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A MEANS OF ENHANCING STORAGE RELIABILITY FOR
PEER-TO-PEER NETWORKS

Voichita IANCU'

Retelele peer-to-peer sunt sisteme distribuite ideale pentru a stoca date
replicate, in scopul de a le putea obtine rapid si transparent, orideunde am dori. O
problema importanta, cand vine vorba de aceste sisteme distribuite, este replicarea
datelor critice intr-o manierd persistentd. Aceastd problemd o adresam prin
lucrarea de fatd, propundand un mecanism suplimentar de asigurare a redundantei,
in plus fata de mecanismul natural al DHT-ului Chord, de replicare pe un numar fix
de succesori. Desi am prevdzut pentru cercetarea viitoare rularea unor teste
intensive de stres pentru prototipul curent, chiar si rezultatele obtinute pdnd in
prezent par sd confirme capabilitdtile de a adapta gradul de redundanta datelor
critice atunci cand e necesar sau la cerere.

Peer-to-peer networks are ideal for storing replicated data, in order to be
able to rapidly and transparently retrieve it, wherever we are. A main issue
concerning these distributed systems is to replicate critical pieces of data in a
persistent manner. It is the issue we are addressing in this paper, by proposing a
supplementary redundancy mechanism on top of the natural Chord DHT replication
mechanism on a fixed number of successors. Even if some more stressful tests are
envisaged in our future research, so far the prototype we have developed seems to
cope well with adapting the redundancy of critical data at need and on demand.

Keywords: peer-to-peer, Chord, DHT, adaptability, reliability, redundancy,
logical infrastructure, physical infrastructure

1. Introduction

Distributed systems have evolved a lot, and the new “subspecies” of fully
decentralized distributed systems, the peer-to-peer infrastructure, has become a
real logical support for storing data. This aspect has lead to the problem of
reliability and persistence in data storage, which are closely related to the term of
redundancy. The more sensitive the stored data is, the more need there is for that
data to be stored with a higher redundancy, so that it will survive any node failure
situation. We consider storage peer-to-peer networks as being logical storage
infrastructure, which can run on top of various physical infrastructures, such as a
group of otherwise totally independent, distant, nodes, a small local network or a
fully organized complex grid infrastructure. The logical storage infrastructure
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should totally hide the number of nodes and the type of the physical infrastructure,
while offering the requested storage service. In order to obtain a solution that
would be fit for reliable data storage, we have analyzed some of the existing peer-
to-peer system's problems and will describe these in section 2. Section 3 will
discuss and propose a mechanism for solving the storage reliability problem,
while section 4 does a preliminary evaluation of the prototype developed based on
section 3. Finally, section 5 will conclude the paper, also giving a glimpse upon
the future work we will need to be performed in this field.

2. Related work

Because of the popularity of peer-to-peer public applications, such as
KaZaA[1], Skype[2], etc., a great interest for peer-to-peer systems has grown in
the research environment, too. This is how the first Distributed Hash Tables
(DHTs) have appeared around the year 2000: Chord [3], Pastry [4], Tapestry [5],
and CAN [6], followed by a lot of research investigating their characteristics.
These DHTs are very similar when it comes to their underlying concepts: all of
them are based on a hash function with very good dispersion capabilities, such as
SHA-1 [7], and all of them are able to perform routing based on a unique ID,
given by the hash function, by keeping some sort of routing tables. Chord, for
example, defines a ring of nodes, based on the ID resulted from the hash function
applied to the node’s public IP, which should be unique. When wishing to store
some data on the Chord network, the same hash function is applied to the
identifier of the data to be stored (a filename, for example) and this way, the
closest preceding node to the data’s Chord ID (also called a key) is the node
responsible for storing and managing that piece of data. In [3], a redundancy
mechanism is also defined, to prevent the data from being lost if the node
responsible for its key leaves the network. This redundancy mechanism consists in
replicating the key (and the data) on a fixed number of successors (), the first of
which will actually become the successor of the key, in case the old successor of
the key fails.

