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COMPLETENESS OF HAMILTONIAN VECTOR FIELDS IN

JACOBI AND CONTACT GEOMETRY

Mircea Crasmareanu1

Lucrarea prezintă condiţii suficiente de completitudine a câmpurilor vectoriale

Hamiltoniene utilizând o proprietate topologică a Hamiltonianului corespunzător.

În particular se studiază cazul geometriilor Poisson, contact şi cosimplectic pre-

cum şi cel al varietăţilor Nambu-Poisson. Ca aplicaţii, se discută completitudinea

a două câmpuri vectoriale Hamiltoniene de tip contact ce apar ı̂n geometrizarea

termodinamicii.

The completeness of the Hamiltonian vector fields in the Jacobi manifolds is

studied here providing a sufficient condition in terms of the topological proper-

ness for a function assuring a sublinear growth along the flow. In particular, the

settings of Poisson, contact and cosymplectic geometries are presented while for

similarities with the Poisson case, the Nambu-Poisson structures are included too.

As applications, the completeness of contact-Hamiltonian vector fields arising in

the geometrization of thermodynamics is discussed with examples.
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1. Introduction

This paper is dedicated to a study of the completeness of the Hamiltonian vec-

tor fields in a special type of structures namely Jacobi manifolds which together with

Poisson manifolds are introduced exactly thirty years ago by André Lichnerowicz in

[21] and [22]. Since then, these structures become a main tool in several studies

regarding the geometrization of mechanics; for a good picture the reader is invited

to browse the papers of Lichnerowicz and his co-workers from our bibliography: [8],

[13], [23]-[28], [29], as well as some surveys like [19] and [37]. Recently, in addition

to the well-known relation of the Jacobi structures with the classical mechanics, the

quantization of these mathematical objects was discussed in [17]. A constant interest

is in the connection between the Jacobi structures and the theory of Lie algebroids

(and generalizations) as appears for example in [15], as well as the computation of

a suitable cohomology called Lichnerowicz-Jacobi cohomology, [18].
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The present paper is devoted to another subject namely the completeness of

the Hamiltonian vector fields which appear in the Jacobi geometry on a manifoldM .

This question can be of main interest in some applications of the Jacobi structures

to concrete mathematical or physical theories. More precisely, from a mathemati-

cal point of view, such a complete flow induces an action of Lie group R and the

symmetries of this action can provide useful information about our structure; for ex-

ample, if the orbit space M/R is again a manifold, a natural question is about some

versions of the well-known Marsden-Weinstein-Raţiu reduction theory like in [1] and

[30]. Also, very important geometrical objects on a manifold are the Riemannian

metrics and the great importance of completeness in the Riemannian geometry is

pointed out in Chapter 7 of classical by now [7]; a class of Riemannian metric nat-

urally associated to the contact structures is added also in our study through an

appendix. From a physical point of view completeness corresponds to well-defined

dynamics persisting eternally but as is point out in [4, p. 60] ”in some circumstances

(shock waves in fluids and solids, singularities in general relativity) one has to live

with incompleteness”.

The contents of the paper is as follows. The first section begins by revie-

wing the general notions regarding the completeness and a sufficient condition is

recalled after [1, p. 71]; see [11] and [38] for related results. The completeness of the

gradient vector fields in Riemannian geometry and Euler-Lagrange vector fields of

the classical mechanics is discussed, the last case in connection with the celebrated

Poincaré Recurrence Theorem.

In the next section the Jacobi setting is studied in details including local

expressions for the main geometrical objects. A generalization of the notion of first

integral is introduced toward study the completeness of the associated Hamiltonian

vector field and a connection with the theory of complete Poisson maps introduced

in [6] is pointed out via proper maps. The case of Nambu-Poisson brackets, although

does not belongs to Jacobi structures (but to [14]), ends this section since there exists

a strong similarity with the Poisson case, namely the properness of a Hamiltonian.

