

G-FRAMES POTENTIAL IN HILBERT SPACES

Azam YOUSEFZADEHEYNI¹, Mohammad Reza ABDOLLAHPOUR²

In this paper, by generalizing the frame potential to the g -frame, we introduce the g -frame potential and investigate some of its properties. We also generalize the Welch inequality to the g -frames.

Keywords: g -frame, mixed g -frame potential, tight g -frame, potential.

MSC(2010): primary: 42C99, 42C40; secondary: 74G65.

1. Introduction

The frames for Hilbert spaces were introduced by Duffin and Schaeffer [6] in 1952. In 2006, g -frame as a generalization of frame was introduced and investigated by Sun [11]. In 2003, Benedeto and Fickus introduced an important tool in the frame theory so called the frame potential [1]. This gave a geometric interpretation for the tight frames which resulted in the field including a physical interpretation for the tight frames along the lines of Coulomb's law in Physics [1], [5].

Throughout this paper, H is a complex N -dimensional Hilbert space and $\{H_j\}_{j \in \mathbb{J}}$ is a finite sequence of Hilbert spaces, where \mathbb{J} is a finite subset of natural numbers \mathbb{N} . We denote the space of all bounded linear operators from H into H_j by $B(H, H_j)$.

Definition 1.1. *A sequence of operators $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ is called a g -frame for H with respect to $\{H_j\}_{j \in \mathbb{J}}$ if there exist two constants $0 < A_\Lambda \leq B_\Lambda < \infty$, such that*

$$A_\Lambda \|f\|^2 \leq \sum_{j \in \mathbb{J}} \|\Lambda_j f\|^2 \leq B_\Lambda \|f\|^2, \quad f \in H, \quad (1.1)$$

A_Λ and B_Λ are called the lower and upper g -frame bounds, respectively.

¹ University of Mohaghegh Ardabili, Iran, Islamic Republic Of, e-mail:
azamyousefzadeh@gmail.com

² University of Mohaghegh Ardabili, Iran, Islamic Republic Of, e-mail:
mrabdollahpour@yahoo.com

We call Λ a tight g -frame if $A_\Lambda = B_\Lambda$ and a Parseval g -frame if $A_\Lambda = B_\Lambda = 1$. If the right hand inequality of (1.1) holds for all $f \in H$ then we say that Λ is a g -Bessel sequence. Let us consider the space

$$\widehat{H} = \{\{f_j\}_{j \in \mathbb{J}} : f_j \in H_j, j \in \mathbb{J}\}$$

with the inner product given by $\langle \{f_j\}_{j \in \mathbb{J}}, \{g_j\}_{j \in \mathbb{J}} \rangle = \sum_{j \in \mathbb{J}} \langle f_j, g_j \rangle$. It is easy to show that \widehat{H} is a Hilbert space with respect to the pointwise operations. It is proved in [9], if Λ is a g -Bessel sequence for H then the operator that

$$T_\Lambda : \widehat{H} \rightarrow H, \quad T_\Lambda(\{f_j\}_{j \in \mathbb{J}}) = \sum_{j \in \mathbb{J}} \Lambda_j^*(f_j) \quad (1.2)$$

is well defined and bounded and its adjoint is

$$T_\Lambda^* : H \rightarrow \widehat{H}, \quad T_\Lambda^* f = \{\Lambda_j f\}_{j \in \mathbb{J}}.$$

Also, a sequence Λ is a g -frame for H if and only if the operator T_Λ defined by (1.2) is bounded and onto. We call the operators T_Λ and T_Λ^* , the synthesis and analysis operators of Λ , respectively. If Λ is a g -frame for H then

$$S_\Lambda : H \rightarrow H, \quad S_\Lambda f = \sum_{j \in \mathbb{J}} \Lambda_j^* \Lambda_j f,$$

is a bounded invertible positive operator [11]. S_Λ is called the g -frame operator of Λ .

Definition 1.2. [8] Let $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ and $\Gamma = \{\Gamma_j \in B(H, H_j) : j \in \mathbb{J}\}$ be g -Bessel sequences for H with respect to $\{H_j\}_{j \in \mathbb{J}}$. Γ is called a dual of Λ if

$$f = \sum_{j \in \mathbb{J}} \Lambda_j^* \Gamma_j f, \quad f \in H.$$

Let $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ be a g -frame for H and $\tilde{\Lambda}_j = \Lambda_j S_\Lambda^{-1}$ for all $j \in \mathbb{J}$. Then $\tilde{\Lambda} = \{\tilde{\Lambda}_j \in B(H, H_j) : j \in \mathbb{J}\}$ is a g -frame for H with the g -frame bounds $\frac{1}{B_\Lambda}$ and $\frac{1}{A_\Lambda}$. We call $\tilde{\Lambda}$ the canonical dual of Λ . If $\widetilde{S_\Lambda}$ is a g -frame operator of $\tilde{\Lambda}$ then $\widetilde{S_\Lambda} = S_\Lambda^{-1}$.

