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IMPLEMENTATION OF BAYESIAN APPROACHES IN 5G/6G
FOR CELLULAR COMMUNICATION USING MULTIPLE
TIME SERIES MODELS

Omer Mohammed Khodayer AL-DULAIMIY, Aymen Mohammed Khodayer AL-
DULAIMI?, Alexandra MAIDUC OSICEANU?®, Mohammed Khodayer AL-
DULAIMI*

This research investigates the time-series dynamics of the Earnings per share
(EPS) Radio Bearer Setup Failure Rate and the applicability of certain commonly
used Time-Series prediction models. The regular part-time series prediction and the
outliers’ prediction are two major issues of proactive network management that
have been explored. We have utilized Holt-Winters Exponential Smoothing, extreme
Gradient Boosting (XGBoost), Support Vector Regression (SVR), Python Bayesian
dynamic linear mode (PyDLM), and Seasonal Auto-Regressive Integrated Moving
Average with exogenous factors, (SARIMAX) to predict the regular component.
Median Absolute Error, Mean Absolute Error, Mean Square Error, and Root Mean
Square Error were used to examine the error performance. The prediction of
outliers has been suggested as a two-stage process.

Keywords: Support Vector Regression (SVR), Bayesian Dynamic Linear Mode
(PyDLM), Operation Support System (OSS), Hidden Markov Model (HMM),
Seasonal Auto-Regressive Integrated Moving Average with Exogenous
Factors (SARIMAX).

1. Introduction

The rapid increase in user-plane and control-plane traffic, together with
the ongoing progress in technology, has made the implementation easier and has
led to the development of crucial new capabilities based on predictive data
analysis. The Operation Support System (OSS) is the most important component
of mobile networks. The following entities [1] demonstrate the interconnected
nature of an OSS for cellular communication systems up to Long Term Evolution
Advance (LTE-A) [2], a group or organization responsible for compiling
guantitative data on characteristics of network deployment such as performance,
fault tolerance, incident rate, alternatives for network management (cellular
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network element interaction), database management system (DBMS), Graphical
User Interface (GUI) for Admins and Techs in the Networking Industry. Fig. 1 is
a graphic representation of the aforementioned system design. Opportunities to
expand OSS capabilities through the predictive function that can provide the
capacity to predict different mobile network Key Performance Indicators (KPIs)
are the focus of this study [3].

Management Opemnon
Functions <t Support System
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; Functions Interface

Fig. 1. Long term evolution and long-term evolution advance operation support system (OSS)
architecture

Network performance indicators are typically collected by cellular network
operators as time series, with aggregated data from the Returns Authorization
Number (RAN) and Core Network (CN) often having their own unique
periodicity. Third-order arrays can be used to express key performance indicators,
with each direction corresponding to either a different Key Performance
Indicators (KPI) value, a different time instant [4], or a different data aggregation.
By simplifying the data structure into a matrix, we may integrate KPIs over
aggregation objects to achieve network-level performance [5].

2. Methodologies and Research Materials

2.1 Models with Continuous State Space

The continuous state-space model and its partial application, the dynamic
linear model (DLM) [6], are two of the most abstract methods for characterizing
time-dependent time series. DLM is a special case of Hidden Markov Mode,
(HMM) [7], which is also a definition of DLM.The following is how the model of
time series data is expressed due to the presence of strict linearity constraints:

Ye = X¢ + V¢ 1)
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In this formula, random fluctuations are denoted by v, ~N(0.v,) , is a component
of current state represented by x;, [8]:

xy =0[f @)

Using the following definitions for f (a regression vector) and 6; (a vector of the
states),

Qt ES Gtgt_l + Wt (3)
Where G, is a matrix representing transitions between states. and S is a vector
representing random changes in state. w;~N(0.W;) . By combining the
regression vectors into a matrix and the transition matrices into a block-diagonal
form, the DLMs allow for the superposition of numerous simple models into a
complex [9].

fi(®)
f2(t) 4)
fi(®)
G() 0 0
Go=| 0 GO 0 5)
0 0 Gp(®

where k is the total amount of unique DLMs the following parts are often
represented by separate DLMs, as illustrated in Fig 2.[10]:

Dynamic Part, Symbolizing The Impact of Uncontrollable Variables

T

Component of A Senar g Seasonzlity, Both Long-
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Rend ™ and Short Tem

l

Auto Regression AR(P) Is Component That Allows For The Consideration of Dependencies
Ower Relatively Short Time Intervals In Time Series.

