentru

o problemă scalară variaţională multitemporală (SCP). Apoi, studiem condiţii de

eficienţă şi fundamentăm o teorie a programului dual pentru o problemă vectorială

(VCP). Ambele probleme folosesc restricţii izoperimetrice, folosite frecvent când

ne referim la resurse. În §1 şi §2, amintim unele rezultate şi precizăm punctul de

plecare. În §3, studiem condiţii necesare de optim pentru problema (SCP). În §4,
discutăm condiţii de eficienţă pentru problema (VCP) şi fundamentăm o teorie

pentru programul dual. Această lucrare este o continuare a unor lucrări recente

(a se vedea [11], Ştefan Mititelu şi [22], Constantin Udrişte).

This paper aims to establish some results of efficiency and duality for

multitime control problems, thought as variational problems with isoperimetric

constraints, mainly arising when we talk about resources. First, we introduce

optimality conditions for a scalar multitime variational problem (SCP). Next, we

study efficiency conditions and develop a duality theory for a vector multitime

problem (VCP). In §1, we recall some notions, while in §2, we substantiate our

starting point. In §3 we introduce our problem (SCP) and prove a result on

necessary optimality conditions. In §4, we discuss efficiency conditions to our

problem (VCP) and develop a dual program theory. Our work may be viewed as

a natural continuation of some recent works (see [11], by Ştefan Mititelu; [22], by

Constantin Udrişte).

Keywords: optimal variational problem, nonlinear programming, invex func-

tional, duality.
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1. Introduction

Traditional control problems have found important applications in various ar-
eas of applied (experimental) sciences and technology ranging from Economics (pro-
cesses control), Psychology (impulse control disorders), Medicine (bladder control)
to Engineering (robotics and automation) and Biology (population ecosystems), see
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[3]. Such applications rely heavily on the temporal dependence of these problems.
Taking into account both theoretical and applied viewpoints, multitime control prob-
lems have been intensively studied in the last few years [22]. Motivated by the work
on this topic reported in [20], [22], [23], this paper aims to establish some results of
efficiency and duality for multitime control problems thought as variational problems
with isoperimetric constraints, mainly arising when we talk about resources. That
is why, our current paper may be viewed as a natural continuation and extension of
some recent works (see [11], by Ştefan Mititelu and [22], by Constantin Udrişte).

In the following, for two vectors v = (v1, . . . , vn) and w = (w1, . . . , wn), the
relations v = w, v < w, v 5 w and v ≤ w, are defined as:

v = w ⇔ vi = wi, i = 1, n; v < w ⇔ vi < wi, i = 1, n;

v 5 w ⇔ vi ≤ wi, i = 1, n; v ≤ w ⇔ v 5 w and v 6= w.

Throughout this paper, t = (tα) ∈ Rm
+ is the multitime; dv = dt1 · · · dtm is

the volume element in Rm
+ ; Ω is the hyperparallelepiped in Rm

+ defined by the closed
interval [0, t0] = {t ∈ Rm

+ |0 ≤ t ≤ t0}, where 0 = (0, . . . , 0) and t0 = (t10, . . . , t
m
0 )

are points in Rm
+ ; x(t) = (xi(t)), i = 1, n, is a C2-class state vector; u(t) = (ua(t)),

a = 1, `, is a continuous control vector; the running cost X(t, x(t), xγ(t), u(t), uγ(t))
is a C1-class function; Xi

α(t, x(t), xγ(t), u(t), uγ(t)) are C1-class functions satisfying
the complete integrability conditions (m-flow type problem).

2. Starting point of our problem

Consider the functional of multiple integral type

I(u) =
∫

Ω
X(t, x(t), u(t))dv.

Recently, a multitime maximum principle for the following multitime optimal
control problem, within the class of Dieudonné-Rashevsky type problems, has been
stated by Professor Constantin Udrişte (see, [20], [22], [23])

(MCP)





Maximize
u

I(u)

subject to

∂xi

∂tα
= Xi

α(t, x(t), u(t)), i = 1, n, α = 1,m,

u(t) ∈ U, ∀t ∈ Ω; x(0) = x0, x(t0) = x1.

This kind of problems appears when we describe the torsion of prismatic bars
in the elastic case [18], as well as in the elastic-plastic case [19]. Also, they arise
when we think of optimization problems for convex bodies and the geometrical restic-
tions, that is maximization of the surface for given width and diameter. These lead
us again to Dieudonné-Rashevski type problems for support functions in spherical
coordinates, [1], [2].

