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MULTI-VARIABLE PREDICTION OF PHYSICAL DATA 

Dan ŞTEFĂNOIU1, Janetta CULITĂ2 

Lucrarea prezintă un studiu comparativ între diferite abordari adoptate 
pentru predicţia datelor fizice multi-variabile. Datele provin de la fenomene 
naturale distribuite geografic (în special ecologice şi meteorologice) şi sunt 
modelate ca o colecţie de serii de timp. Simularile demonstrează ca acuratetea 
predicţiei seriilor de timp distribuite creşte odata cu gradul lor de corelare. Sunt 
studiate trei tipuri de modele multi-variabile ale sistemului furnizor de date: MIMO-
ARMA, model cu reprezentare pe stare (de tip Kalman-Bucy) şi MIMO-ARMAX. 
Strategiile de modelare şi predicţie propuse au fost implementate pe un studiu de 
caz preluat din meteorologie.  

The paper aims to present a comparative study related to different 
approaches regarding prediction of multi-variable physical data. Data are provided 
by natural phenomena with geographical distribution (especially ecological and 
meteorological) and are stored as blocks of time series. Simulations have shown that 
the prediction accuracy of data increased with their correlation. Three modeling 
approaches of data are considered: MIMO-ARMA type, a state representation of 
Kalman-Bucy type and MIMO-ARMAX type. The performance of modeling and 
prediction algorithms is demonstrated on a meteorological case study.  

Keywords: distributed time series, prediction, Kalman-Bucy filter, ARMAX.  

1. Introduction 

The paper focuses on the problem of multi-variable physical data prediction. 
The physical data could be acquired from geographical distributed natural 
phenomena (such as ecological or meteorological) by means of a sensors network 
that provide a collection of time series (ts). Such data coming from different 
channels are in general correlated each other.  

Take for example the monitoring of minimum and maximum temperatures 
in two cities at about 60 km far from each other, like in Fig.1. The problem is to 
build and estimate multi-variable identification models, in view of physical data 
prediction like those temperatures. Instead of using data fusion techniques [1], 
which lead to a unique time series, in this paper, three different approaches are 
introduced, in order to increase the prediction accuracy. First, the time series are 
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independently processed through MIMO-ARMA models [2]. Here, no 
correlations between data are accounted. Second, the models are upgraded to 
MIMO-ARMAX type. Third, the distributed time series is seen as a collection of 
measurable states of a quasi-ubiquitous open system and can be predicted via 
Kalman filtering [3,4]. For the last two approaches, correlation between data is 
crucial. The paper is structured as follows: section 2-3 are designed to describe the 
construction of the three predictors; the prediction performance of models is 
tested within the application described in section 4; section 5 concludes the paper. 

 
Fig. 1. Minimum (bottom) and maximum (top) temperatures of two cities. 

2. ARMA and ARMAX Prediction Models 

Consider { } 1,j j ny
y

∈
=Y  the set of ny  ts and denote the maximum number 

of acquired data by yN . Then the vector 1

T

nyy y⎡ ⎤= ⎣ ⎦y  could be viewed as the 

output of a MIMO system. Assume that each ts jy  ( 1,j ny∈ ) of length yN ∗∈N  

is a colored noise produced by the corresponding white noise (wn) je  ( 1,j ny∈ ). 
Any such ts can be roughly modeled by a (SISO)-ARMA filter, like below:  

 ( ) ( )1 1A q C qj j j jy e− −≡ ,   1,j ny∀ ∈ , (1) 

where A j  and C j  are polynomials and 1q−  is the delay operator (do). Thus, (1) is 
actually a collection of difference equations. The white noises corrupting the data 
are supposed to be Gaussian and uncorrelated. In case of distributed ts, the model 
(1) can be extended to the rough MIMO-ARMA model:  

 ( ) ( )1 1q q− −≡A y C e , (2) 
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by simply considering that the output channels are not correlated each other. In 
equation (2), ( )1qny ny× −∈A R  and ( )1qny ny× −∈C R  are diagonal polynomial 
matrices. Identification of model (2) is simply performed via Minimum Prediction 
Error Method (MPEM) [2,4].  

