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MULTI-VARIABLE PREDICTION OF PHYSICAL DATA

Dan STEFANOIU', Janetta CULITA?

Lucrarea prezinta un studiu comparativ intre diferite abordari adoptate
pentru predictia datelor fizice multi-variabile. Datele provin de la fenomene
naturale distribuite geografic (in special ecologice si meteorologice) si sunt
modelate ca o colectie de serii de timp. Simularile demonstreazd ca acuratetea
predictiei seriilor de timp distribuite creste odata cu gradul lor de corelare. Sunt
studiate trei tipuri de modele multi-variabile ale sistemului furnizor de date: MIMO-
ARMA, model cu reprezentare pe stare (de tip Kalman-Bucy) si MIMO-ARMAX.
Strategiile de modelare si predictie propuse au fost implementate pe un studiu de
caz preluat din meteorologie.

The paper aims to present a comparative study related to different
approaches regarding prediction of multi-variable physical data. Data are provided
by natural phenomena with geographical distribution (especially ecological and
meteorological) and are stored as blocks of time series. Simulations have shown that
the prediction accuracy of data increased with their correlation. Three modeling
approaches of data are considered: MIMO-ARMA type, a state representation of
Kalman-Bucy type and MIMO-ARMAX type. The performance of modeling and
prediction algorithms is demonstrated on a meteorological case study.

Keywords: distributed time series, prediction, Kalman-Bucy filter, ARMAX.

1. Introduction

The paper focuses on the problem of multi-variable physical data prediction.
The physical data could be acquired from geographical distributed natural
phenomena (such as ecological or meteorological) by means of a sensors network
that provide a collection of time series (ts). Such data coming from different
channels are in general correlated each other.

Take for example the monitoring of minimum and maximum temperatures
in two cities at about 60 km far from each other, like in Fig.1. The problem is to
build and estimate multi-variable identification models, in view of physical data
prediction like those temperatures. Instead of using data fusion techniques [1],
which lead to a unique time series, in this paper, three different approaches are
introduced, in order to increase the prediction accuracy. First, the time series are
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independently processed through MIMO-ARMA models [2]. Here, no
correlations between data are accounted. Second, the models are upgraded to
MIMO-ARMAX type. Third, the distributed time series is seen as a collection of
measurable states of a quasi-ubiquitous open system and can be predicted via
Kalman filtering [3.,4]. For the last two approaches, correlation between data is
crucial. The paper is structured as follows: section 2-3 are designed to describe the
construction of the three predictors; the prediction performance of models is
tested within the application described in section 4; section 5 concludes the paper.

l_lll{r;llf I’_! l,
jl‘_l_lr’]| f ||\ I Ik

L™ |
" .|!.[] 1;“,'. -

Fig. 1. Minimum (bottom) and maximum (top) temperatures of two cities.

2. ARMA and ARMAX Prediction Models

Consider % = {yj }je@ the set of ny ts and denote the maximum number

T
of acquired data by N , . Then the vector y = [yl yny] could be viewed as the

output of a MIMO system. Assume that each ts ¥; (j€1,ny) of length N, e N*

is a colored noise produced by the corresponding white noise (wn) e; (j€1,ny).
Any such ts can be roughly modeled by a (SISO)-ARMA filter, like below:

Afa)y=Cila)ey, Ve, M

. -1 . .
where A; and C; are polynomials and q~ is the delay operator (do). Thus, (1) is

actually a collection of difference equations. The white noises corrupting the data
are supposed to be Gaussian and uncorrelated. In case of distributed ts, the model
(1) can be extended to the rough MIMO-ARMA model:

A(q")y=C(q)e, 2
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by simply considering that the output channels are not correlated each other. In
equation (2), AeR™™ (q_l) and CeR"™" (q_l) are diagonal polynomial

matrices. [dentification of model (2) is simply performed via Minimum Prediction
Error Method (MPEM) [2.4].