Fig. 2. Separate Bayesian dynamic linear mode (DLM)

Two phases make up DLM model training,as divided in below.[11]:

1) First step: filtering step, kalman filter coefficients, and gernerated
independently of any previously predicted states.
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2) Second step : smoothing step,raunch-tung-striebel algorithm, and
prevoius estimates of states are refined in light of the latest computations.

These models, which are grounded in Bayesian theory, serve as a standard
against which other time-series models with Markovian dynamics can be
evaluated[12].

2.2 A Holt-Winter Technique

Exponential smoothing is an example of a traditional linear European
Telecommunication Standard (ETS) technique. Due to the needs for seasonal
component analysis, we explore the triple exponential smoothing, commonly
known as Holt- Winter's during this study. An additive decomposition is preferred
here, as stated by [13]. At each given instant t, the value of the time series can be
expressed as:

Vern =1(@ +@* + -+ @b + Sesn-mae+1) (6)
Where0 < ¢ < 1 is the trend damping parameter (for undamped trends, this
parameter is equal to 1), S; seasonal component, b; the slope of the trend is; h is
the integer value that shows, how many samples ahead the forecast should be
done; m is the number of samples per one period (seasonality); and k is the integer

part of (h - 1) / m, that guarantees usage of the belonging to one year only
seasonal indexes estimations [14]. At instant t, the time series level is:

li=a(ye+s¢-1) + (1 —a)(e—1 + bi—1) (7
Where 0 < a <1 isasmoothing parameter of the baseline:
by =Bl —li—1) + (1 = B)bi_q (8)

The seasonal component can be expressed as: where 0<B<l is a trend
smoothing parameter [15].

St=vV =0t —lie1 —b—1) + (1 =¥)Siem ©))
Where0 <y < 1 is the seasonal component smoothing. During the model training
phase, one of the maximum likelihood estimation methods (MLE) [16] can be
utilized to determine the unknown coefficients,a. 8 and y similarly, this model
can be viewed as an illustration of DLM [17], suggesting that it was trained using
Bayesian filtering and smoothing techniques.

2.3 Calculation SARIMAX Scheme

The seasonal autoregressive integrated moving average (SARIMAX) is
another popular linear method, described by the (p.d.q) X (P.D.Q.s) form, where p
and P are the necessary number of backward samples and periods of the non-
seasonal and seasonal components of the time series, d and D are the orders of
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differentiation necessary to reduce to a stationary form of observation and
seasonal component, and q and Q are the necessary number of backward samples
The following equation describes the connection between the observation value
and the approximation error:

0p (B pp(BYVSVYy, = 6,(B)0,(B*)e, (10)
Where is the seasonal ¢,(B$)=(1—-¢,B%—--—¢,B¥) part of the
autoregressive (AR) model’s component of the order P.¢,(B)=(1-¢,B — -+ — ¢,B")

is the non-seasonal part of the AR component of the order p,7? = (1 — B5)? and
74 = (1 — B)4 is nabla operators for seasonal and non-seasonal components of the
orders D and d respectively, 6,(B9 =(1-6,B5—--—6,B%) is the seasonal
component of the moving average (MA) of the order Q, 6,(BY = (1 - 6,B — -+ —
6,B8%) is the non-seasonal component of the MA of the order ¢, and B is the lag

operator. ¢ is the trend damping parameter. Each iteration of the algorithm
described in [18], sets of unknown coefficients of the AR and MA polynomials
are calculated using one of the maximum likelihood estimation (MLE)
optimization algorithms, allowing for automatic selection of the parameters p,
d.g.P.D Q. This technique is an example of a DLM model, and it can be expanded
to include more exogenous variables (the SARIMAX model) [19].

2.4 Traditional Methods of Machine Learning Prediction

Instead of using a predetermined statistical model, like in the
aforementioned method, a regression tree can be used as a more heuristic
approach to anomaly detection. Extreme Gradient Boosting (XGBoost) [20] is a
popular technique for classification and regression applications, and we employ it
in our study. The approach relies on CART, which is an implementation of a tree-
based model for classifying and predicting data. The following benefits can be
derived from this analysis, a lightning-fast execution, there is no requirement for
normalizing data, and handling non-linear dependencies. The CART's drawbacks
stem from the fact that a fixed number of dependent variables must be used in
order to do a regression analysis, as illustrated in Fig.3.