After identification, the estimated polynomials Â j  and Ĉ j  (for 1,j ny∈ ) 
yield the evaluation of prediction error:  

 ( ) ( )1 1ˆ ˆˆ ˆA q 1 C qj j j j je y e− −⎡ ⎤≡ + −⎣ ⎦ ,   1,j ny∀ ∈ . (3) 

In order to increase the precision accuracy and to incorporate the correlation 
between various ts, the model (2) is upgraded to MIMO-ARMAX model:  

 ( ) ( ) ( )1 1 1q q q− − −≡ +A y B u C e , (4) 

where ( )1qny nu× −∈B R  is a polynomial matrix as well and nu∈u R  is the input 
vector (on nu  channels, i.e. data sources) of overall stochastic process. Each 
input is estimated like in (3) (i.e. ˆ ˆj ju e≡ ). Thus, the refined model is stimulated 
with the estimations of white noises corrupting the data. The model (4) is rather 
difficult to identify, because of great number of parameters. Therefore, two 
simplifying hypothesis are considered: the matrix A  is diagonal (each output is 
independent on the other outputs) and the matrix C  is diagonal (since the white 
noise signals are uncorrelated each other). Then the MIMO-ARMAX model can 
be split into ny  MISO-ARMAX models:  

 ( ) ( ) ( )1 1 1A q q C qj j j j jy e− − −≡ +B u ,   1,j ny∀ ∈ , (5) 

where ( )1 1qnu
j

× −∈B R  is a row vector of polynomials. Obviously, the 
identification of MIMO-ARMAX is solved now by identifying each MISO-
ARMAX model as a result of channel isolation. The prediction can be performed 
when solving all equations (5) at each step. Thus, correlations between outputs are 
indirectly encoded by the collection of MISO-ARMAX models, through 
equation (3). Actually, noises of 1nu ny= −  output channels are affecting the data 
of some input channel, which means that matrix B  (of (5)) has null diagonal.  

Identification of parameters in model (5) relies on MPEM as well, whereas 
the estimated values of white noises are more accurately computed with 
approximating ARX models:  

 ( ) ( )1 1
,

1,

ˆ ˆˆ ˆA q B q
ny

n n
j j j j i i

i i j

e y uα − β −

= ≠

≡ − ∑ ,   1,j ny∀ ∈ , (6) 
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where An
j
α  and ,Bn

j i
β  are polynomials with degrees nα  and nβ , respectively. 

After estimating all the parameters, the optimal predictor is recursively computed, 
on a prediction horizon of length 1K ≥ , as follows (for any 1,y yk N N K∈ + + ):  

 ,1 ,ˆ ˆ ˆ ˆ ˆ| 1 | |
jj y j j y j na j j yy k N a y k N a y k na N⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − − − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 ,, ,1 , , ,
1,

ˆ ˆˆ ˆ[ 1]
j i

ny

j i i j i nb i j i
i i j

b u k b u k nb
= ≠

⎡ ⎤⎡ ⎤+ − + + − +⎣ ⎦⎣ ⎦∑

 ,1 ,ˆ ˆ ˆ ˆ[ 1] ;
jj j j nc j jc e k c e k nc⎡ ⎤+ − + + −⎣ ⎦  (7) 

 
,1 , 1

, ,

ˆ ˆˆ ˆ ˆ ˆ[ ] | 1 | 1 |

ˆ ˆ [ ]
y

y

j j y j j y j k N j y y

j k N j y j n j

e k y k N y k N y N N

y N y k n

− −

− α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + α − + + α + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤+ α + + α − α −⎣ ⎦
 

 , ,1 , ,
1,

ˆ ˆˆ ˆ ˆ[ 1] [ ] [ ].
ny

j i i j i n i j
i i j

u k u k n u kβ
= ≠

⎡ ⎤− β − + +β − β =⎣ ⎦∑  (8) 

The prediction performance on channel j  is assessed by means of the 
prediction quality (PQ) cost function below: 

 

2
,

1

ˆ
PQ 100 / 1+ [%]

ˆ SNR SNR
j

K

j kdef
k

j K
e j j

=

⎛ ⎞
σ⎜ ⎟

⎜ ⎟= ⎜ ⎟λ⎝ ⎠

∑
1,j ny∀ ∈ ,   1,j ny∀ ∈  (9) 

where: { }2
, 1,

ˆ j k j ny∈
σ  are the prediction error variances on channel j ; 