Definition 1.3. Let \mathbb{I} be a finite subset of \mathbb{N} . The frame potential of a frame $\{x_i\}_{i \in \mathbb{I}}$ in H is defined by

$$FP(\{x_i\}_{i \in \mathbb{I}}) = \sum_{i \in \mathbb{I}} \sum_{j \in \mathbb{I}} |\langle x_i, x_j \rangle|^2.$$

2. Main Results

In this section we introduce the g -frame potential and we generalize the Welch inequality. Also, we generalize some results of [3], [5], [10] and [12] to the g -frame setting.

Definition 2.1. Let $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ be a g -frame for H . Suppose that $\{f_l\}_{l=1}^L$ is a Parseval frame for H . The g -frame potential of $\{\Lambda_i\}_{i \in \mathbb{J}}$ with respect to $\{H_i\}_{i \in \mathbb{J}}$ is defined by

$$FP(\{\Lambda_i\}_{i \in \mathbb{J}}) = \sum_{l=1}^L \sum_{i \in \mathbb{J}} \sum_{j \in \mathbb{J}} \langle \Lambda_i^* \Lambda_i(f_l), \Lambda_j^* \Lambda_j(f_l) \rangle.$$

Proposition 2.2. Let $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ be a g -frame for H and $\{f_l\}_{l=1}^L$ be a Parseval frame for H . Then

$$FP(\{\Lambda_i\}_{i \in \mathbb{J}}) = \sum_{l=1}^L \langle S_\Lambda^2(f_l), f_l \rangle,$$

and the definition of the g -frame potential is independent of the choice of the Parseval frame.

Proposition 2.3. Let $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ be a g -frame for H . Then

$$A_\Lambda \text{Tr}(S_\Lambda) \leq FP(\{\Lambda_i\}_{i \in \mathbb{J}}) \leq B_\Lambda \text{Tr}(S_\Lambda).$$

In particular, $FP(\{\Lambda_i\}_{i \in \mathbb{J}}) = A_\Lambda^2 N$ for a tight g -frame Λ and $FP(\{\Lambda_i\}_{i \in \mathbb{J}}) = N$ for a Parseval g -frame Λ .

Proof. Since Λ is a g -frame, thus

$$A_\Lambda I_H \leq S_\Lambda \leq B_\Lambda I_H,$$

where I_H is the identity operator in H . By Theorem A.6.5 of [4], we have

$$A_\Lambda S_\Lambda \leq S_\Lambda^2 \leq B_\Lambda S_\Lambda.$$

Therefore,

$$\begin{aligned} A_\Lambda \sum_{i \in \mathbb{J}} \|\Lambda_i f\|^2 &\leq \sum_{j \in \mathbb{J}} \sum_{i \in \mathbb{J}} \langle \Lambda_i^* \Lambda_i f, \Lambda_j^* \Lambda_j f \rangle \\ &\leq B_\Lambda \sum_{i \in \mathbb{J}} \|\Lambda_i f\|^2, \quad f \in H. \end{aligned} \tag{2.1}$$

Suppose that $\{e_n\}_{n=1}^N$ is an orthonormal basis for H . Then by (2.1)

$$\begin{aligned} A_\Lambda \sum_{n=1}^N \sum_{i \in \mathbb{J}} \|\Lambda_i e_n\|^2 &\leq \sum_{n=1}^N \sum_{j \in \mathbb{J}} \sum_{i \in \mathbb{J}} \langle \Lambda_i^* \Lambda_i(e_n), \Lambda_j^* \Lambda_j(e_n) \rangle \\ &\leq B_\Lambda \sum_{n=1}^N \sum_{i \in \mathbb{J}} \|\Lambda_i e_n\|^2. \end{aligned}$$

Since $Tr(S_\Lambda) = \sum_{i \in \mathbb{J}} \|\Lambda_i\|_{HS}^2$, we have

$$A_\Lambda Tr(S_\Lambda) \leq FP(\{\Lambda_i\}_{i \in \mathbb{J}}) \leq B_\Lambda Tr(S_\Lambda).$$

□

Theorem 2.4. Let $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ be a g-frame for H . Then

$$FP(\{\Lambda_i\}_{i \in \mathbb{J}}) \geq \frac{(\sum_{i \in \mathbb{J}} \|\Lambda_i\|_{HS}^2)^2}{N}. \quad (2.2)$$

Proof. Let $\{e_n\}_{n=1}^N$ be an orthonormal basis for H and

$$S_\Lambda e_n = \lambda_n e_n, \quad n = 1, 2, \dots, N.$$

Then

$$\sum_{n=1}^N \lambda_n = \sum_{n=1}^N \langle S_\Lambda e_n, e_n \rangle = \sum_{n=1}^N \sum_{i \in \mathbb{J}} \|\Lambda_i(e_n)\|^2 = \sum_{i \in \mathbb{J}} \|\Lambda_i\|_{HS}^2. \quad (2.3)$$

