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INERTIAL EXTRAGRADIENT ALGORITHMS FOR SOLVING
GENERALIZED EQUILIBRIA PROBLEMS

Lu-Chuan Ceng', Zhangsong Yao?, Tzu-Chien Yin®

In this paper, we present an inertial extragradient algorithm for solving a gener-
alized equilibrium problem with constraints of a split fixred point problem and a variational
inequality problem, in which the process exploits the contractiveness of one operator at
the upper-level problem and the pseudomonotonicity of another mapping at the lower
level. Strong convergence result of the proposed process is established under some mild
assumptions.
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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Let ¥ : C'x C —
R be a bifunction. Recall that the equilibrium problem (EP) is to find z* € C such that

U(z",y) >0, Vy € C. (1)

The solution set of (1) is denoted by EP(W¥). To solve (1), The following conditions need
to be known in advance: (H1): ¥(y,y) =0,Vy € C; (H2): ¥(z,y) + V(y,z) < 0,Vz,y € C;
(H3): limy_o+ ¥((1 = Ny + Az, 2) < U(y, 2),Vz,y,z € C; (H4) z — U(y, z) is convex and
lower semicontinuous (l.s.c.) for every y € C.

In (1), if ¥(z,y) = (Az,y — z),Vz,y € C, then we have the well known variational
inequality problem (VIP) which is to find z* € C such that

(Az*,y— 2™y >0, Vy € C. (2)

The solution set of the VIP is denoted by VI(C, A). An important method to solve (1) and
(2) is extragradient method introduced by Korpelevich [9]. Consequently, many algorithms
and techniques were designed for finding the solution set of (1) and (2), see [13, 15, 16, 18-
23).

Now, we consider the following a system of generalized equilibrium problems (SGEP)
([2]) which is to find (z*,y*) € C x C such that

{\Ill(x*ax) + <901y*7x *1'*> + i<l'* *y*,l'*x*> 2 0, Vr € C7

Ua(y*,y) + (p2a™y —y*) + o (y" — 2™y —y*) 20, vy € C,

(3)

where U1, Uy : C x C — R are two bifunctions, 1,92 : H — H are two mappings and
W1, b2 are two positive constants.
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Setting W7 = ¥, = 0, we have the following general system of variational inequalities
(GSVI) ([3]) which is to find (z*,y*) € C x C such that
(mpry* +az* —y*,x —a*) >0, Vo € C, )
(H2pax™ +y* —a*,y —y*) >0, Vy € C.

For any € K, define )Y (z) := {y € C : U(y,2) + 1(z —y,y — x) > 0,Vz € C} and set
G= Tl‘}’ll (I—ulgol)Tl;I’;’ (I — p2gp2). Let @1, 02 : H — H be a-inverse-strongly monotone and
B-inverse-strongly monotone, respectively. Let u1 € (0,2a) and po € (0,243). If (H1)-(H4)
hold, then (z*,y*) is a solution of SGEP (3) ([4]) if and only if 2* € Fix(G) = {z € ¥ :
G(z) = x} where y* = T)22(I — pop2)z*.

Let C and @ be nonempty, closed and convex subsets of real Hilbert spaces J{; and
Ho, respectively. Let W : H; — Hs be a bounded linear mapping and A, F' : H; — H;
and B : Hy — Hy be nonlinear operators. Recall that the bilevel split variational inequality

problem (BSVIP) ([2]) is to find z* € §2 such that
(Fzf,z—2%) >0, Vz € 12, (5)

where 2 := {z € VI(C,A) : Wz € VI(Q, B)} is the solution set of the split variational
inequality problem (SVIP) ([5]) of finding z* € C such that

(Az*,x —a*) >0, Vx € C, (6)
and y* = Wz* € @ such that

(By*,y—y*) >0, Yy € Q. (7)

To solve SVIP, Censor et al. [5] proposed the following iterative algorithm: for any initial
x1 € Hy, the sequence {x,} is generated by

Tpt1 = Po(I — M) (x, +YW* (Po(I — AB) — I)Wz,,), ¥n > 1. (8)

Consequently, the split problems have been investigated in the literature, see [7, 8, 10, 12,
17, 24, 25).

Very recently, Abuchu et al. [1] consider a bilevel split quasimonotone variational
inequality problem (BSQVIP) ([1]): find z* € £2 := {z € VI(C, A) : Wz € Fix(S)} such that

(Fz*,z—2")>0,Vz e (9)

where A : Hy; — JH; is quasimonotone and L-Lipschitz continuous, F' : H; — H; is
k-Lipschitzian and n-strongly monotone and S : Hy — Hy is 7-demimetric mapping with
T € (—00,1). The authors [1] proposed a modified relaxed inertial subgradient extragradient
iterative algorithm for solving the BSQVIP (9). Under suitable conditions, they proved the
strong convergence of the proposed algorithm to a unique solution of the BSQVIP (9).

