
U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 3, 2016                                                     ISSN 2286-3540 

DETERMINATION OF DEFINING HYPERPLANES OF DEA 
PRODUCTION POSSIBILITY SET 

Majid Zohrehbandian1 

The ability of determining all defining hyperplanes of DEA production 
possibility set (efficient frontier) prior to the DEA computations is of extreme 
importance. Specially, access to efficient frontier permits a complete analysis (e.g. 
calculation of efficiency scores, returns to scale, sensitivity analysis and so on) in 
second phase for the corresponding model. This paper presents a linear system of 
constraints which its extreme points correspond to defining hyperplanes (both weak 
and strong ones). Numerical examples are provided to explore the advantage of 
using the proposed method.  
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1. Introduction 

Data envelopment analysis (DEA), Charnes et al. [4], is a non-parametric 
method for evaluation of the relative efficiency of a number of decision making 
units (DMUs), each of which consume varying amount of m inputs to produce s 
outputs. A DEA domain is completely specified by a finite list of data points in 
Rm+s, one for each DMU. The combined data about the DMUs and the 
assumptions about the technology, generate an empirical production possibility set 
(PPS). The boundary of the PPS (efficient frontier) includes all the efficient 
observations as well as linear combinations obtained from efficient units, while 
the rest (those considered as inefficient) remain below it. 

DEA is computationally intensive and, as the scale of application grows, 
this intensity rapidly becomes one of the limiting factors in its utility. Therefore, 
many published works address the problem of reducing computational time in 
DEA. In this field, it is argued that an identification of defining hyperplanes 
provides a highly appropriate framework for an analysis of important frontier 
characteristics; see Ali [1], Barr and Durchholz [3], Dulá [5], Dulá et al [6], Dulá 
and Thrall [7], Jahanshahloo et al [9,10,11], Olesen and Petersen [14,15], Wei et 
al [16], Yu et al [17,18]. 

Even though a good amount of research work carried out on identification 
of efficient frontier, there is still a need for simple and efficient mathematical 
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methods to solve this problem. The aim of this study is to develop a way to obtain 
efficient frontier by enumerating the extreme points of a convex polytope 
specified by some linear constraints. It is very important to note that, the number 
of extreme points of the proposed set is about equal to the number of defining 
hyperplanes. Moreover, the number of DMUs (n) is usually much larger than the 
number of defining hyperplanes. So, for large n, enumerating small amount of 
extreme points may be more preferable than solving so many linear problems 
(LP), because it imparts greater flexibility to the analysis in second phase, 
especially when DEA studies are over several models and multiple orientations. 

The plan for the rest of this paper is as follows. Section 2 formalizes a 
linear system and proposes an approach for identifying the equations of DEA 
efficient frontier. Section 3 describes the useful application of efficient frontier 
equations. Section 4 provides numerical examples and finally, section 5 draws the 
conclusive remarks. 

2. Specifying the Efficient Frontier 

Consider n DMUs, each of which consume varying amount of m inputs to 
produce s outputs. Suppose xij≥0 denotes the amount consumed of the i-th input 
measure and yrj≥ 0 denotes the amount produced of the r-th output measure by the 
j-th DMU. The PPS of obviously most widely used DEA model, BCC with 
variable returns to scale (VRS) characteristic, is defined as semi-positive vectors 
(x,y) as follows: 
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The other polyhedral sets, are explicitly defined by different constraint on sum of 
jλ ’s. 

A standard formulation of DEA creates a separate LP for each DMU. It is 
instructive to apply the input oriented version of the multiplier BCC model, where 
DMUp is under consideration and each optimal solution of the problem is 
associated to coefficients (-v*,u*,w*) of a supporting hyperplane -v*x+u*y+w*=0 
(a hyperplane which contains Tv in only one of the halfspaces and pass among at 
least one of the points of Tv). 
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Definition 1. By separable hyperplane, we refer to coefficients (-v,u,w) of a 
hyperplane that contains Tv in only one of the halfspaces and does not support it. 
Definition 2. The set of points in PPS that correspond to the points on a 
supporting hyperplane is called proper face of PPS. Any (m+s-1)-dimensional 
proper face is called a facet of PPS, where the PPS itself is a subset of Rm+s. 
Definition 3. By defining hyperplane, we refer to coefficients (-v,u,w) of a 
hyperplane that its intersection with PPS is a facet of PPS. 
Definition 4 Let S be a nonempty, closed convex set in Rn. A nonzero vector d in 
Rn is called a recession direction of S if for each x in S, 0≥∀∈+ λλ Sdx . 

