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SELF-ADAPTIVE ALGORITHMS FOR SOLVING FIXED POINT

PROBLEMS OF PSEUDOCONTRACTIVE OPERATORS
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In this paper, fixed point problems of pseudocontractive operators are inves-

tigated. We present a self-adaptive algorithm for finding a fixed point of a Lipschitz
pseudocontractive operator in a real Hilbert space. Our algorithm has no need to know a

priori the Lipschitz constant of pseudocontractive operators. Strong convergence result

is obtained under some additional assumptions.

Keywords: fixed point, pseudocontractive operator, self-adaptive technique, strong

convergence.

MSC2020: 47J25, 47H09, 65J15.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H.
Let T : C → C be a nonlinear mapping. In this paper, we devote to solve the following
interesting problem of finding x ∈ C such that

x = Tx. (1)

Now, we know that problem (1) is an important topic because many nonlinear problems can
be reformulated as fixed point equation (1). Many methods have been proposed for solving
(1), see [1, 3, 10, 13, 15, 20, 23, 30]. There are four common methods ([7–9, 12, 14]) for
approximating a fixed point of T :

Picard: x1 ∈ C, xn+1 = Txn, n ≥ 1, (2)

Krasnoselskii-Mann: x1 ∈ C, xn+1 = (1− αn)xn + αnTxn, n ≥ 1, (3)

where αn ∈ (0, 1),

Ishikawa: x1 ∈ C, yn = αnxn + (1− αnTxn, xn+1 = βnxn + (1− βn)Tyn, n ≥ 1, (4)

where αn ∈ (0, 1) and βn ∈ (0, 1) for all n ≥ 1 and

Halpern: x1 ∈ C, xn+1 = αnu+ (1− αn)Txn, n ≥ 1, (5)

where u ∈ C is a fixed point and αn ∈ (0, 1).

Remark 1.1. (i) If T is contractive, then the sequence {xn} generated by Picard’s method
(2) converges to the unique fixed point of T . (ii) If T is nonexpansive (not contractive),
then the sequence {xn} generated by (2) does not converge and the sequence {xn} gener-
ated by Krasnoselskii-Mann’s method (3) converges weakly to a fixed point of T . However,
Krasnoselskii-Mann’s method does not converge in the strong topology. (iii) The sequence
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{xn} generated by Halpern’s method (5) converges strongly to a fixed point of a nonexpansive
mapping T .

The importance of pseudocontractive operators depends on their relation with mono-
tone operators. Browder and Petryshyn ([2]) studied weak convergence of Krasnoselskii-
Mann’s method for strictly pseudocontractive operators. However, Krasnoselskii-Mann’s
method fails to converge for pseudocontractive operators ([4]). Consequently, Ishikawa’s
method introduced in [1] is more attractive than that of Krasnoselskii-Mann’s method and
which converges to a fixed point of a pseudocontractive operator. Unfortunately, strong
convergence of Ishikawa’s method has not been obtained without compactness assumption
on C or T . Construction of iterative algorithms for finding fixed points of nonlinear oper-
ators is still an interesting work and has attracted so much attention, see [5, 6, 16–19, 24–
29, 31, 33, 34].

The main purpose of this paper is to construct iterative algorithm for approximating
fixed points of pseudocontractive operators. We present a self-adaptive algorithm for finding
a fixed point of a Lipschitz pseudocontractive operator in a real Hilbert space. Our algorithm
has no need to know a priori the Lipschitz constant of pseudocontractive operators. Strong
convergence result is obtained under some additional assumptions.

2. Preliminaries

In this section, we collect some definitions and lemmas. Let H be a real Hilbert
space with inner product ⟨·, ·⟩ and norm ∥ · ∥. Let C be a nonempty closed convex subset
of H. Throughout, the symbols “ ⇀ ” and “ → ” denote weak convergence and strong
convergence, respectively. Use Fix(T ) to denote the set of fixed points of a mapping T .

Definition 2.1. A mapping T : C → C is said to be L-Lipschitz if there is a nonnegative
constant L such that

∥Tx− Ty∥ ≤ L∥x− y∥, ∀x, y ∈ C.