We have

$$\begin{aligned} \sum_{n=1}^N \lambda_n^2 &= \sum_{n=1}^N \langle S_\Lambda^2 e_n, e_n \rangle = \sum_{n=1}^N \left\langle \sum_{i \in \mathbb{J}} \Lambda_i^* \Lambda_i(e_n), \sum_{j \in \mathbb{J}} \Lambda_j^* \Lambda_j(e_n) \right\rangle \\ &= \sum_{n=1}^N \sum_{i \in \mathbb{J}} \sum_{j \in \mathbb{J}} \langle \Lambda_i^* \Lambda_i(e_n), \Lambda_j^* \Lambda_j(e_n) \rangle. \end{aligned} \quad (2.4)$$

So, by the Cauchy-Schwarz inequality and (2.4) we have

$$\frac{1}{N} \left(\sum_{n=1}^N \lambda_n \right)^2 \leq \sum_{n=1}^N \lambda_n^2 = \sum_{n=1}^N \sum_{i \in \mathbb{J}} \sum_{j \in \mathbb{J}} \langle \Lambda_i^* \Lambda_i(e_n), \Lambda_j^* \Lambda_j(e_n) \rangle.$$

Therefore by (2.3),

$$\frac{1}{N} \left(\sum_{i \in \mathbb{J}} \|\Lambda_i\|_{HS}^2 \right)^2 \leq \sum_{n=1}^N \sum_{i \in \mathbb{J}} \sum_{j \in \mathbb{J}} \langle \Lambda_i^* \Lambda_i(e_n), \Lambda_j^* \Lambda_j(e_n) \rangle = FP(\{\Lambda_i\}_{i \in \mathbb{J}}).$$

□

Theorem 2.5. Let $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ be a g-frame for H . Then the followings are equivalent:

(1) We have equality in (2.2), i.e.,

$$FP(\{\Lambda_i\}_{i \in \mathbb{J}}) = \frac{(\sum_{i \in \mathbb{J}} \|\Lambda_i\|_{HS}^2)^2}{N}.$$

(2) There is a representation

$$f = \frac{N}{K} \sum_{i \in \mathbb{J}} \Lambda_i^* \Lambda_i(f), \quad f \in H,$$

where

$$K = \sum_{i \in \mathbb{J}} \|\Lambda_i\|_{HS}^2.$$

(3) Λ is a A_Λ -tight g -frame with respect to $\{H_i\}_{i \in \mathbb{J}}$.

Proof. Let $\{e_n\}_{n=1}^N$ be an orthonormal basis for H and

$$S_\Lambda e_n = \lambda_n e_n, \quad n = 1, 2, \dots, N.$$

Let (1) holds; then by the proof of Theorem 2.4 we have

$$\frac{1}{N} \left(\sum_{i \in \mathbb{J}} \|\Lambda_i\|_{HS}^2 \right)^2 = \frac{1}{N} \left(\sum_{n=1}^N \lambda_n \right)^2 \leq \sum_{n=1}^N \lambda_n^2 = FP(\{\Lambda_i\}_{i \in \mathbb{J}}).$$

There is equality in $(\sum_{n=1}^N \lambda_n)^2 \leq N \sum_{n=1}^N \lambda_n^2$ if and only if $\lambda_1 = \lambda_2 = \dots = \lambda_N = \lambda \neq 0$ and in this case $S_\Lambda = \lambda I_H$. We have

$$\lambda N = \text{Tr}(S_\Lambda) = \sum_{i \in \mathbb{J}} \|\Lambda_i\|_{HS}^2 = K.$$

Hence,

$$f = \frac{1}{\lambda} S_\Lambda f = \frac{N}{K} \sum_{i \in \mathbb{J}} \Lambda_i^* \Lambda_i(f), \quad f \in H,$$

so (2) holds.

Now, assume that (2) is true. For each $f \in H$,

$$\|f\|^2 = \langle f, f \rangle = \langle \frac{N}{K} \sum_{i \in \mathbb{J}} \Lambda_i^* \Lambda_i(f), f \rangle = \frac{N}{K} \sum_{i \in \mathbb{J}} \|\Lambda_i f\|^2.$$

By letting $A_\Lambda = \frac{N}{K}$, we obtain (3).

Let (3) holds; we have

$$A_\Lambda^{-1} \langle f, f \rangle = \langle S_\Lambda f, f \rangle = \sum_{i \in \mathbb{J}} \|\Lambda_i f\|^2, \quad f \in H,$$

therefore $S_\Lambda = A_\Lambda^{-1} I_H$ and this implies that $\lambda_1 = \lambda_2 = \dots = \lambda_N = A_\Lambda^{-1}$, hence $(\sum_{n=1}^N \lambda_n)^2 = N \sum_{n=1}^N \lambda_n^2$ and by the proof of Theorem 2.4, the proof is completed. \square

Proposition 2.6. *If $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ is a A_Λ -tight g -frame for H then*

$$\max_{i \in \mathbb{J}} \|\Lambda_i\|_{HS}^2 \leq A_\Lambda N = \sum_{i \in \mathbb{J}} \|\Lambda_i\|_{HS}^2.$$

In particular, if $\|\Lambda_i\|_{HS} = 1$ for all $i \in \mathbb{J}$ and $|\mathbb{J}| = M$, then $A_\Lambda = \frac{M}{N}$.