In this paper, we investigate the following SGEP with a bilevel split fixed point
problem (BSFPP) and VIP constraint which is formulated as:

find z* € 5 such that P=(I — f)z* = 2%, (10)

where = := Fix(G) N 2 N VI(C, A) and 2 = {z € Fix(5) : Wz € Fix(5)}. We propose
hybrid inertial subgradient extragradient rule with line-search process for finding a solution
of (10) in real Hilbert spaces, where the rule exploits the contractiveness of the operator
f at the upper-level problem and the pseudomonotonicity of the mapping A at the lower
level. The strong convergence result for the proposed algorithm is established under some
mild restrictions.
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2. Preliminaries

Let C' be a nonempty closed convex subset of a real Hilbert space H. For each
x € H, there exists a unique nearest point in C, denoted by Pcox, such that |z — Pox|| <
lz -y, Yy € C. Tt is well known that P has the following properties: (i) ||[Pcz — Poyl|? <
(x —y,Pox — Poy),Ve,y € H; (i) 2 = Pox & (v —z,y—2) <0,V e H,y € C; (iii)
lz = y||* > llo — Poa||® + |ly — Pex|?, Vo € 5,y € C.
Recall that a mapping S : C' — H is called
(1) L-Lipschitz continuous if 3L > 0 such that ||Sx — Sy|| < L||x — y||,Vx,y € C.
(2) a-strongly monotone if Ja > 0 such that (Sx — Sy, z — y) > ||z — y||*,Vz,y € C.
(3) monotone if (Sx — Sy, z —y) > 0,Va,y € C.
(4) pseudomonotone if (Sz,y —z) > 0= (Sy,y —z) > 0,Vz,y € C.
(5) quasimonotone if (Sz,y —z) > 0= (Sy,y —x) > 0,Vz,y € C.
(6) n-strictly pseudocontractive if 3 n € [0,1) such that ||Sz — Sy[|* < ||z — y||* +n|/(I —
S)a — (I — S)yl||?,Vz,y € C.
(7) T-demicontractive if 37 € [0,1) such that ||Sz — y|* < ||z — y||*> + 7|z — Sz||?,Vz €
C, y € Fix(S) # 0.
(8) T-demimetric if 37 € (—o0,1) such that (z — Sz,z —y) > ST ||lz — Sz|?,Ve € C, y €
Fix(S) # 0.
(9) sequentially weakly continuous if V{z,,} C C, the relation holds: z,, = x = Sz,, — Sz.
If S: C — C is an n-strictly pseudocontractive mapping, then (i) for all z,y € C,
v —y) +6(Sz = Sy)|| < (v + )|z —yl, where v > 0,6 = 0 and (v + 6)n < ~; (ii)
ISz = Sy|| < 2l =yl Va,y € C.
If B:H — H is a (-inverse-strongly monotone mapping, then ||(I — uB)y — (I —
uB)z||? < |ly — 2||? — u(2¢ — p)||By — Bz||?. In particular, if 0 < p < 2¢, then I — uB is
nonexpansive.

Lemma 2.1 ([6]). Assume that A : C — H is pseudomonotone and continuous. Then
u € C is a solution to the VIP (Au,v—u) > 0,Yv € C if and only if (Av,v—u) > 0,Vv € C.

Lemma 2.2 ([14]). Let {a,} be a sequence of nonnegative numbers satisfying the conditions:
ant1 < (1= Ap)an + AnYn, V0 > 1, where {\,} and {y,} are sequences of real numbers such
that (i) {\n} C [0,1] and 307 | A, = 00, and (i) limsup,, .o v <0 or > 07 [Apyn| < 00.
Then lim,, o a, = 0.

Lemma 2.3 ([11]). Let {®,,} be a sequence of real numbers that does not decrease at infinity
in the sense that, H{ Py, } C {Pm} such that Opy, < Ppy+1,Yk > 1. Let the sequence
{¥(m)}m>m, of integers be formulated as ¥(m) = max{k < m : &), < P11} with integer
mo > 1 satisfying {k < mg : P < Ppy1} # 0. Then, (i) Yv(mo) < P(mo+1) < -+ and
P(m) — oo; (it) (bw(m) < (I)w(m)+1 and ®,, < (I)w(m)_;,_l,Vm > mg.