The next section is devoted to the contact and cosymplectic manifolds. Using

an adapted atlas of Darboux type we consider the class of functions previously

introduced and then the completeness of the Hamiltonian-contact and Hamiltonian-

cosymplectic vector fields for these functions, particularly the Reeb vector field,

is discussed including two examples connected with the symplectic geometry and

geometric theory for PDEs respectively. An important example of this section is the

Reeb vector field of a contact manifold admitting a Legendre foliation in which the

charts obtained by Paulette Libermann are used instead of the canonical Darboux

charts.

Since the contact structure is a main tool in the geometrization of the ther-

modynamics we end this paper with a connection of our results with this physical

theory. For our examples, inspired by [31], we add the expression of the flow, ap-

pearing also in the cited paper, in order to verify the completeness.
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Two open problems are rising: one concerning the notion of regular first inte-

gral and the second regarding the universal completition of a Jacobi manifold. An

appendix discussing the completeness in terms of a complete associated Riemannian

metric (to a contact structure) ends the paper.

2. Completeness of general and Euler-Lagrange vector fields

Let M be a smooth, real, n-dimensional manifold. Let us denote by:

· C∞(M) the ring of smooth real functions on M ,

· X (M) the C∞(M)-module of vector fields on M ,

· X k(M) the C∞(M)-module of k-multivector fields on M ; in particular X 1(M) is

exactly X (M),

· Ωk(M) the C∞(M)-module of differential k-forms on M ; in particular Ω0(M) is

exactly C∞(M),

· if Λ ∈ X 2(M) is a bivector field on M then we associate the map

Λ♯ : Ω1 (M) → X (M) , α→ Λ (α, ·); so Λ♯ (α) (f) = Λ (α, df) for f ∈ C∞(M).

Definition 2.1 i) X ∈ X (M) is a complete vector field if for every x0 ∈ M

the maximal interval of existence (t−, t+) for the solution of the flow equation of X

with initial condition x(0) = x0 is given by t± = ±∞.

ii) f ∈ C∞ (M) is a first integral of X ∈ X (M) if X (f) ≡ 0.

iii) f ∈ C∞ (M) is a proper function if f−1(compact) =compact.

Let us remark that Proposition 5.11. from [10, p. 25] assures that on every

manifold M there exist proper functions. Also, in [16] it is proved that for any

manifold with a vector field there exists an universal completion to a manifold with

complete vector field. A sufficient condition of completeness is provided by [1, p.

71]:

Theorem 2.2 Let X ∈ X (M). If there exist f ∈ C∞(M) with f proper and

A,B ∈ R+ such that for each x ∈M we have:

|X(f)(x)| ≤ A|f(x)|+B, (2.1)

then X is complete.

This has the following consequence for A = 0:

Corollary 2.3 If X(f) is a bounded function with f proper then X is complete.

In particular, if X ∈ X (M) has a proper first integral then X is complete.

Example 2.4 Let (M, g) be a Riemannian manifold and fix h ∈ C∞(M).

If follows that the existence of a proper function f such that one of the following

conditions holds:

· |g(∇f,∇h)(x)| ≤ A|f(x)|+B for every x ∈M ,

· g(∇f,∇h) is a bounded function, in particular ∇f is g-orthogonal to ∇h i.e. f is

a first integral of ∇h,
implies the completeness of the gradient vector field ∇h.

In particular for f = h we derive, by using the Gordon completeness criterion

[12] (see also the second part of Theorem 7.3. of [35, p. 25]) or the Appendix of the

present paper:
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Corollary 2.5 If h is a proper smooth function on the Riemannian manifold

(M, g) with bounded gradient then the gradient of h and the Riemannian metric g

are complete. The last item means that the geodesic spray of g is a complete vector

field on TM .

Since we are placed in a physical oriented framework let us add to this section

a discussion of the completeness of Euler-Lagrange vector fields.

Denote with TM and T ∗M the tangent and cotangent bundle respectively. If

L : TM → R is a smooth function, usually called Lagrangian, let FL : TM → T ∗M

be the fiber derivative of L [30, p. 26]:

FL (v) · w =
d

dε
|ε=0 L (v + εw) (2.2)

for v, w ∈ TpM,p ∈M . If Ω denotes the canonical symplectic structure of T ∗M let

ΩL = (FL)∗Ω be the pullback on TM .