Lemma 2.7. Let $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ be a g -frame for H . Then

$$FP(\{\Lambda_i\}_{i \in \mathbb{J}}) = Tr(S_\Lambda^2).$$

Proof. It is clear that by (2.4). □

Here we bring an example of g -frame potential.

Example 2.8. Let $H = \mathbb{C}^2$ and we define

$$\begin{aligned} \Lambda_1 : \mathbb{C}^2 &\rightarrow \mathbb{C}, \quad \Lambda_1(x, y) = 3x - 2y, \\ \Lambda_2 : \mathbb{C}^2 &\rightarrow \mathbb{C}, \quad \Lambda_2(x, y) = 2x + 3y. \end{aligned}$$

Then $\Lambda = \{\Lambda_j \in B(\mathbb{C}^2, \mathbb{C}) : j = 1, 2\}$ is a tight g -frame for \mathbb{C}^2 with the g -frame bound 13. Therefore, the g -frame operator is

$$S_\Lambda : \mathbb{C}^2 \rightarrow \mathbb{C}^2, \quad S_\Lambda(x, y) = (13x, 13y). \quad (2.5)$$

Let $e_1 = (1, 0)$ and $e_2 = (0, 1)$. Then

$$FP(\{\Lambda_i\}_{i=1}^2) = \sum_{n=1}^2 \sum_{i=1}^2 \sum_{j=1}^2 \langle \Lambda_i^* \Lambda_i(e_n), \Lambda_j^* \Lambda_j(e_n) \rangle = 338.$$

By (2.5) and Lemma 2.7 we have

$$FP(\{\Lambda_i\}_{i=1}^2) = Tr(S_\Lambda^2) = Tr(169I) = 338.$$

where I is the identity operator in \mathbb{C}^2 . Λ is a tight g -frame for \mathbb{C}^2 , hence by Theorem 2.5 we have

$$FP(\{\Lambda_i\}_{i=1}^2) = \frac{(\sum_{i=1}^2 \|\Lambda_i\|_{HS}^2)^2}{2} = \frac{676}{2} = 338.$$

Proposition 2.9. Let $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ be a g -frame for H . Then the canonical dual g -frame of Λ has the minimum value of the g -frame potential with respect to other duals of Λ .

Proof. Let $\Gamma = \{\Gamma_j \in B(H, H_j) : j \in \mathbb{J}\}$ be an arbitrary dual of Λ and let $T_{\tilde{\Lambda}}$ and T_Γ denote the synthesis operators of $\tilde{\Lambda}$ and Γ , respectively. We have

$$\begin{aligned} T_\Gamma T_\Gamma^* &= [T_{\tilde{\Lambda}} + (T_\Gamma - T_{\tilde{\Lambda}})][T_{\tilde{\Lambda}} + (T_\Gamma - T_{\tilde{\Lambda}})]^* \\ &= T_{\tilde{\Lambda}} T_{\tilde{\Lambda}}^* + (T_\Gamma - T_{\tilde{\Lambda}})(T_\Gamma - T_{\tilde{\Lambda}})^*. \end{aligned}$$

By Lemma 2.7 we have

$$\begin{aligned} FP(\{\Gamma_i\}_{i \in \mathbb{J}}) &= Tr((T_\Gamma T_\Gamma^*)^2) = Tr((T_{\tilde{\Lambda}} T_{\tilde{\Lambda}}^* + (T_\Gamma - T_{\tilde{\Lambda}})(T_\Gamma - T_{\tilde{\Lambda}})^*)^2) \\ &= Tr((T_{\tilde{\Lambda}} T_{\tilde{\Lambda}}^*)^2) + 2Tr(T_{\tilde{\Lambda}} T_{\tilde{\Lambda}}^* (T_\Gamma - T_{\tilde{\Lambda}})(T_\Gamma - T_{\tilde{\Lambda}})^*) \end{aligned}$$

$$+Tr(((T_\Gamma - T_{\tilde{\Lambda}})(T_\Gamma - T_{\tilde{\Lambda}})^*)^2). \quad (2.6)$$

Since $T_{\tilde{\Lambda}}T_{\tilde{\Lambda}}^*$ and $(T_\Gamma - T_{\tilde{\Lambda}})(T_\Gamma - T_{\tilde{\Lambda}})^*$ are positive operators, by Theorem 2.2.1 of [7], there exist the positive square root of $T_{\tilde{\Lambda}}T_{\tilde{\Lambda}}^*$ and $(T_\Gamma - T_{\tilde{\Lambda}})(T_\Gamma - T_{\tilde{\Lambda}})^*$ and we denote them by K and U , respectively. By Theorem 2.4.14 of [7], we have

$$\begin{aligned} Tr(T_{\tilde{\Lambda}}T_{\tilde{\Lambda}}^*(T_\Gamma - T_{\tilde{\Lambda}})(T_\Gamma - T_{\tilde{\Lambda}})^*) &= Tr(KKUU) = Tr(UKKU) \\ &= Tr((KU)^*KU) \geq 0. \end{aligned}$$

Then by (2.6) $FP(\{\Lambda_i\}_{i \in \mathbb{J}}) \geq Tr((T_{\tilde{\Lambda}}T_{\tilde{\Lambda}}^*)^2) = FP(\{\tilde{\Lambda}_i\}_{i \in \mathbb{J}})$.