As discussed in Ali [1] computational constructs (e.g. identification of 
efficient frontier) that allow streamlining of DEA computations, have been 
necessary to circumvent intensive time consuming calculations. However, up to 
now, all of the approaches which have been proposed for identification of efficient 
frontier are inefficient. Jahanshahloo et al [10,11] proposed a method which solve 
an integer problem for production of each defining hyperplane. Note that 
obtaining the exact solution of each of these integer problems is computationally 
intractable and is based on an enumerative method like branch and bound. The 
approach proposed by Jahanshahloo et al [9] only produced the strong defining 
hyperplanes where it was still computationally expensive. Because, their approach 
was based on evaluation of so many DMUs (observed and virtual) and solving so 
many equality equations. Jahanshahloo et al [12] proposed an approach for 
production of strong defining hyperplanes, but it has been shown that their 
method is failed to compute all of the strong defining hyperplanes. Finally, 
Jahanshahloo et al [8] proposed another method for production of weak defining 
hyperplanes which was still computationally expensive due to solving so many 
linear problems. Moreover, Amirteimoori and Kordrostami [2] proposed a method 
for production of strong defining hyperplanes which was based on evaluation of 
so many perturbed DMUs. In other words, by solving n(m+s) linear problems they 
produced linearly independent defining hyperplanes passing through a specific 
DMU. 

Therefore, there is still a need for simple and efficient mathematical 
methods to produce weak and strong defining hyperplanes. Here, we propose a 
method to produce efficient frontier of Tv in terms of the defining hyperplanes of 
PPS. Nevertheless, the idea extends easily to other production possibility sets. By 
definition of Tv, the PPS is a polyhedral set and the number of efficient facets of it 
is finite. We propose a system of linear constraints to produce the equation of 
some supporting hyperplanes of Tv which identify an efficient facet of it. We refer 
to these hyperplanes as defining hyperplanes, to signal that these hyperplanes are 
constructors of PPS. To this end, consider the following linear system. 
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Let S be the feasible region of the above system. We only need to 

ascertain whether the coefficients (-v,u,w) of the defining hyperplanes are 
produced by the extreme points of the region S and, whether almost all of the 
extreme points of S are associated to defining hyperplanes. If so, we can utilize 
one of the extreme points enumerating algorithms, for construction of all DEA 
efficient facets. 
Theorem 1. Number of extreme points of S, which identify a separable 
hyperplane, are at most m+s+2. 
Proof. The coefficients (-v’,u’,w’1,w’2) are associated to a separable hyperplane 
(support non of the DMUs) if non of the constrains (1) are binding at 
(v’,u’,w’1,w’2)∈S. The system has m+s+2 variables and n+1+m+s+2 constraints. 
By the definition of extreme points, there are some m+s+2 linearly independent 
constraints binding at any extreme point (v’,u’,w’1,w’2)∈S. Since constraint (2) is 
binding at all feasible solutions of S, for a separable hyperplane it must be choose 
m+s+1 constraints among m+s+2 sign constrains. Therefore, number of separable 
hyperplanes associated to the extreme points of S are at most 
C(m+s+2,m+s+1)=m+s+2 � 

Recall that PPS is intersection of finite number of halfspaces and 
production of separable hyperplanes do not influence on the shape of it. 
Fortunately, due to the above theorem, the number of separable hyperplanes 
produced by extreme points of S has a low density. 
Theorem 2. A vector (-v,u,w1,w2) associated to the normalized coefficient of a 
defining hyperplane is an extreme point of S. 
Proof. For each efficient facet H of PPS there exist exactly one normalized 
coefficient (-vo,uo,wo

1,wo
2) of the defining hyperplane which itself is associated to 

a feasible solution of S. Suppose that this feasible solution is not an extreme point 
of S. Two possibilities arise here. 

i) The case where the point (vo,uo,wo
1,wo

2)∈S is a convex combination of 
extreme points (vk,uk,wk

1,wk
2)∈S }{oKk ≠∈∀ .  