Definition 2.6 ([30]) (i) The Lagrangian L is called regular if ΩL is a sym-

plectic structure on TM .

(ii) The energy of L is E(L) : TM → R given by:

E(L) (v) = FL (v) · v − L(v). (2.3)

Sometimes the energy appears under the name of Hamiltonian but in our

setting being a function on the tangent bundle not on the cotangent bundle we prefer

this name. If L is a regular Lagrangian by using the non-degeneracy of the symplectic

form ΩL of TM it result that there exists a unique vector field SL ∈ X (TM) such

that:

iSL
ΩL = −dE(L) (2.4)

where iZ denotes the interior product with respect to the vector field Z. SL is

called the Euler-Lagrange vector field of L since (2.4) is the global expression of the

well-known Euler-Lagrange equations of L.

The completeness of SL is provided by the first part of the Poincaré Recurrence

Theorem as it appears in [5, p. 87]:

Proposition 2.7 If the energy EL is a proper function on TM then the Euler-

Lagrange vector field SL is complete.

Example 2.8 If L is a natural Lagrangian i.e. the difference:

L = K(g)− V,

with K(g) the energy of the Riemannian metric g and V = V (x) a potential, i.e. a

smooth function on M , then, according to [9], the Euler-Lagrange vector field SL is

complete if g is complete and the potential V is bounded below.

Returning to the general case of Corollary 2.3 remark that the Definition 7.3.7

from [1, p. 533] introduce the notion of regular first integral of X as a proper first

integral which is not constant on any open subset ofM and X has property (G5) if X

has no regular first integral. An important result of the cited book is that property

(G5) is C1 generic and then every vector field can be approximated as closely as we

wish by one without regular first integrals.
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Open problem 1 If we define a weak-regular first integral by give up to the

condition of no-constancy on open subsets then a similar result with respect to a

weak-(G5) property as been generic holds?

3. Completeness in Jacobi, Poisson and Nambu-Poisson geometry

Definition 3.1 i) A Jacobi structure on M is a pair (Λ, E) ∈ X 2(M)×X (M)

such that the following Jacobi equations hold:{
[Λ,Λ] = 2Λ ∧ E
[E,Λ] = LEΛ = 0

(3.1)

where [, ] is the Schouten bracket on multivectors, ∧ is the Grassmann wedge product

and LE is the Lie derivative with respect to the vector field E. The triple (M,Λ, E)

is a Jacobi manifold. A Jacobi manifold with E = 0 is a Poisson manifold. Let us

call Λ and E the structural bivector and vector field respectively.

ii) Let (M,Λ, E) be a Jacobi manifold and f ∈ C∞ (M). The Hamiltonian vector

field Xf associated to f is:

Xf = Λ♯ (df) + fE. (3.2)

Then f is called the Hamiltonian of Xf .

In order to handle concrete examples let us provide the above setting with local

coordinates. So, let
(
xi
)
1≤i≤n

be a local chart onM in which the geometrical objects

defining the Jacobi structure has the expressions: Λ = 1
2Λ

ij ∂
∂xi ∧ ∂

∂xj , E = Ei ∂
∂xi .

Then, the Jacobi equations become:{
Λim ∂Λjk

∂xm + Λjm ∂Λki

∂xm + Λkm ∂Λij

∂xm + ΛijEk + ΛjkEi + ΛkiEj = 0

Ek ∂Λij

∂xk − Λik ∂Ej

∂xk + Λjk ∂Ei

∂xk = 0
(3.3)

while the Jacobi bracket is:

{f, g} = Λij ∂f

∂xi
∂g

∂xj
+ fEi ∂g

∂xi
− gEi ∂f

∂xi
. (3.4)

The Hamiltonian vector field Xf has the expression:

Xf = Λij ∂f

∂xj
∂

∂xi
+ fEi ∂

∂xi
. (3.5)

Example 3.2 E = X1. In fact, every manifold M with a fixed vector field E

is a Jacobi manifold with Λ = 0.