□

Proposition 2.10. *A g -frame $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ is a minimizer of*

$$FP(\{\Lambda_i\}_{i \in \mathbb{J}}) + FP(\{\tilde{\Lambda}_i\}_{i \in \mathbb{J}}),$$

if and only if Λ is a Parseval g -frame for H .

Proof. Let $\{e_n\}_{n=1}^N$ be an orthonormal basis for H and

$$S_\Lambda e_n = \lambda_n e_n, \quad n = 1, 2, \dots, N.$$

Since the g -frame operator of $\tilde{\Lambda} = \{\tilde{\Lambda}_j \in B(H, H_j) : j \in \mathbb{J}\}$ is S_Λ^{-1} , by Lemma 2.7 we have

$$FP(\{\Lambda_i\}_{i \in \mathbb{J}}) + FP(\{\tilde{\Lambda}_i\}_{i \in \mathbb{J}}) = Tr(S_\Lambda^2) + Tr(S_\Lambda^{-2}) = \sum_{n=1}^N (\lambda_n^2 + \lambda_n^{-2}). \quad (2.7)$$

Now, first we assume that $FP(\{\Lambda_i\}_{i \in \mathbb{J}}) + FP(\{\tilde{\Lambda}_i\}_{i \in \mathbb{J}})$ is minimized, so by (2.7), $\sum_{n=1}^N (\lambda_n^2 + \lambda_n^{-2})$ is minimized. Thus for any n , $\lambda_n^2 + \lambda_n^{-2}$ is minimized and this minimum is obtained when $\lambda_n = 1$. In this case, $S_\Lambda = I_H$ and so Λ is a Parseval g -frame for H .

Conversely, we assume that Λ is a Parseval g -frame for H , so $S_\Lambda = I_H$. Therefore, for any n , $\lambda_n = 1$. Thus $\sum_{n=1}^N (\lambda_n^2 + \lambda_n^{-2}) = 2N$ and this is the minimum value of $\sum_{n=1}^N (\lambda_n^2 + \lambda_n^{-2})$ and by (2.7), $FP(\{\Lambda_i\}_{i \in \mathbb{J}}) + FP(\{\tilde{\Lambda}_i\}_{i \in \mathbb{J}})$ is minimized.

□

Proposition 2.11. *Let H be a Hilbert space and $|\mathbb{J}| = M$, $\lambda > 0$ and let*

$$W = \{\{\Lambda_i\}_{i \in \mathbb{J}} \mid \{\Lambda_i\}_{i \in \mathbb{J}} \text{ is a } g\text{-frame and } \sum_{i \in \mathbb{J}} \|\Lambda_i\|_{HS}^2 = \lambda\}.$$

If $M \geq N$, the minimum value of the g -frame potential on W is $\frac{\lambda^2}{N}$ and the minimizers are the tight g -frames with the tight g -frame bound $\frac{\lambda}{N}$.

Proof. By Lemma 2.7, minimizing the g -frame potential under our condition means minimizing $Tr(S_\Lambda^2) = \sum_{n=1}^N \lambda_n^2$ under the condition

$$\sum_{n=1}^N \lambda_n = \sum_{i \in \mathbb{J}} \|\Lambda_i\|_{HS}^2 = \lambda.$$

A standard application of Lagrange multipliers yields that the minimizers satisfy $\lambda_n = \frac{\lambda}{N}$, for all $1 \leq n \leq N$. In fact, if

$$f(\lambda_1, \lambda_2, \dots, \lambda_n) := \sum_{n=1}^N \lambda_n^2 = \lambda_1^2 + \lambda_2^2 + \dots + \lambda_N^2,$$

and

$$g(\lambda_1, \lambda_2, \dots, \lambda_n) := \lambda - \lambda_1 - \lambda_2 - \dots - \lambda_N,$$

there exists $\mu \neq 0$ such that $\nabla f(\lambda_1, \lambda_2, \dots, \lambda_n) = \mu \nabla g(\lambda_1, \lambda_2, \dots, \lambda_n)$, that is,

$$(2\lambda_1, 2\lambda_2, \dots, 2\lambda_N) = (-\mu, -\mu, \dots, -\mu).$$

Therefore, $\lambda_n = \lambda_m$, $1 \leq m, n \leq N$ and since $\sum_{n=1}^N \lambda_n = \lambda$, we have $N\lambda_n = \lambda$, $1 \leq n \leq N$. So, $\lambda_n = \frac{\lambda}{N}$, $1 \leq n \leq N$. Hence, the g -frame operator for $\{\Lambda_i\}_{i \in \mathbb{J}}$ is $\frac{\lambda}{N} I_H$. Therefore a minimizer of the g -frame potential is a tight g -frame with the tight g -frame bound $\frac{\lambda}{N}$. So

$$FP(\{\Lambda_i\}_{i \in \mathbb{J}}) = Tr\left(\frac{\lambda^2}{N^2} I_H^2\right) = \frac{\lambda^2}{N}.$$