Our study follows the idea of Schrödinger to change a partial differential equa-
tion with an action using a multiple integral.
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Starting from the study of the above mentioned problem and inspired by
the ongoing research in optimal control, we introduce and study two multitime
variational problems. The first problem is a scalar one and is thought as a necessary
tool for pointing out our main results concerning a vectorial multitime multiobjective
problem (Theorem 4.1, Theorem 4.2, Theorem 4.3 and Theorem 4.4 as well).

Our method of investigation is based on employing adequate variational calcu-
lus techniques in the study of the problems of optimal control. This fact is possible
since the optimal control problems can be changed in variational problems. More-
over, the solutions of these problems belong to the interior of the problems domain.

3. Scalar variational problem

Let be given the functional of multiple integral type

I(x, u) =
∫

Ω
X(t, x(t), xγ(t), u(t), uγ(t))dv.

Consider the functions Yβ(t, x(t), xγ(t), u(t), uγ(t)), β = 1, q, of C1-class and con-
nected to framework of problem (MCP), we introduce the following problem with
mixed isoperimetric constraints

(SCP)





Minimize
x,u

I(x, u)

subject to∫

Ω
Xi

α(t, x(t), xγ(t), u(t), uγ(t))dv = 0, i = 1, n, α = 1,m,

∫

Ω
Yβ(t, x(t), xγ(t), u(t), uγ(t)) dv ≤ 0, β = 1, q,

x(0) = x0, x(t0) = x1.

In the following, we introduce our necessary optimality conditions for the
scalar problem (SCP). This result will be later used for finding and proving necessary
optimality conditions for our multitime multiobjective vector problem. The proof
of this theorem essentially uses Fritz-John conditions and the fundamental lemma
of variational calculus.

Theorem 3.1 (Necessary conditions). Let (x, u) be an optimal solution of
(SCP). Then there are real scalars ϕ, λα

i , and µ ∈ Rq, which satisfy the conditions:

(SFJ)





ϕ
∂X

∂xi
+ λα

j

∂Xj
α

∂xi
+ µβ ∂Yβ

∂xi
−Dγ

(
ϕ

∂X

∂xi
γ

+ λα
j

∂Xj
α

∂xi
γ

+ µβ ∂Yβ

∂xi
γ

)
= 0

ϕ
∂X

∂ua
+ λα

i

∂Xi
α

∂ua
+ µβ ∂Yβ

∂ua
−Dγ

(
ϕ

∂X

∂ua
γ

+ λα
i

∂Xi
α

∂ua
γ

+ µβ ∂Yβ

∂ua
γ

)
= 0

µβYβ(t, x(t), xγ(t), u(t), uγ(t)) = 0 (no summation)

ϕ ≥ 0, µβ ≥ 0.
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Proof. Let (x, u) be a minimal solution of problem (SCP) and the arbitrary
vector functions p(t) = (pi(t)) ∈ Rn and q(t) = (qj(t)) ∈ Rq, where p, q ∈ C1(Ω),
p

∣∣
∂Ω

= 0, q
∣∣
∂Ω

= 0. For ε1 > 0 and ε2 > 0, let

V = {(x̄, ū) | x̄(t) = x(t) + ε1p(t), ū(t) = u(t) + ε2q(t)}
be a neighborhood of (x, u). Consider the following functions defined as integrals:

f(ε1, ε2) =
∫

Ω
X(t, x(t) + ε1p(t), xγ(t) + ε1pγ(t), u(t) + ε2q(t), uγ(t) + ε2qγ(t)) dv;

gi
α(ε1, ε2) =

∫

Ω
Xi

α (t, x(t) + ε1p(t), xγ(t) + ε1pγ(t), u(t) + ε2q(t), uγ(t) + ε2qγ(t)) dv;

hβ(ε1, ε2) =
∫

Ω
Yβ(t, x(t) + ε1p(t), xγ(t) + ε1pγ(t), u(t) + ε2q(t), uγ(t) + ε2qγ(t))dv.

If (x, u) is a minimal solution of (SCP), then (0, 0) is a minimal solution of
the following problem (PM1).