3. Main results

Let H; and Hy be two real Hilbert spaces and C' be a nonempty, closed and convex
subset of H;. Suppose that the following conditions hold:
(C1): ¥y,Ty: C x C — R are two bifunctions satisfying (H1)-(H4) and W : H; — Ha is a
non-zero bounded linear operator with the adjoint W*.
(C2): f : Hy — H; is a S-contraction, S : H; — H; is an n-strictly pseudocontractive
mapping and S : Hy — Hs is a 7(€ (—o0,1))-demimetric mapping such that I — S is
demiclosed at zero.
(C3): A: H; — H; is a pseudomonotone and L-Lipschitz continuous mapping satisfying the
condition: [|Az| < liminf, , ||Ax,| for each {z,} C C with z, — z, v1,p2 : H1 — H;
are a-inverse-strongly monotone and [S-inverse-strongly monotone, respectively.
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(C4): & :=Fix(G) N 2 NVI(C, A) # B, where 2 := {z € Fix(S) : Wz € Fix(S)} and
G =T} (I — prp1) T2 (I — paws) for py € (0,2a) and py € (0,25).

Let {e,} € [0,1], {an} C (0,1), {Bn} < (0,1), {yn} € (0,1) and {d,} C (0,1)
satisfying

() sup,»1 &% < 00, Bn +¥n +0p = 1 and (v, + 0n)7 < Y0, VR > 1

(ii) limy,—yo0 vy, = 0 and Y 07 | @, = 00;

(iii) 0 < liminf,, o B, < limsup,,_, . B, < 1 and liminf,, ., §, > 0.
Algorithm 3.1. Let A > 0, £ € (0,1), 0 >0, p € (0,1) and z1,z90 € H;y be arbitrary.
Calculate x,41 as follows:

Step 1. Set wy, = Xy + €n(xy, — Tp—1) and calculate y, = Po(w, — &, Aw,,), where &,
is chosen to be the largest & € {\, N, \(%, ...} satisfying

El[Awn — Aynl| < pllwn — ynll- (11)

Step 2. Construct the half-space Cp, := {y € Hy : (wy, — EnAwy — Yn, yn — y) > 0},
and compute v, = Pe, (W, — &, Ayn).

Step 3. Caleulate z, = anf(zn) + (1 — an)[vn — oy W*(I = S)Wu,,], where for any
fized € > 0, o, is chosen to be the bounded sequence satisfying
(1 —7)|Wv,, — SWo, |2

O<e<o, < if Wo,, # SWu,, 12
- [|W* (W, — SWu,)||? 7 (12)
otherwise set o, = o > 0.
Step 4. Calculate

Set n:=n+ 1 and return to Step 1.
Remark 3.1. The line-search process (11) is well defined and min{A\, %} <& <A

Lemma 3.1. Let {x,} be the sequence generated by Algorithm 3.1. Then, the stepsize o,
formulated in (12) is well-defined.

Proof. Tt is sufficient to show |W*(Wuv,, — SWu,,)||? # 0. Pick a ¢ € Z arbitrarily. Since S
is 7-demimetric mapping, one gets
1—

lvn — q||IIW* (Wu,, — SWu,)|| > (v, — ¢, W* (Wu,, — SWu,,)) > TTHan — SWu, |2 (14)
If Wu,, # SWu,,, one has |[Wuv,, — SWu,||? > 0. Therefore, | W*(Wuv,, — SWu,)||? >0. O
Lemma 3.2. Let {w,}, {yn}, {vn} be the sequences constructed in Algorithm 3.1. Then,

[on —all® < flwn —all* = (1 = )llyn — wall® = (L = @) |lyn —vall? Vg € E. (15)
Proof. First, for each g € = C C C C,,, one has

1 1 1

[[vn — q”2 < Sllvn — qH2 + 5”wn - q”2 - §||Un - wnH2 —(vn — ¢,&nAYn).
So, it follows that |lv, — q[|? < ||wn — q||? = ||vn — wn||?* — 2{vn — q, & Ayy), which together
with (11) and the pseudomonotonicity of A, implies that (Ay,,y, —¢) > 0 and

[on = all? < llwn —all* = l[vn = wall? + 262 ((AYns @ = Yn) + (AYn, Yo — vn))
S ||wn - Q||2 - ||Un - yn||2 - ||yn - wn||2 + 2<wn - £nAyn — Yn,Un — yn>

Since v, = Pe, (W, — &, Ayy) with Cy, := {y € Hy : (w,, — EnAwy, — Yn,yn — y) > 0}, we
have (w,, — &AW, — Yn, Yn — vn) > 0, which together with (11), implies that

2<wn - anyn — Yn,Un — yn> = 2<wn - anwn —Yn,Un — yn>

(16)
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Consequently, we obtain the desired result. (]
Lemma 3.3. Let {x,} be the sequence constructed in Algorithm 3.1. Then, {x,} is bounded

provided sup,,>q ||z, — 21| < oc.