T is said to be nonexpansive when L = 1 and T is said to be contractive if L < 1.

Definition 2.2. A mapping T : C → C is said to be pseudocontractive if

⟨Tx− Ty, x− y⟩ ≤ ∥x− y∥2, ∀x, y ∈ C. (6)

Recall that the metric projection PC : H → C is defined by

PC(x) := argmin
y∈C

∥x− y∥, ∀x ∈ H.

It is well known that PC has the following property: for given x ∈ H,

⟨x− PC(x), PC(x)− y⟩ ≥ 0, ∀y ∈ C.

The following results are well known:

∥τx+ (1− τ)y∥2 = τ∥x∥2 + (1− τ)∥y∥2 − τ(1− τ)∥x− y∥2, ∀x, y ∈ H, τ ∈ R, (7)

and

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ H. (8)

Lemma 2.1 ([32]). Let C be a nonempty closed convex subset of a real Hilbert space H.
If T : C → C is a continuous pseudocontractive operator, then I − T is demiclosed at the
origin.

Lemma 2.2 ([11]). Let {ωn} be a real number sequence. Suppose that there is a subsequence
{ωni

} ⊂ {ωn} such that ωni
≤ ωni+1,∀i ≥ 0. For every n ≥ n0, set ς(n) = max{n0 ≤ i ≤

n : ωni < ωni+1}. Then limn→∞ ς(n) = ∞ and max{ως(n), ωn} ≤ ως(n)+1,∀n ≥ n0.
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Lemma 2.3 ([22]). Let {an} be a real number sequence. If an ≥ 0 and an+1 ≤ (1−γn)an+
bn, where γn and bn satisfy (i) 0 < γn < 1, (ii)

∑∞
n=1 γn = ∞ and (iii) lim supn→∞

bn
γn

≤ 0,

then limn→∞ an = 0.

3. Main results

In this section, we present a self-adaptive algorithm for finding a fixed point of a
Lipschitz pseudocontractive operator. Assume that: (i) H is a real Hilbert space and C ⊂ H
is a nonempty closed convex set; (ii) T : C → C is an L-Lipschitz pseudocontractve mapping
with Fix(T ) ̸= ∅ and φ : C → C is a σ-contractive mapping. Let τ and λ be two constants in

(0, 1) and µ ∈ (0, 1−λ2

2 ). Suppose that {γn}, {ζn} and {δn} are three real number sequences
in [0, 1] satisfying the following assumptions
(c1): γn + δn + ζn ≤ 1, limn→∞ γn = 0, and

∑∞
n=1 γn = ∞;

(c2): δn ≥ 1−min{µ,
√
µτ

L } and 0 < lim infn→∞ ζn ≤ lim supn→∞ ζn < 1;

(c3): limn→∞
1−γn−δn−ζn

γn
= 0.

Algorithm 3.1. For any initial point x0 ∈ C, let {xn} be a sequence generalized by

yn = (1− ηn)xn + ηnTxn, (9)

where ηn = µτm and m = min{0, 1, 2, · · · } such that

ηn∥Tyn − Txn∥ ≤ λ∥yn − xn∥, (10)

and

xn+1 = γnφ(xn) + δnxn + ζnTyn, n ≥ 0. (11)

Remark 3.1. The search rule (10) is well-defined and µ ≥ ηn ≥ min{µ,
√
µτ

L }, n ≥ 0.

Next, we show the convergence of the sequence defined by Algorithm 3.1.

Theorem 3.1. The sequence {xn} generalized by (11) converges strongly to p = PFix(T )φ(p).

Proof. Let p∗ ∈ Fix(T ). From (11), we have

∥xn+1 − p∗∥ = ∥γn(φ(xn)− p∗) + δn(xn − p∗) + ζn(Tyn − p∗)− (1− γn − δn − ζn)p
∗∥

≤ γn∥φ(xn)− p∗∥+ ∥δn(xn − p∗) + ζn(Tyn − p∗)∥
+ (1− γn − δn − ζn)∥p∗∥.