2 2
,1ˆSNR /

j

def

j y j= σ σ  & ( ) ( )22

ˆSNR /
j j j

def
K K K
j y y y−= σ σ  are signal-to-noise ratios with 

jyσ , j

K
yσ  as standard deviations of data on measuring and prediction horizons, 

respectively; ˆj j

K
y y−σ  is the standard deviation of prediction error. The bigger the 

norm of 1PQ PQ
T

ny⎡ ⎤= ⎣ ⎦PQ , the better the prediction performance. The best 
predictors in terms of PQ are found by means of an adapted version of Particle 
Swarm Optimization Algorithm (PSO) [5]. 

3. Prediction models based on Kalman filtering theory 

The third prediction model of distributed ts is developed in context of state 
representation identification models [2], [4], [6]. More specifically, a minimum 
state representation is obtained by a technique introduced in [6]. The resulted 
model is represented by the following discrete time state equations:  
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[ 1] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]
k k k

k k k

k k k k

k k k k

⎧ + = + +⎪
⎨

= + +⎪⎩

x

y

x A x B u F w

y C x B u D v ,   k∀ ∈N , (10) 

where: nx nx
k

×∈A R , nx nu
k

×∈xB R , ny nu
k

×∈yB R , ny nx
k

×∈C R , ny ny
k

×∈D R  and 
nx nx

k
×∈F R  are matrices including all variable (but already estimated) parameters 

of some stochastic process; (usually, k ny=D I ); ny∈y R  is the vector of 

(measurable) output signals; nu∈u R  is the vector of input signals; nx∈x R  is the 
unknown state vector that encodes the invisible correlations between data sets; 

nx∈w R  is the (unknown) endogenous non auto-correlated system noise, with a 
sparse covariance matrix { }[ ] [ ] [ ]Tk E k k=wΨ w w ; ny∈v R  is the (unknown) non 
auto-correlated exogenous noise, which is usually corrupting the measured data; 
its covariance matrix, { }[ ] [ ] [ ]Tk E k k=vΨ v v , is usually diagonal. The two noises 
are moreover uncorrelated each other.  

The problem of state prediction (and, consequently, of outputs data 
prediction), is solved in the context of Kalman-Bucy Filtering Theory [3,4]. We 
succeeded to design the particular algorithm below, based on some mathematical 
properties of model (10).  

 Input data: a small collection of time series values (the training set 
{ }

0
0 1,

[ ]
n N

n
∈

= yD ) yielding initialization.  
1. Initialization. Produce the first state representation (10). Then complete the 

initialization by setting: an arbitrary state vector 0x̂ , the covariance matrices 

0
ˆ

nx= αP I  (with ∗
+α∈R ), ˆ1 1[ 1] T

nx− −− =wF Ψ F 0  and ˆ1 1[ 1] T
ny− −− =vD Ψ D 0 .  

2. For 0k ≥ :  
2.1. Estimate the exogenous mixed noise: ˆ ˆ[ ] [ ] [ ] [ ]k k kk k k k= − − yD v y C x B u . 
2.2. Update the covariance matrix of exogenous noise:  

( )ˆ ˆ1 1
1 ˆ ˆ[ ] [ 1] [ ] [ ]

1
T T T T

k k k k k kk k k k k
k − −= − +
+v vD Ψ D D Ψ D D v v D . 

2.3. Compute the auxiliary matrix: ˆ
k k k=Q C P .  

2.4. Invert the matrix: ˆ [ ] T T ny ny
k k k k kk ×= + ∈vR D Ψ D Q C R . 

2.5. Evaluate the sensitivity gain: 1T
k k k

−=Γ Q R . 
2.6. Compute the auxiliary matrix k k k=S A Γ .  
2.7. Update the covariance matrix of endogenous noise:  

( )ˆ ˆ1 1
1 ˆ ˆ[ ] [ 1] [ ] [ ]

1
T T T T T

k k k k k k k kk k k k k
k − −= − +
+w wF Ψ F F Ψ F S D v v D S . 
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2.8. Update the covariance matrix of estimation error:  
( )ˆ1

ˆ ˆ[ ] T T
k k k k k k k kk+ = + −wP F Ψ F A P Γ Q A . 