Proof. Set z, = an f(xn) + (1 — ap)u, where u, := v, — o, W*(I — S)Wu,,,Vn > 1. Since
0 < liminf, o Bn < limsup,, . Bn < 1, we may assume, without loss of generality, that
{Bn} C [a,b] C (0,1). Tt is clear that Pz o f is a contraction with the unique fixed point
z* € Hy. So, there exists the unique solution z* € 5 = Fix(G) N 2 NVI(C, A) to the VIP
(I-f)2"y—2")20,Vy €=, (17)

Hence, there exists the unique solution z* € = to the SGEP (10) with the BSFPP and VIP
constraint. Note that [[w, — 2*| < [lzn — 2*[| + o - £ || — @p-1]]. From sup,,>; &> < o0
and sup,,>; ||7n — 21| < 00, it follows that { ||z, — 2,,—1||} is bounded. Thus, IM; >0
s.t. ||z, — xpo1]| < My, Vn > 1. Hence,
lwn, — 2% < ||zp — 2"|| + anM1,Vn > 1. (18)
Moreover,
llzn = 2" < andllen — 2" + (1 = an)llun — 27| + o[ f(z7) = 27| (19)

Observe that |Ju, —2*||? = ||v, — 2*||? — 20, (W(v, — 2%), (I — S)Woy,) + a2 || W* (I — S)Wo, ||2.
Since the operator S is 7-demimetric, we have

lun = 217 < lon = 271" + onlon|[W (I = $)Won||* = (1 = T)|(T = $)Wua|*]. (20)
Taking into account (12), we get o, + € < (ll‘xl'&v”g)ﬁviﬁ|§" which implies that

On (O |W*(I = S)Wu,||? — (1 — 7)[|[Wu,, — SWu,||?) < —one|W*(I — S)Wu,||?.  (21)

Using 0 < € < oy, in (12), we have that —e2 > —o,€ and hence

— e WH(I — S)Wu, ||2 < —e|W*(I — S)Wu,|2. (22)
Combining (20), (21) and (22), we obtain
it = 212 < llom — 22 = el WA = SYWou < flon — 2° . (23)

In addition, by Lemma 3.2, we get
[ = 2" 1% < Jlwn = 21 = (1 = @) llyn — wall® = (1 = w)llyn — val® < Jlwn — 2|12, (24)
Combining (18), (23) and (24), we obtain
[un = 27| < flon = 27| < flwn = 27| < Jl2n = 27[| + 0 My, V0 > 1. (25)
From (19) and (25), we have
[nt1 = 2% = |1Bn(@n — 27°) + Y (G2n — Z*) +008(Gzn — 7))
< Ballen = 2"l + (1= B)lT=5-n(Gzn = 27) + 625 (G2 — 2"

62 o (26)
<[ —an(l=8)01- 5)]||wn — 2| + an(l = B)[My + || £ (%) — 2*|]
< mae{ o, — =+, LHED ==

By induction, we obtain ||z, — 2*|| < max{||z; —z*|, %Z;)_Z*”}Nn > 1. Thus, {z,} is
bounded, and so are the sequences {uy,}, {vn}, {wn}, {yn}, {zn}: {f(@n)}, {Gzn}, {SG2,}.
]



8 Lu-Chuan Ceng, Zhangsong Yao, Tzu-Chien Yin

Lemma 3.4. Let {v,},{xn}, {20} be the sequences generated by Algorithm 3.1. Suppose
that ©p, — Tpy1 — 0, v, — 2y, — 0 and z, — Gz, — 0. Then wy,({zn}) C Z provided
sup,,>1 [|n — Tn_1|| < oo where wy,({zn}) = {2z € Hy : 2y, — 2 for some {z,, } C {w,}}.

Proof. Observe that ||w, — zn|| = enllzn — Tn-1]] < anM; — 0(n — o0). Take a fixed
z € wy ({zy}) arbitrarily. Then, 3{z,, } C {z,} s.t. z,, — z € Hy. Thanks to w, —z, — 0,
we know that I{wy,, } C {wnp} s.t. wy,, — 2z € H;. Next we show that

l2n = 217 < andllzn — 2512 + (1 = o) llwn — 2712 = (1 = ) (1 = ) [llyn — wnll?
H 1y — vnl®] + 200 ((f = 1)z, 20 — 27).