After identification, the estimated polynomials A; and é_, (for jel,ny)

J

yield the evaluation of prediction error:

A

éjEAj(q'l)yj+[1—éj(q“)}éj, Vjielny. 3)

In order to increase the precision accuracy and to incorporate the correlation
between various ts, the model (2) is upgraded to MIMO-ARMAX model:

A(q")yEB(q’l)quC(q’l)e, 4)

where BeR""’X"”(q_l) is a polynomial matrix as well and ueR™ is the input

vector (on nu channels, i.e. data sources) of overall stochastic process. Each
input is estimated like in (3) (i.e. #; =¢,). Thus, the refined model is stimulated

with the estimations of white noises corrupting the data. The model (4) is rather
difficult to identify, because of great number of parameters. Therefore, two
simplifying hypothesis are considered: the matrix A is diagonal (each output is
independent on the other outputs) and the matrix C is diagonal (since the white
noise signals are uncorrelated each other). Then the MIMO-ARMAX model can
be split into 7y MISO-ARMAX models:

A(a")y,=B,(qa")u+C,(q")e;, Vjelny, (%)

where B‘,GRIX"“ (qfl) is a row vector of polynomials. Obviously, the

identification of MIMO-ARMAX is solved now by identifying each MISO-
ARMAX model as a result of channel isolation. The prediction can be performed
when solving all equations (5) at each step. Thus, correlations between outputs are
indirectly encoded by the collection of MISO-ARMAX models, through
equation (3). Actually, noises of nu=ny—1 output channels are affecting the data

of some input channel, which means that matrix B (of (5)) has null diagonal.

Identification of parameters in model (5) relies on MPEM as well, whereas
the estimated values of white noises are more accurately computed with
approximating ARX models:

e =A(a)y, - X B0 )i, vyl ©)

i=1,i#j
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where A" and B Bl are polynomials with degrees na. and nP, respectively.

After estimating all the parameters, the optimal predictor is recursively computed,

on a prediction horizon of length K >1, as follows (forany k€ N, +1,N, +K):
y/[k|N] /1y,[k 1|N] --~—&j~na/f/j[k—naj|Ny]+

ny

# 2 byl =114 tby, i [k=nb,, ]+

+¢; .8, [k—1]+-- +C/m J[k nc] (7)
=j/j[k|Ny]+&j,ljzj[k—1|Ny]+---+ocj,k7Nyfljzj[Ny+1|Ny]+

i=l,i#j

A

+&jk—Nyyj [Ny]+---+&quyj[k—na] -
ny

= X [ Btk =17+ B it L — nBY | =, K], ®)

i=l,i#j
The prediction performance on channel ;j is assessed by means of the
prediction quality (PQ) cost function below:

def \’]Z‘ Ik
PQJ.ZIOO/ 1+

1
[%] v eln Vjieln 9
SNR , [SNR* Jebny, vjelm )

~2 .. . .
where: {G ,k}, .~ are the prediction error variances on channel J;

def 2 2
SNR —G /&%, & SNRT =(ij) / (ij,h) are signal-to-noise ratios with
G, , Gly{/ as standard deviations of data on measuring and prediction horizons,

respectively; ij_,:.J is the standard deviation of prediction error. The bigger the

norm of PQ=[PQ1 PQ,,JT, the better the prediction performance. The best

predictors in terms of PQ are found by means of an adapted version of Particle
Swarm Optimization Algorithm (PSO) [5]

3. Prediction models based on Kalman filtering theory

The third prediction model of distributed ts is developed in context of state
representation identification models [2], [4], [6]. More specifically, a minimum
state representation is obtained by a technique introduced in [6]. The resulted
model is represented by the following discrete time state equations:
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{x[k +1]= A, x[k]+ B u[k]+ F, w[k]
VkeN, (10)

¥Ik] = Cixlk]+ Bjulk]+ D,v[k]’
where: Ak S Rnxxmc , Bz e Rnxxnu

BZ c Rnyxnu Ck c Rnyxnx , Dk c Rnyxny and

F, e R™™ are matrices including all variable (but already estimated) parameters

b b

of some stochastic process; (usually, D, =1, ); ye R™ is the vector of
(measurable) output signals; ueR™ is the vector of input signals; x e R™ is the
unknown state vector that encodes the invisible correlations between data sets;
weR"™ is the (unknown) endogenous non auto-correlated system noise, with a
sparse covariance matrix W, [k]=FE {W[k]WT[k]} ; veR" is the (unknown) non
auto-correlated exogenous noise, which is usually corrupting the measured data;
its covariance matrix, ¥ ,[k]=FE {V[k]VT[k]} , is usually diagonal. The two noises
are morcover uncorrelated each other.

The problem of state prediction (and, consequently, of outputs data
prediction), is solved in the context of Kalman-Bucy Filtering Theory [3,4]. We

succeeded to design the particular algorithm below, based on some mathematical
properties of model (10).

» Input data: a small collection of time series values (the training set
Dy = {)’[”]}nem) yielding initialization.

1. Initialization. Produce the first state representation (10). Then complete the
initialization by setting: an arbitrary state vector X,, the covariance matrices
P, =al,, (with aeR}), F, ¥ [-1]F, =0, and D ¥[-1]D' =0, .