2.9. Predict the state: ˆ ˆ ˆ[ 1] [ ] [ ] [ ]k k k kk k k k+ = + +xx A x B u S D v . 
2.10. Predict the output: ˆ ˆ[ 1] [ 1] [ 1]k kk k k+ = + + +yy C x B u .  
2.11. Acquire new data: { }1 [ 1]k k k+ = ∪ +yD D .  
2.12. Update the state model.  
 Output data:  
• predicted time series values: { }ˆ[ ]

k
k ∗∈

y
N ;  

• estimated covariance matrices: { }ˆ [ ] T
k k k

k
∗∈vD Ψ D

N
.  

The predictor performance is assessed by means of PQ as well. This time, 
{ }2

, 1,
ˆ j k j ny∈
σ  is the diagonal of each matrix ˆ [ ]

y y

T
N k y N kN k+ ++vD Ψ D . The optimum 

structural indices (i.e. the polynomial degrees and the states number) are selected 
through PSO technique, like in case of previous prediction models. 

4. Simulation results 
Predictors performances are tested on a case study coming from 

Meteorology. Daily minimum and maximum temperatures of the two neighboring 
cities from Fig.1 have been monitored and predicted. Three designed predictors, 
namely PARMA, PARMAX and KARMA, have been implemented within 
MATLAB environment. Their performances in terms of PQ have been compared 
over a data block of 479 samples on 4 channels. The resulted values of PQ (after 
comparing the predicted data to the measured data) are listed in Tab. 1.  

Tab. 1. Prediction Quality [%] for different predictors and channels. 

Channel index Predictor 
PARMA PARMAX KARMA 

1 54.38 66.25 69.46 
2 53.61 68.50 60.19 
3 68.37 75.92 70.78 
4 55.79 76.86 59.79 

As one can see, the first predictor (PARMA) is the worst, because no 
correlation between measuring channels are accounted. On the contrary, the last 
two predictors (PARMAX and KARMA) produce better predicted values. 
Although none of them could be declared as “the best” on all channels, PARMAX 
is seemingly the most suitable choice (with 3 best predicted values over 4). Note 



 Multi -variable prediction of physical data                                         101 
 

that not only the predicted data are considered when computing PQ, but the 
aperture of corresponding confidence tube too. This tube is configured around 
predicted data, by accounting the 3σ -rule on Gaussian stochastic processes [2,4].  

The results in Tab. 1 reveal that the temperatures from the two cities are 
rather correlated than uncorrelated, as expected (given their geographical 
neighboring). This is another useful insight regarding the use of the three 
predictors. Whenever the multi-channel data are weakly or not correlated, 
PARMA should be preferred as a simpler and faster predictor. Whenever the 
cross-correlation between different channels is quite obvious, either PARMAX or 
KARMA should be used as more accurate predictor.  

5. Conclusion 

This paper succinctly described an approach to multi-variable physical data 
prediction. Three different predictors have been designed in this aim, by using 
stationary models. Although simulations lead to several useful insights, the most 
important is that PARMAX and KARMA predictors perform better than PARMA 
as long as data are cross-correlated. However, the prediction accuracy has 
increased at the expense of computational complexity. If the data are quite 
uncorrelated across channels, PARMA should be employed as first option. As 
future developments, predictors based on non stationary models are under 
consideration.  

Acronyms list  
ARMA – Auto-Regressive with Moving Average (identification) model [2,4] 
ARMAX – Auto-Regressive with Moving Average and eXogenous control 

(identification) model [2,4] 
do – one step delay operator: ( )1q [ ] [ 1]y n y n− = − , n∀ ∈Z  [4] 
MIMO – Multiple-Input Multiple-Output (system) [7] 
MISO – Multiple-Input Single-Output (system) [7] 
MPEM – Mimimum Prediction Error Method (an identification procedure for 

models corrupted by stochastic perturbations) [2], [4] 
SISO – Single-Input Single-Output (system) [7] 
PQ – Prediction Quality (cost function that has to be maximized) 
PSO – Particle Swarm Optimization (algorithm) [5] 
ts – time series (acquired data strings) 
wn – white noise (the prototype of totally uncorrelated/unpredictable 

stochastic processes) [2,4] 
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