Indeed, from Algorithm 3.1, we have z, — 2* = an(f(2n) — f(2*) + (1 — apn)(u, — 2*) +
an(f(z*) — 2*). From (15) and (25), we have

20 = 2*11* < llen (f(zn) = F(z°) + (1 = an)(un — 2) | + 200 {(f = 1)2", 20 — 27)
< apdl|zn — 2|2 + (1= an)llwn — 2" = (1 = an)(1 = 1) [lyn — wall?
+llyn = vall*) + 200 ((f = D)2", 20 — 27).
By (25) and (27), we have

(27)

* * 1 * Q. *
s =21 < Bullan =21 4+ (1 = Bl T b1n(Gn = ) + 805G = )P
< (2n — 2| + anMi)? = (1 = Ba)(1 = @) (1 = @) [llym — wn? (28)
+ ||yn - UnH2] + O‘nMZa

where sup,,~ 2|/(f — I)z*||[|zn — 2*|| < My for some My > 0. This immediately implies that

(1= Ba) (1 = an)(X = Wlyn = wall* + lyn — vall*]
< (an My + |20 — zpgal))(an My + [lzn — 27| + [lznga — 27(]) + an Mo

It follows that lim,,— oo ||yn —wn|| = limy,—e0 ||Yn — vn|| = 0 which together with w,, —z, — 0
and v, — z, — 0, leads to

[#n = znll < l2n — wall + lwn = ynll + lyn — vall + [[vn = 20 ]l = 0(n — o0). (29)
Consequently, this yields |[v, — 2| < [|vn — 2| + |20 — Zall = 0(n — o0).
In what follows, we claim that z € 5. In fact, from y,, = Po(w, — &, Aw,), we have
(wWn = En AW = Yn, yn — y) > 0,Vy € C, and hence
1
&n
Note that &, > min{\, %z} So, from (30) we get liminfy_, oo (Awn, ,y — Wy, ) > 0,Vy € C.
Meantime, observe that (Ay,, y—yn) = (AYn— Awn, y—wy) +{Awn,, y—wp) + (AYn, Wr, —Yn)-
Since w, — yn, — 0, from L-Lipschitz continuity of A we obtain Aw, — Ay, — 0, which
together with (30) arrives at liminfy_, o (AYn,, ¥ — yn,) > 0,Vy € C.

Take a sequence {k;} C (0,1) satisfying ki | 0 as k — co. For all k£ > 1, we denote
by my the smallest positive integer such that

(AU, Y = Yn,) + ki > 0,0 > my,. (31)

Since {ky} is decreasing, it is clear that {my} is increasing. From the assumption on
A, we know that liminfy o0 [|Ayn, || > ||Az|. If Az = 0, then z is a solution, i.e., z €
VI(C,A). Let Az # 0. Then we have 0 < ||Az|| < liminfy o0 [[AYn, |- Without loss
of generality, we may assume that Ay,, # 0,Vk > 1. Noticing that {ym,} C {yn,} and

Ayn, # 0,Vk > 1, we set Ay, = H;‘;’%, we get (AYm,,, im,) = 1,Vk > 1. So, from (31)
‘Ink;
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we get (AYm,, Y + Ekhm, — Ym,) > 0,Vk > 1. Again from the pseudomonotonicity of A we
have (A(y + Kihim,, ) ¥ + £6hm,, — Ym,,) > 0,Vk > 1. This immediately yields

<Ay7 Yy — ymk> > <Ay - A(y + ‘%khmk)v Y+ K’kh‘"nk - ymk> — Kk <Ay7 hmk>7Vk > 1 (32)

We claim that limy_,o0 £5m, = 0. Indeed, from y,, — z (due to x, —yn, — 0), {yn} C C
guarantees z € C. Note that {ym,} C {yn,} and kr | 0 as k — oco. So it follows that

lim supy,_, o Kk
minfy e [[Ayn, ||

0 < limsupy_, o ||fEfim, || = limsup,_, o I\AZ:%II <3 = 0. Hence we get
ﬁkhmk — 0.