Hence, (vo,uo,wo
1,wo

2)= ∑
∈Kk

kλ (vk,uk,wk
1,wk

2), where ∑
∈Kk

kλ =1. Suppose that 

hyperplane -vox+uoy+wo
1-wo

2 =0, pass among DMUj {}≠∈∀ Jj . We can deduce 
that JjKkwwyuxv kk

j
k

j
k ∈∈∀=−++− ,021 . This is because if there exist a 



Determination of defining hyperplanes of DEA production possibility set                101 

DMUp p∈J and index q, q∈K where 021 <−++− qq
p

q
p

q wwyuxv , then, we 
conclude that: 
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which is a contradiction. Hence, we have: 
JjKkwwyuxv kk

j
k

j
k ∈∈∀=−++− ,021 , 

and the extreme points (vk,uk,wk
1,wk

2) }{oKk ≠∈∀  are associated to the same 
normalized coefficient of a supporting hyperplane at efficient facet H of PPS. This 
will result in one obvious corollary K={o}. 

ii) The other case is where the point (vo,uo,wo
1,wo

2)∈S is a convex 
combination of extreme points (vk,uk,wk

1,wk
2)∈S }{oKk ≠∈∀  accompanied by 

linear combinations of extreme recession directions of region S. It is 
straightforward that the extreme recession directions of S are d1=(0,0,0,1), 
d2=(0,0,1,1) ∈Rm+s×R1×R1. Therefore we must have, 
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This shows that, if 11 μ+kw  replaced by kW1  and 212 μμ ++kw  replaced by kW2 , in 
a similar manner outlined in case (i), we can conclude that K={o}. 

The foregoing arguments lead to the conclusion that the point 
(vo,uo,wo

1,wo
2) is an extreme point of region S � 

Theorem 3. Every extreme point of S, which is not associated to a separable 
hyperplane, is associated to a normalized coefficient of a defining hyperplane. 
Proof. Given an extreme point (vo,uo,wo

1,wo
2)∈S which is associated to a 

normalized coefficient (-vo,uo,wo
1,wo

2) of a supporting hyperplane passing among 
DMUj, {}≠∈∀ Jj . Suppose that intersection of this hyperplane with the PPS is a 
face of PPS, and not a facet. This face is produced by intersection of some facets 
of PPS and we saw earlier that associated to these facets, there are normalized 
coefficients of defining hyperplanes (-vk,uk,wk

1,wk
2) Kk ∈∀ , passing among 

DMUj Jj∈∀ , which themselves are associated to the extreme points of S. Since, 
the normalized vector (-vo,uo) lies in the cone constructed by the normalized 
vectors (-vk,uk), there exist multipliers kλ where  

)4(.1,),(),( =−=− ∑∑
∈∈ Kk

k
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Let p∈J. Then Kkwwyuxv kk
p

k
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k ∈∀=−++− 021 , and a convex 
combination of these constraints is as follows:  
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∑
∈Kk

kλ =1, which is a contradiction. Since, the normalized coefficient 

),,,( 21
oooo wwuv−  of the supporting hyperplane is associated to an extreme point of 

S and can’t be represented by a strict convex combination of points in S � 
The foregoing theorems lead to the conclusion that the procedure of 

identification of all DEA efficient facets, consists of enumerating the extreme 
points of the system of constraints 1-3, where almost all of them are associated to 
defining hyperplanes. Based on the formulation of these hyperplanes, the set of 
weights for DEA multiplier model s at hand and we can easily compute the 
efficiency scores of al of DMUs. To this end, we used the software pdd v0.2 (by 
Komei Fukuda, EPFL Lausanne, Switzerland and University of Tsukuba, Japan) 
for finding all of the extreme points of S. The program pdd.p, which we used here, 
is a Pascal implementation of the double description method, Motzkin et al. [13], 
for generating all extreme points and extreme directions of a general d-
dimensional convex polyhedron given by a system of linear inequalities. 

3. The usefulness of generating efficient frontier 

For large data set with many inputs and outputs, maybe, it is still a time 
(and memory) consuming task to generate all defining hyperplanes but the 
information made available by an efficient frontier representation is of sufficient 
value to warrant the effort needed for its identification [15]. In other words, in 
using DEA in practice we typically go far beyond the computation of a simple 
measure of the relative efficiency of a unit. Indeed, we wish to know what 
operating practices, mix of resources, scale sizes and so on. The construction of 
DEA efficient frontier will bring the analysis of production efficiencies to depth. 
For example, access to the equations of efficient frontier permits expeditious 
scoring of the rest of the DMUs especially if the efficient DMUs are a small 
subset of the data. This is especially true for large problems. Reports indicate that 
this relation can be less than 1% [3]. 
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Suppose that the equations of efficient frontier are produced as 
LkUYUXV kokk ,...,10 ==++− . Where, L, is the number of defining 

hyperplanes produced by using the proposed approach, and (-Vk,Uk) is associated 
to the gradient vector of k-th supporting hyperplane. Then, for example, efficiency 
score of DMUj in both input/output oriented, will be obtained by a simple 
comparison as follows: 

(Eff. score of DMUj)Input=max{
jk

kojk

XV
UYU +

: k=1,2,…,L} 

(Eff. score of DMUj)output=min{
jk

kojk

YU
UXV −

:k=1,2,…,L} 

Note that in classical DEA, these scores are obtained by solution of 2n 
Linear Programming problems. 