Open problem 2 Let (M,Λ, E) be a Jacobi manifold with E non-complete.

The universal completion ofM in the sense of [16] admits a ”lifted” Jacobi structure?

The fixed Jacobi structure yields a Jacobi bracket {, } on C∞ (M):

{f, g} = Λ(df, dg) + f · E (g)− g · E (f) (3.6)

which is a local Lie algebra structure in the Kirillov sense; in the Poisson case we

get a global Lie algebra structure on C∞(M). This permits us to introduce:

Definition 3.3 C ∈ C∞ (M) is a Casimir of the Jacobi structure if {f, C} = 0

for every f ∈ C∞ (M).

We are able to derive one of the main results of the paper:
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Proposition 3.4 Fix f ∈ C∞ (M).

i) If there exist g ∈ C∞(M) with g proper and A,B ∈ R+ such that:

|Λ(df, dg)(x) + f (x) · E (g) (x) | ≤ A|g(x)|+B, ∀x ∈M (3.7)

then Xf is complete.

ii) If f is proper and there exist A,B ∈ R+ such that:

|f(x) · E (f) (x) | ≤ A|f(x)|+B, ∀x ∈M (3.8)

then Xf is complete. In particular, if f is proper and E(f) is a bounded function

then Xf is complete.

iii) If f is proper and first integral of E then Xf and E are complete vector fields.

Proof i) is a reformulation of the Theorem 2.2, ii) derives from i) since

Λ (α, α) = 0, iii) is a direct consequence of ii). �
The above result can be reformulated in terms of the Jacobi bracket:

Proposition 3.5 Fix f ∈ C∞ (M).

i) If there exist g ∈ C∞(M) with g proper and A,B ∈ R+ such that:

|{f, g}(x) + g (x) · E (f) (x) | ≤ A|g(x)|+B, ∀x ∈M (3.9)

then Xf is complete. In particular, if E(f) is bounded and there exists g ∈ C∞(M)

with g proper and {f, g} bounded then Xf is complete.

ii) If f is a first integral of E and there exist g ∈ C∞(M) with g proper and A,B ∈ R+

such that for each x ∈M we have:

|{f, g}(x)| ≤ A|g(x)|+B, (3.10)

then Xf is complete. In particular, if f is a first integral of E and there exists a

proper g ∈ C∞(M) such that {f, g} is bounded (or zero) then Xf is complete.

iii) Suppose that the given Jacobi structure admits a Casimir which is a proper

function. If f is a first integral of E then Xf is complete.

Example 3.6 Suppose that the given Jacobi structure admits a Casimir which

is a proper function. Then, E = X1 is a complete vector field since the constant

functions are first integrals of every vector field.

A slight generalization of the notion of first integral provides a new example.

Namely, inspired by the Lichnerowicz’s papers let us introduce:

Definition 3.7 Let c ∈ R and τ ∈ C∞(M). Then, τ is a c-time function if

E (τ) ≡ c.

Example 3.8 Suppose that the Jacobi manifold (M,Λ, E) admits a c-time

function which is proper. Then, using Proposition 3.4 ii) with A = c and B = 0 it

results that Xτ is a complete vector field.

Let us turn to the Poisson setting. From Propositions 3.4 and 3.5 we get:

Corollary 3.9 Let (M,Λ) be a Poisson manifold and fix f ∈ C∞ (M).

i) If there exist g ∈ C∞(M) with g proper and A,B ∈ R+ such that:

|Λ(df, dg)(x)| = |{f, g} (x) | ≤ A|g(x)|+B, ∀x ∈M (3.11)
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then Xf is complete. In particular, if there exists a proper function g such that {f, g}
is bounded or zero then Xf is complete.

ii) ([33]) If the Hamiltonian f is a proper function then Xf is complete.

Let us apply the last item of the previous result to complete Poisson maps.