If we ensure that the hash function is good, giving IDs very far from each
other for very similar inputs, because of the geographic localization of IP
addresses [8], it would mean that the nodes that are close on the Chord ring are
very far geographically, so it is even more unlikely for neighbour nodes on the
Chord ring to fail at the same time. Since the probability of a node failure is less
than 1, by knowing the fact that the events of node failure are independent for
nodes close on the Chord ring, we can conclude that the higher the replication
factor is, the less probable it will be to lose the data stored with that replication
factor. However, the redundancy factor is statically defined, for any piece of data,
so if a piece of data stored on a node is more critical we cannot replicate it more



A means of enhancing storage reliability for peer-to-peer networks 51

than less critical pieces of data by using currently existing layers built on top of
DHTs.

The problem of having different redundancy factors when storing different
pieces of data has been addressed in the context of peer-to-peer applications
running on top of the grid [9, 10], such as JuxMem, a grid data sharing service
[11]. In that context, the main idea behind the developed prototype was for the
upper layer application to require a degree of redundancy, translated in a number
of different storage nodes by the storage peer-to-peer layer. If the data sharing
service realized that there weren’t enough peer-to-peer nodes to assure the degree
of redundancy, it would arrange for some extra nodes to be reserved on the grid,
by querying the grid management system, and mainly the grid resource scheduler,
described in [12]. The reservation of the extra nodes required for the redundancy
of the data is done best-effort, since no one can assure that at a certain moment the
required amount of nodes is actually available. After reserving the nodes, the
peer-to-peer storage service is extended on top of them and the data can further be
stored in the required redundant manner.

The advantage of the proposed prototype for the on demand, self-
extending grid data sharing service, described above, is the fact that you do not
have to reserve all the nodes on the grid for the service at once, resulting in less
power consumption by the application and also in better sharing of the grid
resources. The 2 disadvantages of the already mentioned prototype, that we would
like to point out, are (1) the fact that it cannot be easily used for a set of nodes that
do not belong to a grid and (2) the fact that it is not intimately related to the
dynamics of the peer-to-peer topology, which could be desirable, for easier and
faster reconfiguration of the topology. In what follows, we propose to extend this
idea by designing and implementing a model which can be used for self-extension
on top of any set of storage peer-to-peer nodes. Furthermore, we will try to build
the replication layer as close as possible to the DHT layer, in order for it to use the
DHT infrastructure’s intrinsic stabilizing mechanisms in case of node leave and
node join.

The solution we propose for the presented problem will be described into
detail in section 3. It will be implemented on top of and in close relation with the
Chord DHT. It will take advantage of the “self-regenerating” infrastructure that
Chord creates and it will also benefit from the use of a special layer that is able to
extend the Chord service on other, new, nodes.

3. System architecture and behaviour

The model that we propose is a flexible means for a distributed
decentralized system to extend itself on other available nodes. The reason why
this model has been conceived and implemented is the fact that, even if they have
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many qualities, DHTs are not capable to grow indefinitely and, thus, offer, just by
themselves, more scalability and more reliability for the storage of a key. One of
the reasons why this cannot happen is the fact that the redundancy factor is
usually intrinsic to the entire DHT, so one cannot vary it for a certain piece of
data. This is mainly due to the approach, different from ours, that Chord has when
storing data: it tries to do its best not to lose data, by using all of the nodes in the
peer-to-peer network. Our approach would be to allow the possibility to insert
new resources — namely, nodes — into the peer-to-peer network, if, at some point,

we wish to increase the network’s reliability.
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Fig. 1. Storage on top of the improved peer-to-peer DHT.

How does a peer figure out when to insert new nodes into the peer-to-
peer logical infrastructure? In this paragraph we will describe some preliminary
ideas about means to extend the peer-to-peer infrastructure, only when needed by
the upper-layer application. For the sake of simplicity of presentation of our
solution, let us assume that any node in the Internet, on which we would wish to
extend the peer-to-peer infrastructure, already has this software installed and ran
by default at start-up. If we wished to include this node into the Chord network, as
to obtain more reliability, we would have to physically access the node, in order to
turn it on, since based on our assumption, the node is certainly offline if it is not
running Chord at the moment. This is something that would be desirable when
dealing with a remote node, which we would wish to turn on and include into the
Chord network only at the moment when it is needed, and not from the very
beginning, so that we avoid useless power consumption, for example. We remind
the reader that in section 2 we have described reasons why it is desirable to
redundantly store data on nodes belonging to distant, and, thus, different,
domains, if possible. To address more elegantly the problem of starting up remote
servers, we will design our special layer, for increased reliability in the Chord
network, to make use of the Wake on LAN protocol for on demand node startup
[13], by configuring the node’s NIC accordingly. Another thing one needs to
know when considering starting-up new nodes, which will be integrated into the
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peer-to-peer infrastructure, is on what base the decision to launch new peers
should be taken. One might consider 2 levels for making this decision, and thus 2
ways to make this decision, which could either coexist, or might be considered
independently.