(12)

According to equality (7), we have

∥δn(xn − p∗) + ζn(Tyn − p∗)∥2 = δn(δn + ζn)∥xn − p∗∥2 + ζn(δn + ζn)∥Tyn − p∗∥2

− δnζn∥xn − Tyn∥2.
(13)

Since T is pseudocontractive and p∗ ∈ Fix(T ), we obtain

∥Tyn − p∗∥2 ≤ ∥yn − p∗∥2 + ∥yn − Tyn∥2, (14)

and

∥Txn − p∗∥2 ≤ ∥xn − p∗∥2 + ∥xn − Txn∥2. (15)

From (7), (9) and (14), we have

∥yn − p∗∥2 = ∥(1− ηn)(xn − p∗) + ηn(Txn − p∗)∥2

= (1− ηn)∥xn − p∗∥2 + ηn∥Txn − p∗∥2 − ηn(1− ηn)∥xn − Txn∥2

≤ (1− ηn)∥xn − p∗∥2 + ηn(∥xn − p∗∥2 + ∥xn − Txn∥2)
− ηn(1− ηn)∥xn − Txn∥2

= ∥xn − p∗∥2 + η2n∥xn − Txn∥2.

(16)
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Similarly, we have

∥yn − Tyn∥2 = ∥(1− ηn)(xn − Tyn) + ηn(Txn − Tyn)∥2

= (1− ηn)∥xn − Tyn∥2 + ηn∥Txn − Tyn∥2 − ηn(1− ηn)∥xn − Txn∥2.
(17)

Note that ηn∥Tyn−Txn∥ ≤ λ∥yn−xn∥ and ∥xn−yn∥ = ηn∥xn−Txn∥. This together with
(17) implies that

∥yn − Tyn∥2 ≤ (1− ηn)∥xn − Tyn∥2 + ηnλ
2∥xn − Txn∥2 − ηn(1− ηn)∥xn − Txn∥2. (18)

Combining (14), (16) and (18), we have

∥Tyn − p∗∥2 ≤ ∥xn − p∗∥2 + η2n∥xn − Txn∥2 + (1− ηn)∥xn − Tyn∥2

+ ηnλ
2∥xn − Txn∥2 − ηn(1− ηn)∥xn − Txn∥2

= ∥xn − p∗∥2 + (1− ηn)∥xn − Tyn∥2 − ηn(1− λ2 − 2ηn)∥xn − Txn∥2.
(19)

Since ηn ≤ µ, 1− λ2 − 2ηn ≥ 1− λ2 − 2µ > 0. It follows from (19) that

∥Tyn − p∗∥2 ≤ ∥xn − p∗∥2 + (1− ηn)∥xn − Tyn∥2. (20)

Since δn ≥ 1 − ηn and 0 < δn + ζn < 1, (1 − ηn)(δn + ζn) − δn < 0. Substituting (20) to
(13), we have

∥δn(xn − p∗) + ζn(Tyn − p∗)∥2 ≤ δn(δn + ζn)∥xn − p∗∥2 + ζn(δn + ζn)(∥xn − p∗∥2

+ (1− ηn)∥xn − Tyn∥2)− δnζn∥xn − Tyn∥2

= (δn + ζn)
2∥xn − p∗∥2 + ζn[(1− ηn)(δn + ζn)− δn]∥xn − Tyn∥2

≤ (δn + ζn)
2∥xn − p∗∥2.

(21)

It follows from (12) and (21) that

∥xn+1 − p∗∥ ≤ γn∥φ(xn)− φ(p∗)∥+ γn∥φ(p∗)− p∗∥+ (δn + ζn)∥xn − p∗∥
+ (1− γn − δn − ζn)∥p∗∥

≤ (γnσ + δn + ζn)∥xn − p∗∥+ γn∥φ(p∗)− p∗∥+ (1− γn − δn − ζn)∥p∗∥
≤ [1− (1− σ)(1− δn − ζn)]∥xn − p∗∥
+ (1− δn − ζn)max{∥φ(p∗)− p∗∥, ∥p∗∥}

≤ max{∥xn − p∗∥, max{∥φ(p∗)− p∗∥, ∥p∗∥}
1− σ

}

≤ max{∥x0 − p∗∥, max{∥φ(p∗)− p∗∥, ∥p∗∥}
1− σ

}.