Recall, after [6, p. 31], that a Poisson map φ : M → N between two Poisson

manifolds (i.e. φ preserves the Poisson brackets) is complete if, for each h ∈ C∞(N),

Xh being a complete vector field implies that Xφ∗h is also complete. A justification

of terminology is provided by Proposition 6.2 of [6, p. 32] that a Poisson map

φ : M → R is complete if and only if Xφ is a complete vector field. It results

that every Poisson function from a compact Poisson manifold is complete but we

derive a sufficient condition of completeness for Poisson functions from C∞(M) with

non-compact M :

Corollary 3.10 i) If there exists ψ : M → R such that {φ,ψ} is bounded or

zero then φ is complete.

ii) If the Poisson bracket admits a proper Casimir then every Poisson map

φ :M → R is complete.

iii)Let φ :M → R be a proper Poisson map. Then φ is complete.

Although the last framework presented in this section does not belongs to

Jacobi structures we add it here for the similarities with the Poisson case. For more

details about Nambu-Poisson structures we refer to [32, 34, 36] and the references

therein.

Definition 3.11 A Nambu-Poisson bracket or structure of order m, 2 ≤ m ≤
n is an internal m-ary operation on C∞(M), denoted by { }, which satisfies the

following axioms:

(i) { } is R-multilinear and totally skew-symmetric

(ii) the Leibniz rule:

{f1, . . . , fm−1, gh} = {f1, . . . , fm−1, g}h+ g{f1, . . . , fm−1, h}

(iii) the fundamental identity:

{f1, . . . , fm−1, {g1, . . . , gm}} =

m∑
k=1

{g1, . . . , {f1, . . . , fm−1, gk}, . . . , gm}.

The Lie brackets associated to the Poisson structures correspond to the case

m = 2 in the above definition.

By (ii), { } acts on each factor as a vector field, hence it must be of the form:

{f1, . . . , fm} = Λ(df1, . . . , dfm),

where Λ is a field of m-vectors on M . If such a field defines a Nambu-Poisson

bracket, it is called a Nambu-Poisson tensor field. Λ defines a bundle mapping:

♯Λ : Ωm−1 (M) → X (M)

given by:

< β, ♯Λ(α1, . . . , αn−1) >= Λ(α1, . . . , αn−1, β)
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where all the arguments are 1-forms.

The next notion which extends the similar one from Poisson geometry is that

of the Λ-Hamiltonian vector field of (m− 1) functions defined by:

XF1,...,Fm−1 = ♯Λ(dF1, . . . , dFm−1).

Since Fi is a first integral of XF1,...,Fm−1 the Corollary 2.3 yields a natural

generalization of the Corollary 3.9 ii):

Corollary 3.12 Let XF1...Fm−1 be a Nambu-Poisson Hamiltonian vector field.

If there exists i ∈ {1, . . . ,m−1} such that the Hamiltonian Fi is proper thenXF1...Fn−1

is a complete vector field.

4. Completeness in contact and cosymplectic geometry

The contact geometry is a very important particular case of Jacobi geometry

living only in odd dimensions. In the following suppose that n = 2m+ 1.

Definition 4.1 A 1-form θ ∈ Ω1 (M) is a contact form on M if it is non-

degenerated i.e. the n-form V := θ∧ (dθ)m is a volume form on M . The pair (M, θ)

is a contact manifold.

On a contact manifold there exists a remarkable global vector field:

Proposition 4.2 (Reeb) On (M, θ) lives E ∈ X (M) uniquely determined by:{
iEθ = 1

iEdθ = 0
. (4.1)

Definition 4.3 i) E is called the Reeb (or sometimes the characteristic) vector

field of the contact manifold (M, θ).

ii) For f ∈ C∞ (M) the contact Hamiltonian vector field Xf is uniquely determined

by: {
iXf

θ = f

iXf
dθ = E (f) · θ − df

. (4.2)

f is called again the Hamiltonian of Xf .

Example 4.4 The unit sphere S3 ⊂ R4 has a standard contact form:

θ = 1
2

(
x1dx2 − x2dx1 + x3dx4 − x4dx3

)
with the associated Reeb vector field the

unit tangent field to the well-known Hopf fibration S3 S1

→ S2. Since M = S3 is a

compact manifold it results that all vector fields on M , in particular the contact

vector fields and the Reeb vector field, are complete.