The upper-level application requires a certain redundancy for some piece of
data. This means that the redundancy can vary among different pieces of
data to be stored, but on the other hand it remains the same for one piece
of data throughout its existence within the peer-to-peer logical
infrastructure. In this situation, the node responsible for the key of that
data evaluates the number of nodes within the logical infrastructure and
stores the data on top of the required number of peers, after it first
instantiates new nodes which will become peers into the network.

The peer-to-peer infrastructure decides when a new node should be launched,
to hold a replica of a certain piece of data. This is done by accounting the
frequency of accesses to one piece of data divided by the number of
replicas for that data and, based on the value obtained and on some
thresholds, decide to instantiate new nodes to hold that piece of data. This
method is applied by the peer-to-peer infrastructure itself, in order to adapt
for data which has previously been stored on the logical infrastructure,
perhaps even with a certain redundancy specified by the upper-level
application.

From the 2 methods for determining data redundancy, our prototype will
mostly concern itself with the latter, the one in which the peer-to-peer
infrastructure adapts to hold more copies of the data if that piece of data is being
accessed intensively, since this is what we consider to be a novel approach in our
work. Also, the prototype will try to benefit from the static redundancy factor
which the Chord DHT is configured with, too. The prototype will not concern
itself with the consistency of the data being stored, leaving this task to the upper-
level application.

How is the prototype for self-extending of the peer-to-peer logical
infrastructure designed? In this paragraph we will describe the architecture and
behaviour of the prototype we have designed and implemented, which enables
self-extension of the logical infrastructure, at the moment when this is needed. As
already stated, a peer responsible for a key is able to determine when the data that
key refers to is more critical than other data, and thus should be stored with a
higher degree of replication. What hasn’t been mentioned yet, is how does a peer
know what nodes to start up , in order to extend the peer-to-peer infrastructure. To
be able to do this, the peer should know of the existence of other machines, that
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could be integrated into the its peer-to-peer network. This information will be
contained in a configuration file, containing all the nodes that the current node
will be able to integrate into the peer-to-peer network, the moment this is needed.
To allow for more storage reliability for the data to be replicated, within the
configuration file, these nodes should be statically grouped by their geographic
neighbourhoods. Before trying to start-up a node which will integrate itself into
the peer-to-peer network, the current peer will ping that node, in order to see if it
isn’t already running. If a peer is already running and still has enough storage
space, the current node may decide to redundantly store the data on it. When a
peer is launched in order to store a piece of data with higher redundancy, we will
say that it is the son of the node that has launched it, and, conversely, the node
that has launched it is its parent. For now, the parent part of a peer, that is, the part
that is responsible for deploying new nodes, cannot perform replication for
different pieces of data in parallel, the pieces of data that need deployment being
treated sequentially.

-> own keys table eniry

Key(Data ID Successors (r) [[List of per key sons
| ye )" " ” P y | (self-maintained)

-» replicated keys table entry

* |Key(Data ID)|| Neighbours (r List of Kk
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|Key(Data |D)|| Parent IP | -> parent keys table eniry
(key owner pinged periodically)

Entry structure for the 3 different table types

Fig. 2. The 3 types of tables containing keys, that can be stored by a node.

Even if this situation is unlikely, in our implementation, if a node becomes
successor of a key, or a key is also replicated on a son-node via successor
mechanisms, the node will eliminate the key from its set of keys belonging to its
parent-node and should announce its parent to decrease the degree of redundancy
for that key by 1. In other words, the son-node will announce the parent-node that
it is no longer its son, but it has now become its successor. We can conclude from
here that each node holds 3 disjoint categories of keys grouped into 3 different
tables, as one can see in Fig. 1, and they are as follows:

1. The keys that have the node as their successor are the keys that the node is
responsible for, and they are kept in a first table. For these keys it accounts
the frequency of access and decides replication of these keys on its
successor nodes and on son-peers accordingly. It also accounts all the
peers that these keys were replicated on, as can be seen in Fig. 2.