Some of Drawbacks

v v ¥
Wezk Resultz on Trendmg Unable to Extrapolate or Degraded Efficiency While
Time Series Interpolats Dealing with Noisy data

Fig. 3. The CART's drawbacks stem
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The Support Vector Regression (SVR) technique can be utilized. SVR's
fundamental notion is to find the minimum possible error bound for a regression.
From what we can gather in the literature [21], we might gain as shown in Fig 4:

SWVE's Fundamental

v v v
It'z A Basic Concept That's It can be used with a Accommodating Nonlmear
Not Too Complicated to Variety of Tme Dependencies By heans of
Grazp. Series Variables. the Kemel Technique.

Fig. 4. Support vector regression (SVR) technique

This approach, however, is found to have the following drawbacks as illustrate in
Fig.5:

Drawbacks of STR

v v v
High Computaticnal Susceptibility to Worse Performance on
Complexity. Nomalizmg Data. Highlv Volatile Time Series

Fig. 5. Drawbacks of support vector regression (SVR)

2.5 Techniques for Identifying and Predicting Abnormal Events

Predicting potential events based on KPI is a significant difficulty in
cellular network performance analysis. The available literature provides a wide
variety of methods for accomplishing this. Defining internal dependencies and
patterns in the data is one such thing. Here are some examples of such methods:
XGBoost's non-linear models based on regressive trees [22], long short-term
memory (LSTM) networks, Trans- formers [23], and artificial neural network
(ANN) auto encoders [24]. In this research, we present a two-pronged strategy for
anticipating anomalies as shown in Fig.6:
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‘ Two Strategies for Anticipating
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Fig. 6. Forecasting strategy for different situations

So, rather of trying to foretell the future shape of the time series, we're more
interested in pinpointing critical junctures when accidents are more likely to
occur, as illustrate in Fig. 7.

Training

P Predictions Pradictive
Predictive HMM state
— Model
Comparison
— procedure >
Comparison
o Result

Detected states

Fig. 7. The block scheme of outliers’ investigation approach

The notion that statistical properties of data of any kind may be represented by a
Gaussian Mixture motivates the use of Gaussian Mixture Hidden Markov Model
(HMM) in the implementation of the pretrained classifier. Therefore, the Gaussian
Hidden Markov Model (HMM) is the best option, with its parameters determined
by the Baum-Welsh Expectation-Maximization (EM) technique [25].

3 Prediction of the Regular Distribution Based on the Results of
Developing Methodological

Table 1 display the outcomes of regular-part prediction experiments using
the models presented above. We use the following free and open-source Python 3
librairies in our study, module (Holt-Winter’s model), module (Hidden Markov
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Model), Pmdarima (SARIMAX), X boost (XGBoost), PDLM (Continuous State-
Space Model). XGBoost, Bayesian dynamic linear mode (PyDLM),
Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors
SARIMAX, and SVR all take into account the current time of day and year as
exogenous variables. Auto ARIMA is used to get the SARIMA model's super
parameters [26]. Some common measures of efficiency include the Mean
Absolute Error, the Mean Squared Error (MSE), and the Root Mean Squared
Error (RMSE). The cross-validation procedure is divided into 12 sub-steps. There
are 2019 values in the data collection.

Table 1
Results of the predictions of the regular part
Median Mean
Model name Absolute Absolute MSE E
Error Error
Holt-Winter’s
(additive trend, additive 0.040 0.074 0.055 0.173
seasonality)

SVR 0 0.087 0.057 0.179
XGboost - 0.043 0.052 0.163
PyDLM 0.074 0.105 0.068 0.198

SARIMAX (2,0, 1) x 0.064 0.098 0.060 0.189
(1,0, 2,24)

The outlier prediction issue makes use of the same features, and the dataset has
been updated to include 2017. A true positive rate is used as a measure of the
algorithms' efficacy [27]. The outcomes are shown in tables 2 and 3. Because no
adequately detectable outliers were found, SARIMAX model results are not
presented. When implementing a discrete-state HMM, we turned to the
pomegranate module for Python 3.

Table 2
Results of predictions of day and hour of outliers’ occurrence
No. No. True No. No.
Modelname detected| predicted| positive false | missed

outliers| outliers alarms alarms| alarms

Train years: 2017,
2018; test year: 2019.

Holt-Winter’s 551 524 523 1 23
SVR 551 2504 551 1953 0
XGboost 551 392 392 0 1

DLM 551 3174 325 2849 226

Train years: 2017,
2019; test year: 2018.
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Holt-Winter’s 1760 2157 1759 398 1
SVR 1760 4186 283 3903 1477

XGboo t 254 1759 695 1
PyDLM 1760 539 38 501 1722

Train years: 2018,
2019; test year: 2017.