Next we show that z € Z. Indeed, letting k — oo, we deduce that the right-hand
side of (32) tends to zero by the uniform continuity of A, the boundedness of {wy,, }, {fim, }
and the limit limy_, oo Kifim, = 0. Thus, we get (Ay,y — z) = liminfy oo (AY, ¥ — Ym,,) >
0,Vy € C. By Lemma 2.1 we have z € VI(C, A). Furthermore, we claim Tz € Fix(S). In
fact, since z,, = ay, f(x,) + (1 — o )u,, where u, == v, — o, W*(I — S)Wu,,, using 0 < € < o,
and v, — 2z, — 0, we obtain that ||u, — vn|| < ||2n — Vall + an|ltn — vnl| + @nllf (@n) — va|| —
0(n — o) and hence

W = S)Won || < n|[W* (I = S)Wunl| = [[on —un| = 0 (n — o0),
which together with the 7-demimetricness of S, leads to
1—7 I
2
It follows that

(I — YW, |2 < [IW (I — S)Won][|lvn — 2*]| = 0 (n — ). (33)

— 1
HSGZn - xn” - ?”xn-‘rl — Tp — ’YTL(GZ’VL - xn)”

3

1
< 5 lznts = zall +1G2n = 2all + |20 = @nll) = 0 (n = o0),
and
ISz, — 2|l < ||STn — SGzy|| + |SG2y — 0|
1+7n —
< ﬁ(ﬂxn —zn|l + ll2n — Gznl]) + |SG2n — zp|| = 0 (n — 00).

Since I — S is demiclosed at zero, x, — Sz, — 0 and z,,, — z, we have z € Fix(S). Also,
noticing v, — 2, — 0 and z,, — z, we get v,, — z. Since W is bounded linear operator,
it is easy to see that W is weakly continuous on H;. So, we obtain that Wv,,, — Wz. By
the assumption on S, we know that I — S is demiclosed at zero. Hence, from (33) we derive
Wz € Fix(S), which immediately yields z € 2. In addition, noticing z, — z, — 0 and
T, — 2, we get z,, — z. Therefore, z € VI(C,A)N N = =. O

Theorem 3.1. Let {x,} be the sequence generated by Algorithm 3.1. Then {x,} converges
strongly to the unique solution z* € = of the SGEP (10) with the BSFPP and VIP constraint,
provided sup,,>q ||z — 2,1 < oc.

Proof. In terms of Lemma 3.3 we obtain that {x,} is bounded. Note that there exists the
unique solution z* € = of the SGEP (10) with the BSFPP and VIP constraint, that is, the
VIP (17) has the unique solution z* € =. For convenience, we write y* := Tl‘f’;’ (I — pops)z*,
Gn = T22(I — pasp2)zn and pp = T2 (I = pap1)qn. Then z* = Gz* = T2 (I — pag1)y*
and p, = Gz,.

Note that flgn — 5[ < [l2n — 2° | — #2(28 — 2)l|pazn — w222 and [[pn — 2*|? <
lan — y*11? — p1(2c — p1)||p1@n — @19*||>. Combining these two inequalities, we obtain

*HQ

II? P = 120 = pa)llpran — 1y 7. (34)

lpn = 2"1I* < llzn = 2*|1* = p2(28 — p2) 0220 — @22
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According to (23), (25) and (28), we have
20 = 2*[1? < andllzn — 2*[° + (1 = an)llun — 2*||* + 200 ((f — 1)2*, 20 — 2%)
< andllzn — 217 + (1 = an)[wn — 27| = W (I = S)Wo,||?]
+2an((f = 1)2", 20 — 27),

which together with (34), arrives at

zns1 = 2*|* < Ballwn — 2[* + (1~ Bn) (0 — 2%) + 8a(Spn — 27)]II?

1—fBn
< Ballan — 2% 17 + (1 = Bn)andl|lzn — 2" + (1 — an) (wn — 27|17 (35)

— W (I = S)Wun?) + an My — p2(28 — p2) || 0220 — 22* ||

— (20 = p1)[lprgn — e19° 1%,

where sup,,~1 2||(f — I)2*[|||zn — 2*|| £ M2 for some My > 0. Moreover, from (25) we have
lwn = 217 < flan — 27| + o Ms, (36)

where sup, > (2Mi ||z, — 2| + an M) < Ms for some Mz > 0. Combining (35) and (36),
we obtain

21 = 2*)* < flan = 27|17 = (1 = Ba)[(1 = @)W (I = S)Wa, |2
+ 12(28 = p2)llp2zn — ©22* 17 + 1 (2 — ) [ e10n — 19" |I°] + cn Mo,
where My := Ms + M3. This immediately implies that

(1= B)l(1 = cn)e[|W* (I = S)YWon|* + 12(28 — p2) 0220 — 22"