(PM1)





Minimize
ε1, ε2

f(ε1, ε2)

subject to

gi
α(ε1, ε2) = 0, i = 1, n, α = 1, m,

hβ(ε1, ε2) ≤ 0, β = 1, q,

p
∣∣
∂Ω

= 0, q
∣∣
∂Ω

= 0.

Since (0, 0) is a minimum solution of (PM1), then there exist ϕ, λα
i and µβ

such that problem (PM1) satisfies the following Fritz-John conditions at (0, 0):

(FJ)





ϕ∇f(0, 0) + λα
i ∇gi

α(0, 0) + µβ∇hβ(0, 0) = 0

µβhβ(0, 0) = 0

ϕ ≥ 0, µβ ≥ 0.

Having in mind the forms of ∇f(0, 0), ∇gi
α(0, 0) and ∇hβ(0, 0), the first con-

dition (FJ) becomes
∫

Ω

[(
ϕ

∂X

∂xi
+ λα

j

∂Xj
α

∂xi
+ µβ ∂Yβ

∂xi

)
pi +

(
ϕ

∂X

∂xi
γ

+ λα
j

∂Xj
α

∂xi
γ

+ µβ ∂Yβ

∂xi
γ

)
pi

γ

]
dv = 0.

(1)
Integrating by parts in (1) and having in mind Theorem 8.2 in [25], we obtain

∫

Ω

[(
ϕ

∂X

∂xi
+ λα

j

∂Xj
α

∂xi
+ µβ ∂Yβ

∂xi

)
−Dγ

(
ϕ

∂X

∂xi
γ

+ λα
j

∂Xj
α

∂xi
γ

+ µβ ∂Yβ

∂xi
γ

)]
pidv = 0.

(2)
As p is arbitrary, according to a fundamental lemma of the variational calculus, from
(2) it follows

ϕ
∂X

∂xi
+ λα

j

∂Xj
α

∂xi
+ µβ ∂Yβ

∂xi
−Dγ

(
ϕ

∂X

∂xi
γ

+ λα
j

∂Xj
α

∂xi
γ

+ µβ ∂Yβ

∂xi
γ

)
= 0,
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that is the first condition of (SFJ).
In a similar manner, the second condition (FJ) implies the equality

ϕ
∂X

∂ua
+ λα

i

∂Xi
α

∂ua
+ µβ ∂Yβ

∂ua
−Dγ

(
ϕ

∂X

∂ua
γ

+ λα
i

∂Xi
α

∂ua
γ

+ µβ ∂Yβ

∂ua
γ

)
= 0,

that is the second condition of (SFJ).
From µβhβ(0, 0) = 0 of (FJ), we get µβYβ(t, x(t), xγ(t), u(t), uγ(t))dv = 0

4. Pareto variational problem

In this section, we first introduce our vector problem. Based on the previous
scalar problem and using Lemma 4.1, we establish necessary efficiency conditions
for program (VCP). Next, using essentially the notion of invexity, we develop a dual
program theory.

Let us consider now the vector function (X1, . . . , Xp), producing the running
costs X1(t, x(t), xγ(t), u(t), uγ(t)), . . . , Xp(t, x(t), xγ(t), u(t), uγ(t)). We denote

Ik(x, u) =
∫

Ω
Xk(t, x(t), xγ(t), u(t), uγ(t))dv, k = 1, p

and we consider the vector functional I(x, u) = (I1(x, u), . . . , Ip(x, u)) .

We introduce the following multitime control vector problem with isoperimet-
ric constraints:

(VCP)





Minimize(Pareto)
x,u

I(x, u)

subject to∫

Ω
Xi

α(t, x(t), xγ(t), u(t), uγ(t))dv = 0, i = 1, n, α = 1, m,

∫

Ω
Yβ(t, x(t), xγ(t), u(t), uγ(t)) dv ≤ 0, β = 1, q,

x(0) = x0, x(t0) = x1.

and denote ∆ the domain of problem (VCP).

Definition 4.1. Point (x, u) ∈ ∆ is called efficient solution (Pareto minimum) for
(VCP) if there is no (x̄, ū) ∈ ∆ such that I(x̄, ū) ≤ I(x, u).

The following Lemma shows the equivalence between the efficient solutions of
(VCP) and the optimal solution of p scalar problems. This connection is needed in
order to find necessary efficiency conditions. The proof of this result uses essentially
the techniques of Jagannathan, [6].