Holt-Winter’s 1419 1015 1014 1 405
SVR 1419 4228 0 4228 1419
XGhoost 1419 1342 1341 1 78
PyDLM 1419 855 2 853 1417
Table 3
Results of predictions of the day of outliers’ occurrence
No. No. True No. false No.
Mode Iname detected | predicted | positive . missed
: - alarms
outliers outliers alarms alarms
Train years: 2017,
2018; test year: 2019.
Holt- Winter’s 82 0
SVR 82 2 82 155
XGboost 82 0 20
PyDLM 82 3 81 235 1
Train years: 2017,
2019; test year: 2018.
Holt-Winter’s 170 195 170 25 0
SVR 170 351 164 187
XGhoost 170 220 170 50 0
PyDLM 170 90 44 46 126
Train years: 2018,
2019; test year: 2017.
Holt-Winter’s 134 111 110 1 24
SVR 134 363 132 231 2
XGhoost 134 130 129 1 5
PyDLM 134 152 57 95 77

Table 4 displays the average cross-validation set results, rounded to the
nearest integer. To begin, it is generally agreed that the regular component
prediction results are comparable among models. Second, Holt-model Winter's
and the XGBoost algorithm can be seen as the most suitable options for the task
of outliers prediction since they produce the highest number of correctly
anticipated alarms while generating the fewest false alarms.
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Table 4
Summarized results of outliers prediction
No.detected N.O ' True positive No. false No. missed
Model name - predicted
outliers . alarms alarms alarms
outliers
Holt-Winter’s 1243 1232 1099 133 145
SVR 1 3639 278 3361 965
XGboost 1396 1164 232 79
PyDLM 1243 1523 121 1401 1122
Holt-Winter’s 127 128 119 9 9
SVR 127 317 126 191 3
XGhoost 137 120 17 9
PyDLM 127 186 60 68

4. Predictive Functionality in Communication Systems: A Discussion of
Results, Development, and Implementation

As we've seen, there are two possible routes for incorporating predictive
capability into existing LTE/LTE-A networks.

e First possible, adding new features and entities into the preexisting OSS
framework. New tendencies in the development of Database Management
System (DBMS) engines justify this strategy (distributed storage, insertion of
artificial intelligence Al) [28]. Fig 8 provides a graphic representation of this

method.
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e Second Possible, making new, separate systems on top of existing open
source ones Fig. 9. The implementation of OSS would benefit more from
this method. In addition, the progress being made in network function
virtualization makes such an implementation attractive.
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Fig.9. System architecture of OSS with additional predictiveanalysis subsystem

All of these approaches aren't limited to standalone 5G systems (New Radio and
LTE core). 3GPP [29] has already advocated including such features as part of the
system architecture for standalone 5G. Because of the need for increased data
rates and lower latency for essential 5G applications, this feature, known as
Network Data Analytics Function (NWDAF) Fig. 10, is crucial (industrial 10T,

telec, smart homes and cities).

5G Service Based Core

Architecture

NWDAF

e = Jg

|

NF=

Fig. 10. Interaction of NWDAF with other 5G network elements

Options for the following types of data analysis and forecasting are included in
NWDAF, as illustrate in Fig. 11. [30]:
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Network Data Analytics
Function

¥

The calculation and forecast of the overall network load
verformance as well as load for a particular network slice.

!

The gathering of analvtical data and the forecasting of key
performance metrics for a particular network function (NF).
¥

The computation and prediction of OSS for an application or a
groun of user equipment’s (UEN.

¥

The prediction of user equipment {UE) behavior and mobility, in
addition the identification of user equipment anomalies.

Fig. 11. Data analysis and forecasting are included in NWDAF

A collection of information regarding network overloading, both current and
forecast for a particular place, and enforcement of the quality of service's stability,
together with relevant reports It is also important to point out that the 3GPP
recommendations indicate a very flexible choice of the data analysis tools, in
addition to an increase in the utilization of open-source software that is provided
by third parties for these purposes

4.1 Partitioning Time Series Over Periods of Time

Disentangling fixed and variable time periods is a crucial part of any time
series analysis. Since some indicators correspond to human life cycles, the time
series described in the previous sentence may exhibit harmonic components
(seasonality) (working hours and days, weekends, holidays). A rise or fall in
subscription numbers may also reveal trending elements. Therefore, the data in
question can be effectively decomposed using an Error Trend Seasonality (ETS)
[31] model. Decompositions can be either additive or multiplicative. An additive
model can be defined as follows:

yt = St + Tt + Rt (11)

where y, —is the value of y at time instant t, S, — is the seasonal component,
T, — is the trend component, and R; — is a residual that cannot be characterized in
terms of the first two components due to the presence of random fluctuations
(noise, spikes etc). Instead, [32] we say the following about a multiplicative
decomposition:

Ve =S¢ xTe X Ry
(12)
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Or, equivalently as:
In(y,) = In(S;) + In(Ty) + In(Ry) 13)

We also suggest that further ETS-family linear decompositions can be
derived from this type of decomposition. Heuristically developed components,
such as the Facebook Prophet model, which also encounters public holidays
component [33], can be used to extend the models (11) and (12). Number of failed
E-UTRAN Radio Access Bearer (E-RAB) connections is a key performance
indicator (KPI) considered in this article (E-RAB Setup Failures). The failure to
send the "E-RAB SETUP REQUEST" message to the Mobility Management
Entity (MME) on the network of the considered operator is the primary cause of
the aforementioned errors. The MME initiates the procedure by sending a location
reporting control message. On receipt of a location reporting control message the
eNodeB shall perform the requested location reporting control action for the user
equipment (UE). When there are issues with the communication routes between
the base stations (eNodeB) and CN, the checksum of a particular message can
become corrupted, leading to these occurrences as illustrate in Fig.12. [34].

UE E-NODERB MME

RRC Connect Request

!

RRC Connect Setup

-

RRC Connect Setup Complete

Imitial UE Message

-

Direct transfer process (identity authentication, authentication,
-and-security}
RRC Sccurity Made Commanid
RRC Security Maode Complete

—

Initial Context Setup Request

RRC UE Capability Enquiry
RRC UE Capability Information

= UECapability Infomatin Indentjty

RRC Connect Reconfiguration

RRC Connect Reconfiguration Complete
RREC Uplink Information Transfer -

Initial Context Sctup Rspnnso__

Uplink NAS Transfer

-

Fig. 12. Step-by-step establishment of the E-RAB protocol

Fig 13 and 14 display the results of using formula(11) to decompose the
key performance indicator readings for E-RAB setup failures.
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Visualization of the ETS Decom position Additive E-RAB_SETUF_FR
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Fig. 13. Trend and residual components of E-RAB setup failures KPI readings
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Fig. 14. Seasonal breakdown of E-RAB setup failures key performance indicators

Fig 15 and 16 depict the decomposition of the pondered KPI measures
according to formula (13).
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Visualization of the ETS Decomposition Additive E-RAB_SETUP_FR
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Fig. 15. A Graphical representation of the trend and residual factors in E-RAB setup failures key
performance indicators.
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Fig. 16. Shows How season affects KPI for E-RAB installation problems (multiplicative ETS
model)

The additive model is considered to be correct because of what is known
about the residual component (Figs. 13, 15).

4.2 The Decomposition of Time Series Using Statistics
Determining the statistical distribution of the data being analyzed is

another crucial part of time series analysis. What's more, real-world data may
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have multiple statistically distinct elements [35]. Since our key performance
indictors are affected by a wide range of variables ( time of day, total number of
subscribers, potential incidents) that are not highly correlated with one another,
[36] it is reasonable to assume that KPI value can be decomposed into several
statistically independent values:

f(xa.8) =2i=1af (x6,) (14)
Here, a(a > 0.)5—,a = 1) are probabilistic mixture weights, [37] is the
probability density function of the i-th mixed component 8; is the set of
distribution parameters, and K is the number of components. Here, we assume
both the presence of a regular (repetitive) statistical component in our data, and
the presence of an outliers component (Fig. 17).

Month-Wise Box Plot
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Fig. 17. A box plot representing the data for E-RAB setup failures

Numerous outliers is a driving factor in the need for an outliers prediction task
[38].
5. Conclusions

We can draw the following conclusion from table 1: XGboost and Holt-
Winters perform better than other algorithms when compared to the metrics that
were chosen for the regular part prediction problem. In addition, XGboost has a
lower error value spread in comparison to every other algorithm that was taken
into consideration. The outcomes of the outlier’s prediction problem, which are
presented in table 4, are comparable to those that were calculated for the regular
part prediction problem. When compared to SVR and PyDLM, XGboost and
Holt-Winters have significantly lower rates of both false alarms and missed
alarms, and this is true for both two- and single-featured issues. It is also
important to point out that SVR has a high rate of false alarms, whereas PyDLM
has a high rate of missed alarms. It's possible that the smoothing nature of the
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respective methods is to blame for the latter two observations. The next stage in

this

research could be a study into whether or not Deep Learning models can be

applied to the many tasks that are being explored.
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