2. The keys that have been replicated on the node by its predecessors are
keys for whom the node keeps a second table, similar with the one kept for
its own keys. The node is not responsible for updating replication
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information related to those keys, which is the responsibility of the owner

of each key, and it should do this periodically.

3. The keys that have been replicated on the node by its parent-node, if it has
one, are keys for whom the node keeps a third table, which is never
updated, and contains just the key. In fact, the son-node is responsible for
periodically pinging its the owner of the key (i.e., its parent-node) via the
Chord routing ring, in order for the parent-node to be able to keep the table
for its keys up to date. This third table can be seen in Fig. 2, too.

It results that a node can have 2 main roles within the improved Chord-
based DHT, that we have implemented: as a routing node and as a storage node.
As a storage node, it is responsible for: periodically announcing its parent, the

node responsible for the key this peer holds, of its existence; detecting the

case when it has a double role, being the son of the owner of the key and
also one of the r successors of the owner of the key.

As a routing node, it identifies its keys and takes care of the data that these keys
refer to, by ensuring its correct replication. Each node stores replicas of its
data on a fixed number r of its successors and on its son-nodes. If the
routing node detects that one of its successors is no longer alive, it will
obviously update its successor list, by using Chord mechanisms, and it will
also ensure that its keys are stored on all of its 7 successors that it keeps
track of. If the routing node no longer receives ping/heartbeat messages
from a son-node, it will decide to replicate the keys replicated on that son
on other, possibly newly-launched, son-nodes.
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Fig. 3. Interraction between the different entities involved in the storage of data.
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From an architectural point of view, with respect to the position of Chord
within the software stack, the prototype we have designed is placed mostly
between the Chord layer and the upper-level application layer. Still, some features
included by our prototype, such as the Wake on LAN module, are placed at a
layer below Chord. The interactions among the following 4 entities: the upper-
level application, our prototype modules, the Chord network, and the physical
network, which have all been described above, can be observed in Fig. 3.

How does the proposed model handle node volatility? In this paragraph
we will describe how our proposed prototype handles node join and node leave, in
a Chord-like manner.

Node joins are handled mainly at Chord-level, with some additional actions
performed by the prototype’s modules. The fact that the hash function’s
values for the node IDs of each node cannot be anticipated is the main
reason why a node cannot know where its replicas will be stored on the
Chord network and that’s why a freshly started son-node should perform
some extra actions, and that son-node is in most of the cases not a
successor of its parent. For any new node that joins the peer-to-peer
infrastructure, after running the stabilization algorithm on top of its
predecessors for the first time after its join, the node will receive the keys
for whom he is responsible from its immediate predecessor and also keys
which it should keep for its further »-/ predecessors, in order to attain the
fixed redundancy r. Besides this, if the node has been launched as a son, to
hold one of its parent-node’s keys or data, when joining the peer-to-peer
network the node will also ping its parent for the first time, to notify it of
its presence. As already stated, if a node does not receive a ping for either
of its keys replicated on a son from that son-node, it will decide to start up
a new son-node to hold the key, or query other son-nodes which might still
have space left for storing the data for that key. Also, after launching a
new son-node for a key, the node responsible for that key might need to
update the key tables on its successors.

Node leaves or node failures are handled both by the Chord-level and by the
prototype, depending on the types of keys we are referring to. The Chord
action for node leave is the stabilization method called periodically for any
node, combined with the fact of making sure that a fixed number of r
replicas is kept on the successors of the node responsible for that key. In
case of node leave, the main concern is not to lose a certain key entirely. If
the node responsible for a key fails or leaves the logical infrastructure, but
one of its  successors is still up, the problem is solved, since the new node
responsible for the key already has the data associated to it, and will only
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need to send the key, and the data associated to it, to all of its » successors
in its successor list. If it happens, even if it is very unlikely, that all the » +
I successors of the key fail or leave the peer-to-peer infrastructure, there
will be a new node responsible for the key, that has never heard of it. The
means by which this node finds out about the key is the periodic ping that
the son-nodes send to the node responsible for the key, which in the Chord
ring is the immediate successor of the key. If the key is stored on no sons,
that means that it hasn’t been associated to a critical piece of data, and the
loss of the data is not such a big issue. The steps for a parent-node to
“recuperate” a key and the associated data from a son-node are as follows:

1. Ifreceiving a ping from a node about a key that the current node does not
know, it will ask the distant node for the data related to that key.