□

Proposition 2.12. *Let $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ be a g -frame for H and $\mathbb{I} \subseteq \mathbb{J}$. Then*

$$\begin{aligned} FP(\{\Lambda_i\}_{i \in \mathbb{I}^c}) &= FP(\{\Lambda_i\}_{i \in \mathbb{J}}) + FP(\{\Lambda_i\}_{i \in \mathbb{I}}) - \sum_{l=1}^L \sum_{i \in \mathbb{I}} \sum_{j \in \mathbb{J}} \langle \Lambda_i^* \Lambda_i(f_l), \Lambda_j^* \Lambda_j(f_l) \rangle \\ &\quad - \sum_{l=1}^L \sum_{i \in \mathbb{I}} \sum_{j \in \mathbb{J}} \langle \Lambda_i^* \Lambda_i(f_l), \Lambda_j^* \Lambda_j(f_l) \rangle, \end{aligned}$$

where $\{f_l\}_{l=1}^L$ is a Parseval frame for H and \mathbb{I}^c is the complement of \mathbb{I} with respect to \mathbb{J} .

Corollary 2.13. *Let $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ be a tight g -frame for H with $\|\Lambda_i\|_{HS} = 1$, for all $i \in \mathbb{J}$. If $\mathbb{I} \subseteq \mathbb{J}$ with $|\mathbb{J}| = M$ and $|\mathbb{I}| = k$, then*

$$FP(\{\Lambda_i\}_{i \in \mathbb{I}^c}) = \frac{M^2}{N} - 2k \frac{M}{N} + FP(\{\Lambda_i\}_{i \in \mathbb{I}}).$$

Therefore,

1. If $|\mathbb{I}| > |\mathbb{I}^c|$ then $FP(\{\Lambda_i\}_{i \in \mathbb{I}^c}) < FP(\{\Lambda_i\}_{i \in \mathbb{I}})$.
2. If $|\mathbb{I}| < |\mathbb{I}^c|$ then $FP(\{\Lambda_i\}_{i \in \mathbb{I}^c}) > FP(\{\Lambda_i\}_{i \in \mathbb{I}})$.
3. If M is even and $|\mathbb{I}| = |\mathbb{I}^c|$ then $FP(\{\Lambda_i\}_{i \in \mathbb{I}^c}) = FP(\{\Lambda_i\}_{i \in \mathbb{I}})$.

Proof. Let $\{e_n\}_{n=1}^N$ be an orthonormal basis for H and

$$S_\Lambda e_n = \lambda_n e_n, \quad n = 1, 2, \dots, N.$$

By Theorem 2.5 we have

$$FP(\{\Lambda_i\}_{i \in \mathbb{J}}) = \frac{(\sum_{i \in \mathbb{J}} \|\Lambda_i\|_{HS}^2)^2}{N} = \frac{M^2}{N}. \quad (2.8)$$

Also, by Proposition 2.6,

$$A_\Lambda = \frac{\sum_{i \in \mathbb{J}} \|\Lambda_i\|_{HS}^2}{N} = \frac{M}{N}.$$

On the other hand, by assumption Λ is a tight g -frame and so $S_\Lambda = \frac{M}{N} I_H$. We have

$$\sum_{n=1}^N \sum_{i \in \mathbb{J}} \sum_{j \in \mathbb{I}} \langle \Lambda_i^* \Lambda_i(e_n), \Lambda_j^* \Lambda_j(e_n) \rangle = \frac{M}{N} \sum_{j \in \mathbb{I}} \|\Lambda_j\|_{HS}^2 = k \frac{M}{N}. \quad (2.9)$$

Similarly, we have

$$\sum_{n=1}^N \sum_{i \in \mathbb{I}} \sum_{j \in \mathbb{J}} \langle \Lambda_i^* \Lambda_i(e_n), \Lambda_j^* \Lambda_j(e_n) \rangle = k \frac{M}{N}. \quad (2.10)$$

By Proposition 2.12, (2.8), (2.9) and (2.10) imply that

$$FP(\{\Lambda_i\}_{i \in \mathbb{I}^c}) = \frac{M^2}{N} - 2k \frac{M}{N} + FP(\{\Lambda_i\}_{i \in \mathbb{I}}).$$

□

Example 2.14. Let $H = \mathbb{C}^2$ and we define

$$\begin{aligned} \Lambda_1: \mathbb{C}^2 &\rightarrow \mathbb{C}, \quad \Lambda_1(x, y) = \frac{3}{\sqrt{13}}x - \frac{2}{\sqrt{13}}y, \\ \Lambda_2: \mathbb{C}^2 &\rightarrow \mathbb{C}, \quad \Lambda_2(x, y) = \frac{2}{\sqrt{13}}x + \frac{3}{\sqrt{13}}y. \end{aligned}$$