Properties of the Hamiltonian vector fields, [31, p. 39]:
Xc = cE, c ∈ R, X−f = −Xf

Xf+g = Xf +Xg, Xfg = fXg + fXg − fgE

Xf (f) = f · E (f) , Xf

(
fk
)
= kfk · E (f)

. (4.3)

Proposition 4.5([13]) The bivector Λ given by: Λ (df, dg) := dθ (Xf , Xg),

together with E yields a Jacobi structure on (M, θ).

Therefore the results of above section apply to this framework. Particularly,

the Proposition 3.4 i) becomes:
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Proposition 4.6 Fix f ∈ C∞ (M). If there exist g ∈ C∞(M) with g proper

and A,B ∈ R+ such that:

|dθ (Xf , Xg) (x) + f (x) · E (g) (x) | ≤ A|g(x)|+B, ∀x ∈M (4.4)

then Xf is complete.

Also the Example 3.6 becomes:

Corollary 4.7 Suppose that the Jacobi structure associated to the contact

manifold (M, θ) admits a Casimir which is a proper function. Then the Reeb vector

field E is complete.

On a contact manifold there exists an adapted atlas with local coordinates

(z, qa, pa)1≤a≤m such that θ has the canonical or Darboux form:

θ = dz −
m∑
a=1

padq
a. (4.5)

In this canonical atlas we have, [19, p. 325]:

E = ∂
∂z , Λ =

∑
a

∂
∂qa ∧ ∂

∂pa
+
∑
a
pa

∂
∂z ∧ ∂

∂pa

{f, g} =

(
f −

∑
a
pa

∂f
∂pa

)
∂g
∂z −

(
g −

∑
a
pa

∂g
∂pa

)
∂f
∂z +

∑
a

(
∂f
∂qa

∂g
∂pa

− ∂f
∂pa

∂g
∂qa

)
Xf =

(
f −

∑
a
pa

∂f
∂pa

)
∂
∂z −

∑
a

∂f
∂pa

∂
∂qa +

∑
a

(
∂f
∂qa + pa

∂f
∂z

)
∂

∂pa

(4.6)

with the obvious simplifications if the function f , respectively g, is 1-homogeneous

in (pa).

It follows that a c-time function on a contact manifold has the form: τ =

cz + F (qa, pa) and then:

Xτ =

(
cz + F −

∑
a

pa
∂F

∂pa

)
∂

∂z
−
∑
a

∂F

∂pa

∂

∂qa
+
∑
a

(
∂F

∂qa
+ cpa

)
∂

∂pa
. (4.7)

In particular, if the function F is 1-homogeneous with respect to the variables (pa)

it results, via the Euler theorem, that:

Xτ = cz
∂

∂z
−
∑
a

∂F

∂pa

∂

∂qa
+
∑
a

(
∂F

∂qa
+ cpa

)
∂

∂pa
. (4.8)

It results that the Example 3.8 implies:

Corollary 4.8 Let τ ∈ C∞ (M) be an c-time function on the contact manifold

(M, θ) of expression above, in particular τ = τ(qa, pa). If τ is a proper function too

then Xτ given by (4.7), particularly by (4.8) if F is 1-homogeneous with respect to

(pa), is a complete vector field.

Examples 4.9 i) Let (P, dα) be an exact symplectic 2m-dimensional manifold.