Lemma 4.1. The point (x0, u0) ∈ ∆ is an efficient solution of problem (VCP) if
and only if (x0, u0) is an optimal solution of each scalar problem (SCP)k, k = 1, p,
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where

(SCP)k





Minimize
x,u

Ik(x, u)

subject to∫

Ω
Xi

α(t, x(t), xγ(t), u(t), uγ(t))dv = 0, i = 1, n, α = 1,m,

∫

Ω
Yβ(t, x(t), xγ(t), u(t), uγ(t)) dv ≤ 0, β = 1, q,

Ij(x, u) ≤ Ij(x0, u0), j = 1, p, j 6= k,

x(0) = x0, x(t0) = x1.

This Lemma plays a role of paramount importance in suggesting the study of
the efficient solutions of problem (VCP).

Applying Lemma 4.1 and Theorem 4.2 for each problem (SCP), we obtain

Theorem 4.1. Let (x, u) ∈ ∆ be an efficient solution of program (VCP). Then there
are τ ∈ Rp, λα

i ∈ R and µ ∈ Rq, such that

(VFJ)





τk ∂Xk

∂xi
+ λα

j

∂Xj
α

∂xi
+ µβ ∂Yβ

∂xi
−Dγ

(
τk ∂Xk

∂xi
γ

+ λα
j

∂Xj
α

∂xi
γ

+ µβ ∂Yβ

∂xi
γ

)
= 0

τk ∂Xk

∂uj
+ λα

j

∂Xj
α

∂uj
+ µβ ∂Yβ

∂uj
−Dγ

(
τk ∂Xk

∂ua
γ

+ λα
i

∂Xi
α

∂ua
γ

+ µβ ∂Yβ

∂ua
γ

)
= 0

µβ(t)Yβ(t, x(t), xγ(t), u(t), uγ(t)) = 0, β = 1, q

τ = (τk) = 0, µ = (µβ) = 0.

A nontrivial situation arises when each component of vector τ is positive. In
this case, we can consider τk = 1, for each k = 1, p, therefore we can introduce

Definition 4.2. The efficient solution (x0, u0) of (VCP) is called normal if τk = 1
for each k = 1, p.

Given programs (VCP) and (VCD), in the following we shall develop our dual
program theory, stating weak, direct and converse duality theorems. The base of
our research is the notion of ρ-invexity, [12], [17].

Let f(t, x(t), xγ(t), u(t), uγ(t)) be a scalar function of C1-class. Consider the
functional

F (x, u) =
∫

Ω
f(t, x(t), xγ(t), u(t), uγ(t)) dv.

Definition 4.3. The function F (x, u) is called ρ-invex [strictly ρ-invex ] at the
point (x∗, u∗) if there exist the vector function η(t) ∈ Rn of C1-class, with η|∂Ω = 0,
ξ(t) ∈ Rk of C0-class and the bounded vector function θ(x, u) ∈ Rn such that ∀(x, u)
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[(x, u) 6= (x∗, u∗)],

F (x, u)− F (x∗, u∗) ≥ [>]∫

Ω

(
ηi

∂f

∂xi
(t, x∗, u∗) + (Dγηi)

∂f

∂xi
γ

+ ξj
∂f

∂uj
(t, x∗, u∗) + (Dγξa)

∂f

∂ua
γ

)
dv

+ρ‖θ(x, u)‖2.

To develop our dual program theory, we consider the Lagrangian functions

Lk(t, x(t), xγ(t), u(t), uγ(t), λ, µ) = Xk(t, x(t), xγ(t), u(t), uγ(t))

+
1
p
[λα

i Xi
α(t, x(t), xγ(t), u(t), uγ(t)) + µβYβ(t, x(t), xγ(t), u(t), uγ(t))]

where k = 1, p, which determine the vector function L = (L1, . . . , Lp).
Let us introduce the following vector of multiple integrals

J(x, u, λ, µ) =
∫

Ω
L(t, x(t), xγ(t), u(t), uγ(t), λ, µ)dv.