2. If a son-node receives a request such as the one at step 1, it will update the
IP of the owner of the key in its table.

3. Upon receiving the data from the son-node, the node responsible for the
key will add it in the corresponding table, together with information about
the son-node itself.

4. The node responsible for the key will create  replicas for the key on its
successors from the successor list.

If a node receives a ping message from a son-node that it does not know,
but about a key it already knows, it will only send the distant node a reply
with its IP, and after that steps 2 and 3 from above will be performed.

It is now clear how our prototype, together with Chord, cope with the
dynamics of the peer-to-peer infrastructure, that is with joins and leaves, in order
to keep all of the 3 tables described in Fig. 2 up to date and consistent with the
replication of the keys on top of the logical infrastructure.

4. Evaluation and experimental validation

For the evaluation of this prototype, a testbed was used, composed of more
virtual machines running on top of different computers, in order to give the ability
to have as many nodes as needed, even if there were not enough physical nodes
available. In this section we will evaluate mainly the engine for instantiating the
peer-to-peer applications on new nodes. We will measure (1) how much it takes to
launch a number of nodes that are each situated at approximately similar physical
network distance from the parent-node and (2) how much it takes to “restore” data
from a son-node to the rightful owner of that piece of data.
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Time necessary to start up new storage peers. When considering the
time necessary to start up new storage peers, by using Wake on LAN, one must
take into account the time it takes for that machine to boot. From our repeated
measurements on more general-purpose machines, we consider that a boot-time of
75-90 seconds is relatively fair. We have performed 2 experiments, in order to
study the variation of the time for launching new nodes, with respect to the
number of nodes launched and especially with respect to the moment when they
are launched. The measurements within these experiments have been performed
as to reflect the time elapsed between the moment of starting to launch a new son-
peer and the moment that that son-peer sends the first ping to its parent.

Instantiating a new peer each 5 minutes. The experimental setup was to have a
client accessing intensively a piece of data stored on a peer, such that
every 5 minutes a new son-peer had to be launched, in order to assure the
degree of replication needed by that critical piece of data. The result of the
experiment can be seen in Fig. 4, which clearly shows that the
instantiation of each different son-peer does not interfere with the already
existing son-peers. Moreover, one can notice how low the overhead for
launching a new peer is, when compared to the time it is needed to boot

that peer.
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Fig. 4. Instantiating a new son-peer each 5 minutes.

Instantiation of a higher number of peers each 5 minutes. The experimental
setup was to have a very volatile infrastructure, which would enable loss
of son-peers on which a piece of data is replicated. A case in which
starting up more nodes in parallel would be needed, is the case when all of
the son-peers holding a key are lost. For the current experiment, an
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infrastructure with different numbers of son-peers was used, for each key
whose data was stored by a unique peer within the peer-to-peer
infrastructure. Every 5 minutes, the son-nodes responsible for a chosen
key were turned off, in order to force the unique parent-node to start up a
new set of son-nodes for that key. The time necessary for launching more
peers at the same time varies linearly with the number of peers, as can be
seen in Fig. 5. There is no extra-overhead for booting each node, since
the parent-node, responsible for the key, does not wait for each son-node
to confirm it has properly booted, before launching the next son-node.

The 5 minutes interval was chosen as to dominate the time needed for
Chord the stabilization method to finish, thus making all the other nodes aware of
the newly joined node. The stabilization interval has been set to 1 minute, for each
node belonging to the Chord network.

Integrating an increasing number of peers each 5 minutes
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Fig. 5. Instantiating a higher number of peers each 5 minutes.