There are other advantages to construction of efficient frontier besides 
faster computer times. This information can be exploited to gain knowledge about 
returns to scales (RTS) by using the free variable in the BCC model and without 
paying the full computational price that individual analysis would require. 
Moreover, since DEA is data based, it is very useful to assess possible 
input/output changes (data perturbation and sensitivity analysis) of a DMU such 
that its obtained efficiency classification does not change. Another advantage to 
construction of efficient frontier is in this context and to identifying the region of 
efficiency for an efficient DMUo. 

4. Numerical Example 

Example 1.  In order to motivate our approach we apply a simple example 
involving just eleven DMUs, each using one input to produce one output; see 
Table 1. Enumeration result of the extreme points of the system of constraints 1-3, 
by using pdd software and based on the raw data from Table 1, are depicted in 
Figure 1. 
 

Table 1 
The Raw Data set for example 1 

DMUs 1 2 3 4 5 6 7 8 9 10 11 
Input 3.8 6 2 6.5 5 3 4 6 4 5 4 

Output 2.6 4 1 3.2 2.9 3 3.5 2 1 2 1.5 
 
The output shows that the polyhedron has seven vertices: 

(-v,u,w1,w2)= (-1,0,0,0), (-5.0E-01,5.0E-01,0,0), (-1,0,2,0), (0,1,0,4),  
          (-6.667E-01,3.333E-01,1,0), (-3.333E-01,6.667E-01,0,1),  
          (-2.0E-01,8.0E-01,0,2) 
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corresponding to the seven hyperplanes as follows: 
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Among them, the last five vertices are corresponding to the five defining 
hyperplanes, and the first two of which are surplus hyperplanes. 

 
* pdd: Double Description Method Code: Version 0.22 (November 20, 1993) 
Copyright 1993, Komei Fukuda, EPFL, Switzerland  fukuda@dma.epfl.ch 
Input File:frontier.ine     ( 17 x 5 )  
HyperplaneOrder: LexMin 
AdjacencyTest: Combinatorial 
FINAL RESULT:  
Number of Vertices = 7,  Rays = 2 
begin  

v  u  w1 w2 
1  0  0 0 
0  1  0 4 
5.000E-01 5.000E-01 0 0 
1  0  2 0 
6.667E-01 3.333E-01 1 0 
3.333E-01 6.667E-01 0 1 
2.000E-01 8.000E-01 0 2 

End 
Fig. 1. The execution of Pdd software 

 
Example 2. Let us consider an example with ten DMUs, each using two inputs to 
produce two outputs, see Table 2.  
 

Table 2 
The Raw Data set for example 2 

DMUs 1 2 3 4 5 6 7 8 9 10 
Input 1 30 93 50 80 35 105 97 100 90 98 
Input 2 60 40 70 30 45 75 67 50 60 65 

Output 1 180 170 190 180 140 120 100 140 140 140 
Output 2 70 60 130 120 82 90 82 40 105 50 

 
The extreme points of the system of constraints 1-3 which have been 

produced for this example are corresponding to the following hyperplanes: 
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6. Conclusions 

If contributions to reduce time and increase the information yield of a 
DEA study are up to the task, DEA will emerge as one of the available tools for 
mining massive data sets. It has been demonstrated that a dual representation of a 
polyhedral empirical production possibility set in terms of its defining facets 
provides a highly appropriate framework for an analysis of important frontier 
characteristics and possibility of reducing times while increasing flexibility of 
DEA studies, especially when these are over several models and multiple 
orientations. 

For dealing with this difficulty, this paper examines the application of a 
system of linear inequalities and vertex enumeration algorithms. The procedure 
proposed here attempts to find out all extreme points of a linear model, where 
almost all of its extreme points are associated to an efficient facet of PPS. The 
proposed approach has been characterized under conditions of variable returns to 
scale, but it easily generalized to the other cases. 
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