* 12 * |12 * |12 (37)
+ w1 (2a — p)|le1gn — e1y* (7] < lzn = 2717 = |1 — 277 + M.
Observe that
lwn = 2*[1* < l2n — 2*1* + enllzn — nall@llzn — 2| + enllzn — Tn-1ll). (38)
By (25), (35) and (38), we have
241 = 2% < Bullzn — 2|1 + (1 = Ba)andlzn — 2% + (1 — ) wn — 2%
+ 20, ((f = 1)2*, 2 — 27)]
<= (1= Ba) (1 = &)][Jan — 2°|1> + an(l — B,)(1 = 6) (39)
3M e, 2(f —Dz* 2 — 2%)
T=ga, ool =)
n

where sup,,~1{||xn — 2*|l;enl|Tn — Tn-1||} < M for some M > 0.
Set ®,, = ||, — 2*||?. Now, we show the convergence of {®,,} to zero by two cases.
Case 1. Suppose that there exists an integer ng > 1 such that {®,} is nonincreasing,.
Then the limit lim,, o ®,, = d < 400 and lim, o0 (P, — Pp+1) = 0. From (37) we obtain

(1= B — )W (I = S)Wor |I” + p2(28 — p2)ll022n — 022" |7
+ 11 (20— 1) [l1gn — 15" 7] € P — Prugr + o My,
Since a,, = 0, ®,, — P01 — 0, w1 € (0,2«) and po € (0,20), one has

Jim [lpozp — oz = i [[p1gn — pry*[| = lim [W*(I — S)Wo,| = 0. (40)
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Furthermore, by the firm nonexpansivity of Tf)ll we obtain that
Ipn = 2*17 < {gn — ¥ 00 — 2°) + (019" — P10, Pn — 27)
1 * * * *
< Slllgn =917 + llpn = 211 = llan = pn + 2" = 5[]
+ pillery™ = e1gallllpn — 27|
which hence arrives at
o0 = 2117 < llgn — v 11> = llan — pn + 2* — v |I* + 21 010" — @1nllllpn — 2°]I.
In a similar way, one gets
lgn =41 < llzn = 2117 = llzn = gn +y* = 2" + 202l p22* = p22allllgn — v |-
Combining the last two inequalities, one deduces that
Ipn = 2*11* < ll2n = 2" = llzn = @n + 9" = 2"[* = llgn — pn + 2" = y|1?
+ 2p2llp22" — paznllllgn — 7|l + 201lle1y” — ranllllpn — 27[l,
which together with (25) and (35), leads to
241 = 27 < (|20 = 2* + @ d1)? = (1 = Bo)lllzn — gn +y* — 2*|1?
+llan = pn + 2" =y 171+ 2p2llp22™ — w2zallllan — vl
+ 2plle1y™ = praallllpn — 27|

This immediately ensures that
(1= Ba)lllzn = an +y* = 2I1° + llgn — pu + 2* = y*||”]
< (V@n + anMi)? = ot + 2l 022" — 02zallllgn — y*[| + 211 ll01y™ — pranllllpn — 7).
From (40) and the boundedness of {p,}, {¢n}, one has
lim ||z, — ¢, +y" —2%|| = lm ||g, —pn+ 2" —y*|| =0,
n—oo n—oo
which hence yields
I2n = Gznll = ll2n = Pull < llzn —a@n + 9" = 2"+ llgn — pn + 2" = y*|| = 0 (n — 00). (41)

Observe that ||wy, — 2| = ay - £-[|2n — 2p1|| < @My — 0(n — 00). By (40), we get

120 — vnll < anllf(zn) — vall + (1 = an)on [ W (I — S)Wuo,||
S an(If@n)ll + [lvnl]) + on WL = S)Won|| = 0 (n — o).

Using (28) one has that
(1= B) (1 = an)1 = Wlyn — wal® + lyn — vall?]
< (\/an+ anM1)2 —zns1 — z*||2 + a, M.

Hence, lim,, o ||Yn — wp|| = limy— o0 |yn — vy || = 0 which together with w,, — z,, — 0 and
Zn—Un — 0, leads to ||z, — 2| < [|J2n—wnl|+|wn —ynll+Yn —vnl| v — 20l = 0 (n = 0).
From (41) it follows that

|Gz = @all < G2 — 2all + 120 — @all = 0 (n = o0). (42)
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On the other hand, using (28) we deduce that

241 = 21 = Bullzn — 21 + (1 = Ba) (P = %) + 6u(Spa — 2°)]|1?