To problem (VCP), we associate the next dual vector multitime control prob-
lem:

(VCD)





Maximize Pareto J(x(t), u(t), λ, µ)

subject to

∂Xk

∂xi
+ λα

j

∂Xj
α

∂xi
+ µβ ∂Yβ

∂xi
−Dγ

(
∂Xk

∂xi
γ

+ λα
j

∂Xj
α

∂xi
γ

+ µβ ∂Yβ

∂xi
γ

)
= 0

∂Xk

∂uj
+ λα

j

∂Xj
α

∂uj
+ µβ ∂Yβ

∂uj
−Dγ

(
∂Xk

∂ua
γ

+ λα
i

∂Xi
α

∂ua
γ

+ µβ ∂Yβ

∂ua
γ

)
= 0

µβ(t)Yβ(t, x(t), xγ(t), u(t), uγ(t)) = 0, β = 1, q

µ = (µβ) = 0, x(0) = x0, x(t0) = x1.

Denote by D the domain of dual (VCD) and consider (x, xγ , u, uγ , λ, µ) =
(x, xγ , u, uγ , λα

i , µβ) the current point of D.

Now we can introduce our duality theorems, as in the following.

Theorem 4.2 (weak duality). Let (x∗, u∗) ∈ ∆ and (x, xγ , u, uγ , λ, µ) ∈ D be
two feasible solutions of problems (VCP) and (VCD). Consider the functions λα

i

and µβ as in Theorem 4.1 and suppose that the following conditions are satisfied:

a) for each index k ∈ {1, . . . , p}, the integral
∫

Ω
Xk

(
t, x(t), xγ(t), u(t), uγ(t)

)
dv

is ρk-invex at (x, u);

b)
∫

Ω
λα

i Xi
α

(
t, x(t), xγ(t), u(t), uγ(t)

))
dv is ρ′-invex at (x, u);

c)
∫

Ω
µβYβ

(
t, x(t), xγ(t), u(t), uγ(t)

))
dv is ρ′′-invex at (x, u);

all with respect to η and ξ, as in Definition 4.3;
d) at least one of the functionals from a), b) and c) is strictly ρ-invex;
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e)
p∑

k=1

ρk + ρ′ + ρ′′ ≥ 0.

Then I(x∗, u∗) ≤ J(x, u, λ, µ) is false.

Proof. Will be given in a forthcoming paper.

We would like to continue our study stating and proving a direct duality
theorem. In this respect, let us consider (x0, u0) be a normal efficient solution of
problem (VCP). According to Theorem 4.1, there are the real scalars (λα

i )0 and
(µβ)0 such that conditions (VFJ) are satisfied.

Theorem 4.3 (direct duality). Suppose that the conditions of Theorem 4.2 are
satisfied and (x0, x0

γ , u0, u0
γ , (λα

i )0, (µβ)0) is an efficient solution of dual control prob-
lem (VCD).

Then I(x0, u0) = J(x0, u0, (λα
i )0, (µβ)0), that is

min (VCP)(x0, u0) = max (VCD)(x0, x0
γ , u0, u0

γ , (λα
i )0, (µβ)0).

Proof. By the hypotheses of Theorem 4.2, it follows that inequality I(x0, u0) ≤
J(x0, u0, (λα

i )0, (µβ)0) is not true. Therefore, (x0, x0
γ , u0, u0

γ , (λα
i )0, (µβ)0) is efficient

for dual (VCD) and min (VCP)(x0, u0) = max (VCD)(x0, x0
γ , u0, u0

γ , (λα
i )0, (µβ)0)

We finish this ongoing study with a converse duality theorem (the proof follows
from Theorem 4.2).

Theorem 4.4 (converse duality). Let (x0, x0
γ , u0, u0

γ , (λα
i )0, (µβ)0) be an efficient

solution of dual problem (VCD). Suppose that the following conditions hold:
i) (x0, u0) ∈ ∆;
ii) conditions a)÷e) of Theorem 4.2 are satisfied at (x0, u0).
Then (x0, u0) is efficient solution of (VCP) and

min (VCP)(x0, u0) = max (VCD)(x0, x0
γ , u0, u0

γ , (λα
i )0, (µβ)0).

Conclusion

By introducing a new vector variational problem, employing isoperimetric con-
straints and a simplified scalar variational problem, we have derived necessary ef-
ficiency conditions. The notion of invexity allowed us to develop a dual program
theory. The results of this paper are new and they complement previously known
results. For other different viewpoints regarding the theory of efficiency and dual-
ity for optimum problems with constraints, we address the reader to the following
research works: [7]÷[11], [14]÷[17], [20]÷[24].
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