Inspired by Example 1 from [19, p. 294] we consider the manifold M = I × P with

I = (a, b) a bounded real interval and θ = dt−α where t is the canonical coordinate

in I. Then (M, θ) is a contact manifold with the Reeb vector field E = ∂
∂t . A

c-time function on M having the expression τ = cz + F with F ∈ C∞ (P ) is proper
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provided the function F is proper. It follows that the previous result applies in this

framework.

ii) Functions τ = τ(qa, pa) rise naturally in the geometric theory of first order PDE

(Partial Differential Equations). Let M be the first jet bundle of Rm; locally such

space can be described by x ∈ Rm and a germ of a function in x considered up to its

gradient. To each m ∈ J1(Rm) we associate (x, z(x),∇z) with z a germ of a smooth

function in Rm. The manifold J1(Rm) is a contact manifold with contact 1-form

θ = dz − yadx
a which vanishes on any germ z such that ∂z

∂xa = ya. This jet space

is the natural place to study the geometry of first order PDEs; more precisely, any

PDE can be understood as a submanifold of J1(Rm). Let us suppose that we have a

smooth function τ : J1(Rm) → R with ∂τ
∂z = 0. Then, after [2], the set τ = 0 defines

a manifold in J1(Rm) which corresponds to the PDE: τ((x, z(x),∇z)(x)) = 0.

Let us study the case of a contact structure endowed with a Legendre foliation.

On (M, θ) the distribution H(M) = Ker(θ) is called the contact distribution and

is not integrable. A codimension m + 1 foliation F on M is said to be a Legendre

foliation if T (F) is am-subbundle of the 2m-distributionH(M). In other words, F is

a foliation of (M, θ) by m-dimensional integral manifolds of the contact distribution

H (M).

Proposition 4.10 ([20]) Let F be a Legendre foliation on the contact manifold

(M, θ). Then, for any x ∈M there exists an open neighbourhood U of x which admits

local coordinates (xa, pa, t)1≤a≤m such that: θ =
∑
a
padx

a −Hdt with H ∈ C∞ (M)

satisfying the condition; the function:

A =
∑
a

pa
∂H

∂pa
−H

has no zero. By means of these coordinates the Reeb vector field is expressed by:

E =
1

A

(
∂

∂t
+

(∑
a

∂H

∂pa

∂

∂xa
− ∂H

∂xa
∂

∂pa

))
. (4.9)

Since E (H) = 1
A

∂H
∂t from Theorem 2.2 we get:

Corollary 4.11 Suppose that the contact manifold (M, θ) admits a Legendre

foliation as above with H a proper function. If there exist U, V ∈ R+ such that for

each x ∈M we have:

| 1

A (x)
· ∂H
∂t

(x) | ≤ U |H(x)|+ V, (4.10)

in particular H is time-independent, then the Reeb vector field E is complete.

The last abstract framework included here is the cosymplectic geometry. A

cosymplectic manifold is a triple (M,Ω, η) with Ω ∈ Ω2(M) and η ∈ Ω1(M) such

that V := η ∧Ωm is a volume form. Exactly as in the contact geometry there exists

a global Reeb vector field R uniquely determined by:{
iRη = 1

iRΩ = 0
(4.11)
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and for every f ∈ C∞(M) there is associated a Hamiltonian vector field Xf uniquely

determined by: {
iXf

η = 0

iXf
Ω = df −R (f) · η . (4.12)

One can prove that in a neighbourhood of each point of a cosymplectic manifold one

can define canonical coordinates (qa, pa, z) such that:{
Ω = dqa ∧ dpa

η = dz, R = ∂
∂z

(4.13)

and in these coordinates:

Xf =
∑
a

∂f

∂pa

∂

∂qa
−
∑
a

∂f

∂qa
∂

∂pa
(4.14)

Since f is a first integral of Xf we apply the Corollary 2.3: if f is a proper function

then the cosymplectic Hamiltonian vector field Xf is a complete vector field.