This implies that the sequence {xn} is bounded.



Fixed point problems of pseudocontractive operators 51

Take into account of (8) and (11), we have

∥xn+1 − p∗∥2 = ∥γn(φ(xn)− p∗) + δn(xn − p∗) + ζn(Tyn − p∗)

− (1− γn − δn − ζn)p
∗∥2

≤ ∥δn(xn − p∗) + ζn(Tyn − p∗)∥2 + 2γn⟨φ(xn)− p∗, xn+1 − p∗⟩
− 2(1− γn − δn − ζn)⟨p∗, xn+1 − p∗⟩

≤ (δn + ζn)
2∥xn − p∗∥2 − ζn[δnηn − (1− ηn)ζn]∥xn − Tyn∥2

+ 2γnσ∥xn − p∗∥∥xn+1 − p∗∥+ 2γn⟨φ(p∗)− p∗, xn+1 − p∗⟩
− 2(1− γn − δn − ζn)⟨p∗, xn+1 − p∗⟩

≤ (1− γn)
2∥xn − p∗∥2 − ζn[δnηn − (1− ηn)ζn]∥xn − Tyn∥2

+ γnσ∥xn − p∗∥2 + γnσ∥xn+1 − p∗∥2

+ 2γn⟨φ(p∗)− p∗, xn+1 − p∗⟩
− 2(1− γn − δn − ζn)⟨p∗, xn+1 − p∗⟩.

Therefore,

∥xn+1 − p∗∥2 ≤ [1− 2(1− σ)

1− σγn
γn]∥xn − p∗∥2 + γ2

n

1− σγn
∥xn − p∗∥2

− ζn
1− σγn

[δnηn − (1− ηn)ζn]∥xn − Tyn∥2

+
2

1− σγn
γn⟨φ(p∗)− p∗, xn+1 − p∗⟩

− 2

1− σγn
(1− γn − δn − ζn)⟨p∗, xn+1 − p∗⟩

≤ [1− 2(1− σ)

1− σγn
γn]∥xn − p∗∥2 + 2

1− σγn
(1− γn − δn − ζn)M

− ζn
1− σγn

[δnηn − (1− ηn)ζn]∥xn − Tyn∥2 +
γ2
n

1− σγn
M

+
2

1− σγn
γn⟨φ(p∗)− p∗, xn+1 − p∗⟩,

(22)

where M ≥ supn{∥xn − u∥2, ∥p∗∥∥xn+1 − p∗∥}.
If there is some integer m > 0 such that {∥xn − p∗∥, ∥φ(p∗) − p∗∥∥xn+1 − p∗∥} is

decreasing for all n ≥ m, then limn→∞ ∥xn − p∗∥ exists. Thanks to (22), we have

ζn
1− σγn

[δnηn − (1− ηn)ζn]∥xn − Tyn∥2

≤ [1− 2(1− σ)

1− σγn
γn]∥xn − p∗∥2 − ∥xn+1 − p∗∥2 + γ2

n

1− σγn
M

+
2

1− σγn
γnM +

2

1− σγn
(1− γn − δn − ζn)M

(23)

Observe that lim infn→∞
ζn

1−σγn
[δnηn− (1−ηn)ζn] > 0. This together with (23) implies that

lim
n→∞

∥xn − Tyn∥ = 0. (24)
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By (8), (9) and (10), we have

∥yn − Tyn∥2 = ∥(1− ηn)(xn − Tyn) + ηn(Txn − Tyn)∥2

= (1− ηn)∥xn − Tyn∥2 + ηn∥Txn − Tyn∥2 − ηn(1− ηn)∥xn − Txn∥2

≤ (1− ηn)∥xn − Tyn∥2 + ηnλ
2∥xn − Txn∥2 − ηn(1− ηn)∥xn − Txn∥2

= (1− ηn)∥xn − Tyn∥2 − ηn(1− ηn − λ2)∥xn − Txn∥2

≤ (1− ηn)∥xn − Tyn∥2,

(25)

which together with (24) yields ∥yn − Tyn∥ → 0. By (25), we conclude that

ηn(1− ηn − λ2)∥xn − Txn∥2 ≤ 1− ηn)∥xn − Tyn∥2 − ∥yn − Tyn∥2 → 0,

and hence

lim
n→∞

∥xn − Txn∥ = 0. (26)