Then $\Lambda = \{\Lambda_j \in B(\mathbb{C}^2, \mathbb{C}): j = 1, 2\}$ is a Parseval g -frame for \mathbb{C}^2 and

$\|\Lambda_1\|_{HS} = \|\Lambda_2\|_{HS} = 1$. Let $e_1 = (1, 0)$ and $e_2 = (0, 1)$ and put $\mathbb{I} = \{1\} \subset \mathbb{J} = \{1, 2\}$. Then

$$FP(\{\Lambda_i\}_{i \in \mathbb{I}^c}) = \sum_{n=1}^2 \langle \Lambda_2^* \Lambda_2(e_n), \Lambda_2^* \Lambda_2(e_n) \rangle = 1,$$

and

$$FP(\{\Lambda_i\}_{i \in \mathbb{I}}) = \sum_{n=1}^2 \langle \Lambda_1^* \Lambda_1(e_n), \Lambda_1^* \Lambda_1(e_n) \rangle = 1.$$

Also, by Corollary 2.13, we have

$$FP(\{\Lambda_i\}_{i \in \mathbb{I}^c}) = \frac{2^2}{2} - 2 \times 1 \times \frac{2}{2} + FP(\{\Lambda_i\}_{i \in \mathbb{I}}) = FP(\{\Lambda_i\}_{i \in \mathbb{I}}).$$

Example 2.15. Let $H = \mathbb{C}^3$ and we define

$$\begin{aligned} \Lambda_1: \mathbb{C}^3 &\rightarrow \mathbb{C}, \quad \Lambda_1(x, y, z) = zi, \\ \Lambda_2: \mathbb{C}^3 &\rightarrow \mathbb{C}, \quad \Lambda_2(x, y, z) = \frac{4}{5}x + \frac{3}{5}y, \\ \Lambda_3: \mathbb{C}^3 &\rightarrow \mathbb{C}, \quad \Lambda_3(x, y, z) = -\frac{3}{5}x + \frac{4}{5}y. \end{aligned}$$

Then $\Lambda = \{\Lambda_j \in B(\mathbb{C}^3, \mathbb{C}): j = 1, 2, 3\}$ is a Parseval g -frame for \mathbb{C}^3 and

$\|\Lambda_1\|_{HS} = \|\Lambda_2\|_{HS} = \|\Lambda_3\|_{HS} = 1$. Let $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$ and put $\mathbb{I} = \{1, 2\} \subset \mathbb{J} = \{1, 2, 3\}$. We have

$$FP(\{\Lambda_i\}_{i \in \mathbb{I}^c}) = \sum_{n=1}^3 \langle \Lambda_3^* \Lambda_3(e_n), \Lambda_3^* \Lambda_3(e_n) \rangle = 1,$$

and

$$FP(\{\Lambda_i\}_{i \in \mathbb{I}}) = \sum_{n=1}^3 \sum_{i=1}^2 \sum_{j=1}^2 \langle \Lambda_i^* \Lambda_i(e_n), \Lambda_j^* \Lambda_j(e_n) \rangle = 2.$$

So,

$$FP(\{\Lambda_i\}_{i \in \mathbb{I}^c}) = 1 < FP(\{\Lambda_i\}_{i \in \mathbb{I}}) = 2.$$

Also, by Corollary 2.13,

$$FP(\{\Lambda_i\}_{i \in \mathbb{I}^c}) = \frac{3^2}{3} - 2 \times 2 \times \frac{3}{3} + FP(\{\Lambda_i\}_{i \in \mathbb{I}}) = -1 + FP(\{\Lambda_i\}_{i \in \mathbb{I}}),$$

therefore

$$FP(\{\Lambda_i\}_{i \in \mathbb{I}^c}) < FP(\{\Lambda_i\}_{i \in \mathbb{I}}).$$

Proposition 2.16. Suppose that $\Lambda = \{\Lambda_j \in B(H, H_j): j \in \mathbb{J}\}$ is a g -frame for H with the optimal g -frame bounds $0 < A_\Lambda \leq B_\Lambda < \infty$. Then

$$(N - 1)A_\Lambda^2 + B_\Lambda^2 \leq FP(\{\Lambda_i\}_{i \in \mathbb{J}}) \leq (N - 1)B_\Lambda^2 + A_\Lambda^2, \quad N \neq 1.$$

If $N = 1$, we should have $A_\Lambda = B_\Lambda$.

Proof. The proof is clear and we remove it. □

In 2014, the mixed frame potential was introduced by Carrizo and Heineken [2]. Here we generalize this concept to the g -frames. Also, we generalize the result of [2] to the g -frames.