5. Examples in thermodynamics

Consider after the classical theory of thermodynamics a material in an enclo-

sure of volume V , pressure P , temperature T , entropy S and internal energy U . The

first law of thermodynamics says that infinitesimal changes of these thermodynamic

variables must satisfy:

θ := dU + PdV − TdS ≡ 0. (5.1)

Therefore, we can attach the contact manifold M an open subset of
(
R5, θ

)
, called

thermodynamical phase space with the canonical coordinates(
z; q1, q2, p1, p2

)
= (U ;V, S,−P, T ) and Reeb vector field E = ∂

∂U . Using the formula

(4.64) it results that a function f = f (U ;V, S,−P, T ) has the Hamiltonian vector

field:

Xf =

(
f − P

∂f

∂P
− T

∂f

∂T

)
∂

∂U
− ∂f

∂T

∂

∂S
+
∂f

∂P

∂

∂V
−
(
∂f

∂V
− P

∂f

∂U

)
∂

∂P
+

+

(
∂f

∂S
+ T

∂f

∂U

)
∂

∂T
. (5.2)

Applying the Proposition 3.4 ii) one has:

Proposition 5.1 Let f ∈ C∞(M) proper with:

|f · ∂f
∂U

(U, V, S,−P, T )| ≤ A|f(U, V, S,−P, T )|+B (5.3)

for every (U, V, S,−P, T ) ∈ M , in particular f does not depends on the internal

energy U . Then Xf is a complete vector field.

Example 5.2 ([31, p. 43]) Let us consider an ideal gas describing an isother-

mal process with the constant internal energy U and the particle number N . It

follows that: f = PV −NRT with R the so-called gas constant. Then, from (5.2):

Xf = NR
∂

∂S
+ V

∂

∂V
− P

∂

∂P
(5.4)
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with the flow:

U = U0, V = V0e
t, S = S0 +NRt, P = P0e

−t, T = T0 (5.5)

with (U0, V0, S0, P0, T0) an initial Cauchy data. Locking at the expression of f we

see that it is a c-time function with c = 0 (i.e. first integral of the Reeb vector field

E) which is also 1-homogeneous in (−P, T ). The vector field Xf is complete conform

Proposition 5.1 although f : R5 → R is not a proper function; let us remark that

the solutions (5.5) confirm the completeness of Xf .

Example 5.3 ([31, p. 43]) Consider f = U − 3
2PV a Hamiltonian depending

of the internal energy U . Then, from (5.2):

Xf = U
∂

∂U
− 3

2
V

∂

∂V
+

5

2
P
∂

∂P
+ T

∂

∂T
(5.6)

with the flow:

U = U0e
t, V = V0e

−3t/2, S = S0, P = P0e
5t/2, T = T0e

t. (5.7)

The Hamiltonian f is again a c-time function with c = 1 and the same conclusion

as in the previous example it results about the completeness of Xf .

Appendix: Completeness in terms of a metric

In [1, p. 71] a criterion of completeness in terms of a Riemannian metric is

proved:

Proposition A1 Let (M, g) be a complete Riemannian manifold and X a Ck

vector field, k ≥ 1, such that for any integral curve σ the norm ∥X(σ(t))∥σ(t) is

bounded on finite t-intervals. Then X is a complete vector field.

It results immediately:

Corollary A2 On a complete Riemannian manifold an unitary vector field is

complete.

As examples of such vector fields we have the Reeb vector field. More precisely,

on a contact manifold (M, θ,E) there exists a nonunique Riemannian metric g such

that g(X,E) = θ(X) for every X ∈ X (M); these metrics are called associated and

their class provides important types of contact structures (e.g. K-contact manifolds

when E is Killing with respect to g) as appears in [3]. But the previous relation

means that the Reeb vector field E is unitary with respect to g.

Corollary A3 Let (M, θ,E) be a contact manifold such that one associated

Riemannian metric g is complete. Then E is a complete vector field.

Example A4 Let (M, g) be a Riemannian manifold and K(g) the energy of g

which is a regular Lagrangian; we use the notations and notions of the first section.

The canonical symplectic structure Ω of T ∗M is the differential of Liouville 1-form

λ. Let λK(g) = (FK(g))∗ λ be the pullback on TM . Then the restriction of λK(g) to

the unit tangent bundle T1M is a contact structure with the Reeb vector field twice

the geodesic flow, [3]. Then, the completeness of the initial Riemannian metric g

yields the completeness of the Reeb vector field of the associated contact structure

on T1M .
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Geometry, 12(1977), no. 2, 253-300. MR0501133 (58 #18565)



36 Mircea Crasmareanu
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