_r
1_671

1 _
= Bn(1— Bn)”W[’Yn(xn —Pn) + On(Tn — Spn]||2
< ([lzn — 2% + anM1)? + an Ma
1 _
- Bn(l - Bn)”ﬁb/n(xn - pn) + 5n($n - Spn]||27

which hence yields

1 _
Bn(l - Bn)”m['Yn(xn - pn) + 571(3371 - Spn“|2 S (\/ q)n + aan)Q - (I)n-i-l + anMQ-
It follows that
nlggo | 1_ [V (@ = Pn) + 0n(zn — Spa]|| = 0. (43)
Note that
On||n —§Gan < lﬁﬁﬂxn —§Gzn||
< D (@ — ) + 0 = Spal| + —— [l — G

From (42) and (43) we obtain that lim,, o ||z, — SG2,|| = 0. So,
[Znt1 — 2l < NGzn — 20l + HgGZn — x| = 0 (n — o0).

In addition, from the boundedness of {x,} it follows that there exists a subsequence {z,, }
of {z,} such that

limsup((f — I)z*,zp, — 2*) = lim ((f — I)z", x,, — 2"). (44)

n— oo k—o0

Since H; is reflexive and {z,} is bounded, we may assume, without loss of generality, that
Zn, — Zz. Thus, from (44) one gets

limsup((f — I)z",xp, — 2%) = lim ((f — 1)z, 2, — 27)

={((f—1)z",Z7—z").
Applying Lemma 3.4, we deduce that z € w,({z,}) C E. From (17) and (45) one gets
limsup{(f — I)z*,x, — 2") = {((f —1)z",Z2 — 2*) <0,

n—oo

which together with x,, — z, — 0, leads to
limsup((f — 1)*, 20 — 2*) < limsup[|(f — 1) [ |20 — @all + (f = 1)z", a0 — )] 0.
n— oo

n—oo

En
QAn

Lemma 2.2 to (39), one has lim,,_,« ||z, — z*||* = 0.

Case 2. Suppose that IH{ P, } C {®,} s.t. D, < Py, 11,k € N, where N is the set of
all positive integers. Define the mapping ¢ : N — N by ¥(n) := max{k < n: &) < Pyy1}.
By Lemma 2.3, we get ®y,,) < ®yn)41 and @, < Py()41. From (37), we have

(1= By (1 = () E W (I = S)YWoy ) I? + 12(28 — p2) 022y — 922"
+ 11 (20 — p1)le1qp) — @1 17] < Pyin) — Py 41 + Q) Ma,

| —zp—1||+ W} < 0. Consequently, applying

Note that limsup,, .. { % .
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which immediately yields

Jim (lpozym) — w227 = I [l@1gym) —ery”] = lim W51 = S)Woym || = 0.
So it follows that
12p(n) = vg(m)ll < ) (1 (@) | + [[og @) 1) + o) WL = S)Woym)ll = 0 (n — oo).

Using the same inferences as in the proof of Case 1, we deduce that lim, o [[2y(m) —
Gz¢(n)|| = limy, 00 [|Tpn)+1 — zw(n)H = 0 and limsup,,_, .. ((f — I)z*,zwn) —2*) <0.On
the other hand, from (39) we obtain

3M 61/) n
) (1= By)) (1 = 0)y(n) < Py(n) = Pymy+1 + iy (1 = By ) (1 = 0)[—5 - %(( ))
2(f = I)2", 2y(n) — 2%)
X [T (n) = Tyl + T 5 w ]
3M  Ey(n)

< ayy (L= Bym) (1 = 8)l7— ot 24y = Ty -1
2((f = 1)z*, zpn) — z*}}
1-6 ’

which hence arrives at limsup®,(,,) < 0. Thus, lim, e |2y ) — 2* |2 = 0. Also, note that
n—oo

+

|z gyt = 2* 1 = N2y — 2* 17 < 2llegmysr = Ty lllTgm) = 2l + [Tpmyr1 — zpm 1>
Owing to ®,, < ®y(,)41, We get

lzn — 2% < legm) — 212 + 20Zpm)+1 — Ty Tpm) = 251 + 12pm)+1 — 2@ I = 0.

That is, x,, — 2* as n — oo. This completes the proof. O

4. Conclusion

In this paper, we introduce hybrid inertial subgradient extragradient rules with line-
search process for solving a system of generalized equilibrium problems with a bilevel split
fixed point problem and a variational inequality constraint, where the rule exploits the
contractiveness of one operator at the upper-level problem and the pseudomonotonicity of
another mapping at the lower level. The bounded linear operator in the bilevel split fixed
point problem involves a fixed-point problem of a strict pseudocontraction mapping in its
domain space and a demimetric mapping in its range space. The strong convergence result
for the proposed algorithm is established under some additional conditions.
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