Since {xn} is bounded, there is {xni
} ⊂ {xn} such that xni

⇀ p̂ and

lim sup
n→∞

⟨φ(p)− p, xn − p⟩ = lim
i→∞

⟨φ(p)− p, xni
− p⟩, (27)

where p = PFix(T )φ(p).
From (26), we have ∥xni

− Txni
∥ → 0. Using Lemma 2.1, we deduce p̂ ∈ Fix(T ). It

follows from (27) that

lim sup
n→∞

⟨φ(p)− p, xn − p⟩ = lim
i→∞

⟨φ(p)− p, xni − p⟩ = ⟨φ(p)− p, p̂− p⟩ ≤ 0.

Note that ∥xn+1 − xn∥ ≤ γn∥φ(xn)− xn∥+ ζn||xn − Tyn∥ → 0. Thus,

lim sup
n→∞

⟨φ(p)− p, xn+1 − p⟩ ≤ 0. (28)

Thanks to (22), we obtain

∥xn+1 − p∥2 ≤ [1− 2(1− σ)

1− σγn
γn]∥xn − p∥2 + γ2

n

1− σγn
M

+
2

1− σγn
γn⟨φ(p)− p, xn+1 − p⟩+ 2

1− σγn
(1− γn − δn − ζn)M,

(29)

According to Lemma 2.3, (28) and (29), we conclude that xn → p.
Suppose that there is an integer k such that ∥xk − p∥ ≤ ∥xk+1 − p∥. Let ωn =

{∥xn − p∥2}. Hence, ωk ≤ ωk+1. For all n ≥ k, set ς(n) = max{l ∈ N|k ≤ l ≤ n, ωl ≤ ωl+1}.
Then, ς(n) is non-decreasing, limn→∞ ς(n) = ∞ and ως(n) ≤ ως(n)+1 for all n ≥ k.

Similarly, based on (26), we have limn→∞ ∥xς(n) − Txς(n)∥ = 0 which results in that
ωw(xς(n)) ⊂ Fix(T ). So,

lim sup
n→∞

⟨φ(p)− p, xς(n)+1 − p⟩ ≤ 0. (30)

By (29), we have

ως(n)+1 ≤ [1− 2(1− σ)

1− σγς(n)
γς(n)]ως(n) +

2

1− σγς(n)
γς(n)⟨φ(p)− p, xς(n)+1 − p⟩

+
2

1− σγς(n)
(1− γς(n) − δς(n) − ζς(n))M +

γ2
ς(n)

1− σγς(n)
M,

(31)

This together with (30) leads to

lim sup
n→∞

ως(n)+1 ≤ lim sup
n→∞

ως(n). (32)
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Since ως(n) ≤ ως(n)+1, it follows from (31) that

ως(n) ≤
γς(n)

2(1− σ)
M +

1

1− σ
⟨φ(p)− p, xς(n)+1 − p⟩

+
1

1− σ
(1− γς(n) − δς(n) − ζς(n))M,

(33)

Combining (30) and (33), we have lim supn→∞ ως(n) ≤ 0 and hence limn→∞ ως(n) = 0 which
together with (32) implies that limn→∞ ως(n)+1 = 0. Applying Lemma 2.2 to get 0 ≤ ωn ≤
max{ως(n), ως(n)+1} which indicates ωn → 0, i.e., xn → p. The proof is completed. □

4. Conclusion

Krasnoselskii-Mann’s method fails to converge for a pseudocontractive operator T .
At the same time, strong convergence of Ishikawa’s method has not been obtained without
compactness assumption on C or T . In this paper, we construct a self-adaptive algorithm for
finding a fixed point of a Lipschitz pseudocontractive operator. Our algorithm has no need
to know a priori the Lipschitz constant of pseudocontractive operators. Strong convergence
result is obtained under some standard conditions.
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