2. For k=0 :

2.1. Estimate the exogenous mixed noise: D, V[k]=y[k]—-C,X[k]-Bju[k].

2.2. Update the covariance matrix of exogenous noise:
1

D, [ID; = (KD, ¥, [k~ 1D, + DKV KD} ).
+
2.3. Compute the auxiliary matrix: Q, = Ckf’k .
2.4. Invert the matrix: R, =D ¥, [k]D] +Q,C. e R"™
2.5. Evaluate the sensitivity gain: T, =Q R}
2.6. Compute the auxiliary matrix S, = A, I, .

2.7. Update the covariance matrix of endogenous noise:

F Y, [k]F = ﬁ(ka_l‘I’w [k—1]E, +S,D, [k [KID!S] ) |
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2.8. Update the covariance matrix of estimation error:

P =FW [KIF +A, (P -T,Q)Al.
2.9. Predict the state: X[k +1]= A X[k]+Bju[k]+S,D, V[k].
2.10. Predict the output: Y[k +1]=C X[k +1]+Bju[k +1] .
2.11. Acquire new data: D, =D, U {y[k + 1]} .

2.12. Update the state model.

» Output data:
e predicted time series values: {§’[k ]} I

e estimated covariance matrices: {D,“I’Q[k]D,f } N

The predictor performance is assessed by means of PQ as well. This time,
{CAF?,( }jem is the diagonal of each matrix Dy ., ¥;[N, +k]D;‘,+k. The optimum

structural indices (i.e. the polynomial degrees and the states number) are selected
through PSO technique, like in case of previous prediction models.

4. Simulation results

Predictors performances are tested on a case study coming from
Meteorology. Daily minimum and maximum temperatures of the two neighboring
cities from Fig.1 have been monitored and predicted. Three designed predictors,
namely PARMA, PARMAX and KARMA, have been implemented within
MATLAB environment. Their performances in terms of PQ have been compared
over a data block of 479 samples on 4 channels. The resulted values of PQ (after
comparing the predicted data to the measured data) are listed in Tab. 1.

Tab. 1. Prediction Quality [%] for different predictors and channels.

Channel index Predictor
PARMA PARMAX KARMA
1 54.38 66.25 69.46
2 53.61 68.50 60.19
3 68.37 75.92 70.78
4 55.79 76.86 59.79

As one can see, the first predictor (PARMA) is the worst, because no
correlation between measuring channels are accounted. On the contrary, the last
two predictors (PARMAX and KARMA) produce better predicted values.
Although none of them could be declared as “the best” on all channels, PARMAX
is seemingly the most suitable choice (with 3 best predicted values over 4). Note
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that not only the predicted data are considered when computing PQ, but the
aperture of corresponding confidence tube too. This tube is configured around
predicted data, by accounting the 3 o -rule on Gaussian stochastic processes [2,4].

The results in Tab. 1 reveal that the temperatures from the two cities are
rather correlated than uncorrelated, as expected (given their geographical
neighboring). This is another useful insight regarding the use of the three
predictors. Whenever the multi-channel data are weakly or not correlated,
PARMA should be preferred as a simpler and faster predictor. Whenever the
cross-correlation between different channels is quite obvious, either PARMAX or
KARMA should be used as more accurate predictor.

5. Conclusion

This paper succinctly described an approach to multi-variable physical data
prediction. Three different predictors have been designed in this aim, by using
stationary models. Although simulations lead to several useful insights, the most
important is that PARMAX and KARMA predictors perform better than PARMA
as long as data are cross-correlated. However, the prediction accuracy has
increased at the expense of computational complexity. If the data are quite
uncorrelated across channels, PARMA should be employed as first option. As
future developments, predictors based on non stationary models are under
consideration.

Acronyms list

ARMA  — Auto-Regressive with Moving Average (identification) model [2,4]
ARMAX - Auto-Regressive with Moving Average and eXogenous control
(identification) model [2,4]

do — one step delay operator: (q_l y)[n] =y[n—1], VneZ [4]

MIMO  — Multiple-Input Multiple-Output (system) [7]

MISO — Multiple-Input Single-Output (system) [7]

MPEM  — Mimimum Prediction Error Method (an identification procedure for
models corrupted by stochastic perturbations) [2], [4]

SISO — Single-Input Single-Output (system) [7]

PQ — Prediction Quality (cost function that has to be maximized)

PSO — Particle Swarm Optimization (algorithm) [5]

ts — time series (acquired data strings)

wn — white noise (the prototype of totally uncorrelated/unpredictable

stochastic processes) [2,4]
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