Time required to replicate data on the real owner of the key. As seen
in the previous case, replication on more than one extra-node might be needed in
some cases, such as the case when some son-peers responsible for a node are
gone. On the other hand, an even more serious situation is the case when the
owner of the key is gone, together with all of its » successors that hold the replica
of the key. This is a situation in which, for a usual Chord-like DHT, the key and
its associated data would be lost, which is something that we would not want to
happen, especially for some critical, heavily accessed pieces of data. In this case,
within our protocol, son-nodes might still keep the key, thus increasing the
reliability of the DHT infrastructure, and we wish to study how this distributed
infrastructure behaves when it comes to making a supposedly lost key re-appear,
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of course, together with its corresponding data. For this, an experiment has been
set up, as follows:

1. A number of 16 peer instances has been launched on top of the physical
nodes, each peer storing 7 keys, with a value of r equal to 3. All of the
nodes were connected to each other via a LAN, in order to make as
uniform as possible the network delays between them.

2. Among these peers, there also exist son-nodes for some keys stored on
parent-peers.

3. For a given key, the node responsible for it plus all of its » successors have
been turned off, so that only the son-node holding the key remained alive,
and the time necessary for the key to be stored on its new “parent” has
been recorded.

4. The previous steps have been repeated 10 times, in order to obtain the
numbers that lead to Fig. 6.
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Fig. 6. Replicating the data on its new owner

One can notice, from Fig. 6, that the time needed for the messages that
restore the key to be exchanged is about 2ms. Note that this time does not include:
(1) the network latency that would exist in a real case, when nodes are
geographically distributed; (2) the time interval defined for the son-node to ping
its parent, which should be configured to be neither too high, nor too low; (3) and
the time necessary to download the data corresponding to the key, which could be
very large. These time intervals were not taken into consideration when plotting
Fig. 6 because they can vary very much, and because anyway they would
dominate the time for message processing among peers. In the future work, it



A means of enhancing storage reliability for peer-to-peer networks 61

would be desirable to also take into consideration at least a medium-case network
latency, in order for the results to be even more relevant for the value of the
prototype that we have developed. Nevertheless, even with the overheads
introduced by these time delays, the use of our prototype, and of our proposed
redundancy storage mechanism is desirable, compared to the situation of losing
some pieces of data that are very valuable to the upper-layer application.

To compare the performances of our prototype with other existing
solutions, we have looked at its performances both compared against the Chord
intrinsic replication mechanism [3] and against the JuxMem data persistence self-
extending mechanism [10], already mentioned in the second section of this article.
In the latter case, we are talking about an application that interacts with the peer-
to-peer infrastructure. As already mentioned in section 3, when comparing our
prototype against a non-enhanced Chord network, it introduces a small data
persistence maintenance overhead, but this is the cost of far more reliability,
illustrated in the case where we restored the data from the son-node on its new
owner, from above. On the other hand, if we compare our extension mechanism
which enhances reliability with the one proposed for JuxMem, they turn out to be
very similar, in architecture and performance, the major difference between the
two being the fact that the current solution can run on any physical infrastructure,
not just on grids, which represents an advantage.

More aspects concerning the effective reliability obtained by the storage
system will be evaluated in the future work, given the fact that storage reliability
is intimately related to the nature of the upper-layer application.

6. Conclusions

In the previous sections we have seen the description and evaluation of a
prototype trying to solve the problem of enhancing storage reliability on top of
peer-to-peer logical infrastructures. The most important aspect that this paper has
tried to address was the fact of making logical storage infrastructures more fail-
safe than their predecessors. We believe, based on the evaluation we have
performed in section 5, that we have succeeded to improve the storage
infrastructures from this point of view, by defining mechanisms that prevent the
loss of critical data throughout its lifetime within the system. This was done both
by giving the higher level application the possibility to define a degree of
redundancy for the critical pieces of data and by enabling the peer-to-peer storage
network to use different degrees of redundancy for different pieces of data,
depending on the importance of that data.

In the future we would like to focus on further developing this prototype,
for more geographically distributed infrastructures, in order to make stress tests on
the redundancy mechanism we have implemented. Of course, before performing
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these tests, some optimizations could be performed regarding the current
prototype, such as the fact of trying to reduce the number of messages exchanged
among the peers, based on analyzes such as [14], or the fact of enabling a degree
of parallelism when launching new requests for creating son-nodes related to
different keys.
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