Definition 2.17. Suppose that $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ and $\Gamma = \{\Gamma_j \in B(H, H_j) : j \in \mathbb{J}\}$ are g -frames for H . Let $\{f_l\}_{l=1}^L$ be a Parseval g -frame for H . The mixed g -frame potential of $(\{\Lambda_i\}_{i \in \mathbb{J}}, \{\Gamma_i\}_{i \in \mathbb{J}})$ with respect to $\{H_i\}_{i \in \mathbb{J}}$ is defined by

$$\widetilde{FP}(\{\Lambda_i\}_{i \in \mathbb{J}}, \{\Gamma_i\}_{i \in \mathbb{J}}) = \sum_{l=1}^L \sum_{i \in \mathbb{J}} \sum_{j \in \mathbb{J}} \langle \Lambda_i^* \Gamma_i(f_l), \Gamma_j^* \Lambda_j(f_l) \rangle.$$

In particular, if $\{\Lambda_i\}_{i \in \mathbb{J}} = \{\Gamma_i\}_{i \in \mathbb{J}}$ then the mixed g -frame potential is equal to the g -frame potential.

Proposition 2.18. Let $\Lambda = \{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\}$ and $\Gamma = \{\Gamma_j \in B(H, H_j) : j \in \mathbb{J}\}$ be g -frames for H . Then

$$\widetilde{FP}(\{\Lambda_i\}_{i \in \mathbb{J}}, \{\Gamma_i\}_{i \in \mathbb{J}}) = \text{Tr}((T_\Lambda T_\Gamma^*)^2),$$

where T_Λ and T_Γ are the synthesis operators of Λ and Γ , respectively.

In particular,

$$\widetilde{FP}(\{\Gamma_i\}_{i \in \mathbb{J}}, \{\Lambda_i\}_{i \in \mathbb{J}}) = \text{Tr}((T_\Gamma T_\Lambda^*)^2).$$

Also, if Λ is a dual of Γ , then $\widetilde{FP}(\{\Lambda_i\}_{i \in \mathbb{J}}, \{\Gamma_i\}_{i \in \mathbb{J}}) = N$.

Proof. Suppose that $\{e_n\}_{n=1}^N$ is the standard orthonormal basis for H . So

$$\begin{aligned} \widetilde{FP}(\{\Lambda_i\}_{i \in \mathbb{J}}, \{\Gamma_i\}_{i \in \mathbb{J}}) &= \sum_{n=1}^N \sum_{i \in \mathbb{J}} \sum_{j \in \mathbb{J}} \langle \Lambda_i^* \Gamma_i(e_n), \Gamma_j^* \Lambda_j(e_n) \rangle \\ &= \sum_{n=1}^N \langle \sum_{i \in \mathbb{J}} \Lambda_i^* \Gamma_i(e_n), \sum_{j \in \mathbb{J}} \Gamma_j^* \Lambda_j(e_n) \rangle \\ &= \sum_{n=1}^N \langle T_\Lambda T_\Gamma^*(e_n), T_\Gamma T_\Lambda^*(e_n) \rangle \\ &= \text{Tr}((T_\Lambda T_\Gamma^*)^2). \end{aligned}$$

□

REFERENCES

- [1] J.J. Benedeto and M. Fickus, Finite normalized tight frames, *Adv. Comput. Math.* 18, No. 2-4, 357–385, 2003.
- [2] I. Carrizo and S. Heineken, Critical pairs of sequences of a mixed frame potential, *Numer. Funct. Anal. Optim.* 35 (6), 665–684, 2014.
- [3] P.G. Casazza, Custom building finite frames. *Wavelets, frames and operator theory, Contemp. Math.* 345, Amer. Math. Soc., Providence, RI, 61–86, 2004.
- [4] O. Christensen, *An Introduction to Frames and Riesz Bases*, Birkhäuser Boston, 2003.

- [5] *P.G. Casazza, M. Fickus, J. Kovacevic, M. Leon and J. Tremain*, A physical interpretation of tight frames, In Harmonic Analysis and Applications, In Honor of J. Benedetto, C. Heil Ed, Birkhäuser Boston, 51–76, 2006.
- [6] *R.J. Duffin and A.C. Schaeffer*, A class of nonharmonic Fourier series, *Trans. Amer. Math. Soc.* 72, 341–366, 1952.
- [7] *G.J. Murphy*, *C ^{*}-Algebras and operator theory*, Academic Press, San Diego, California, 1990.
- [8] *A. Najati and A. Rahimi*, Generalized frames in Hilbert spaces, *Bull. Iranian Math. Soc.* 35 (1), 97–109, 2009.
- [9] *A. Najati, M.H. Faroughi and A. Rahimi*, G-frames and stability of g-frames in Hilbert spaces, *Methods. Funct. Anal. Topology* 4, 271–286, 2008.
- [10] *W.J. Rolli*, Constructing frames for finite dimensional Hilbert spaces, *J. Math. Anal. Appl.* 321, 388–395, 2006.
- [11] *W. Sun*, G-frames and g-Riesz bases, *J. Math. Anal. Appl.* 322, 437–452, 2006.
- [12] *S. Waldron*, Generalized Welch bound equality sequences are tight frames, *IEEE Trans. Inform. Theory* 49 (9), 2307–2309, 2003.