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PERFORMANCE MAPPING OF K-LUT BASED FPGAS 

I. I. BUCUR1 

Circuitele FPGA sunt tot mai mult utilizate in cele mai diverse aplicatii: 
pentru prototipare rapidă a produselor noi (inclusive implementarea rapidă a 
ASIC), pentru emularea logică, pentru producerea uni lot mic de produse, ori dacă 
un dispozitiv trebuie să fie, în uz, reconfigurabil (calcul reconfigurabil). A 
determina dacă o funcţie, posibil mare, poate fi implementată printr-un bloc logic 
programabil, din nefericire, este în general, o problemă dificilă. Această problemă 
este numită problema potrivirii Boole-ene. Lucrarea de faţă introduce 
implementarea unui nou algoritm menit să implementeze orientat spre viteză reţele 
combinaţionale utilizănd FPGA-uri bazate pe k-LUT. 

 
FPGA circuits are increasingly used in many fields: for rapid prototyping of 

new products (including fast ASIC implementation), for logic emulation, for 
producing a small number of a device, or if a device should be reconfigurable in use 
(reconfigurable computing). Determining if an arbitrary, given wide, function can 
be implemented by a programmable logic block, unfortunately, it is generally, a very 
difficult problem. This problem is called the Boolean matching problem. This paper 
introduces a new implemented algorithm able to map for performance 
combinational networks using k-LUT based FPGAs. 

 

Keywords: k-LUT based FPGAs, combinational circuits, performance-driven 
mapping.  

1. Introduction 

The Field Programmable Devices (FPDs) have been widely used for 
implementation of small to medium size digital circuits.  

There are two major types of FPDs  - Field Programmable Gate Arrays 
(FPGAs) that usually consist of small programmable logic cells, such as k-input 
single-output lookup tables, and Complex Programmable Logic Devices (CPLDs) 
that are based on multiple-input and multiple-output PLA-like logic cells. Both of 
FPGAs and CPLDs have been widely used [1], [2], [3], and [4].  

The programmable gate array technology was introduced in the mid-1980s 
as a lesser-cost substitute for the implementation of application-specific integrated 
circuits (ASICs).  
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Main difference between the mask-programmable gate array technology 
and the cell library technology for ASICs, and FPGA is that the last one does not 
need to go through the fabrication process for circuit implementation and is field 
programmable and often field reprogrammable (LUT based ones).  

Although the FPGA in general has a lower gate density and slower circuit 
speed, its advantages of programmability, shorter design turnaround time, and 
lower initial nonrecurring engineering cost (good for low to medium volume 
production) often offset its disadvantages.  

FPGA circuits are increasingly used in many fields: for rapid prototyping 
of new products (including fast ASIC implementation), for logic emulation, for 
producing a small number of a device, or if a device should be reconfigurable in 
use (reconfigurable computing). 

FPGAs consist of three kinds of programmable elements: programmable 
logic blocks (PLBs), routing resources, and input–output (I/O) blocks. Each logic 
block contains combinational components such as multiplexers (MUXs), simple 
gates (e.g., OR and AND), programmable lookup tables (LUTs), and sequential 
components such as flip-flops [5], [6], [7], and [8].  

Routing resources include segmented interconnects and switching blocks. 
The segmented interconnects connect to the inputs and outputs of logic blocks 
while the switching blocks link the segments to form long routing tracks to 
implement routing topology.  

The I/O blocks can be programmed to become the primary inputs (PIs) or 
primary outputs (POs) of the circuits on FPGAs.  

Most commonly used FPGAs are based on k-input single-output lookup 
tables (k-LUTs). LUTs are the basic logic blocks in many FPGAs today. A k-input 
LUT (k-LUT) consists of static random access memory (SRAM) cells that can 
store the truth table of an arbitrary k-input function [5], [9], and [10].  

Every k-LUT can implement any function with no more than k inputs. In 
practice, k is usually small, for example, 4-LUTs are widely used in commercial 
FPGAs, as the area of a k-LUT grows exponentially with large k. It was showed 
[30], and [24] that 4-input, single-output LUT cell yields the smallest FPGA area 
of any k-LUT cell for a wide range of programming technologies and routing 
pitches.  

Most of actually commercially available FPGAs are using, indeed, LUTs 
of input size of 4 or 5 ([10], [11], and [12]). In many FPGAs, small LUTs are 
connected by fast local connections to form a programmable logic block (PLB) 
for implementation flexibility, better performance, and proficient utilization of 
silicon area. A PLB can often implement one arbitrary k-input function, where is 
determined by the PLB architecture or some large function of more than k inputs 
[13], [14], [15], [16], [17], and [18].  
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Determining if an arbitrary, given wide, function can be implemented by a 
PLB, unfortunately, it is generally, a very difficult problem. This problem is 
called the Boolean matching problem.  

Most of existing technology mapping algorithms first produce a k-LUT 
mapping solution, and then pack LUTs into PLBs [9], [10], [11], [19], and [20]. 
An ample survey of representative FPGA technology mapping approaches can be 
found in [10] and [26].  

While placement and routing is strongly connected with the detailed 
architecture inside of the chip and mostly managed by the commercial FPGA 
software, the optimization and mapping can be more influenced by the user [21], 
[22], [23], [24], and [25]. 

Recent innovations in field-programmable gate array (FPGA) architecture 
has led to the development of heterogeneous FPGA families [23] that combine 
diverse sets of logic resources on the same silicon substrate, having heterogeneous 
blocks, similar to Apex20KE [3].  

To support wide fan-in, low logic density sub-circuits, such as finite state 
machines, some contemporary FPGA architectures [20] contain SRAM-
configurable PLAs. Unlike fine-grained LUTs, PLAs can implement sets of logic 
functions with minimal interconnect, the most area expensive resource in 
contemporary FPGAs. For m terms based PLA structures, this area efficiency 
often comes at the cost of increased minimum delay for PLA paths versus 
corresponding LUT paths, requiring resource balance. When coupled with fine-
grained LUTs, PLAs provide an integrated programmable resource that can be 
used in many digital system designs to support non-critical-path control logic for 
LUT-based data paths [27], [28], [29], [30], [31], [32] and [33]. 

In order to maximize performance and device utilization, recent 
generations of FPGAs take advantage of speed and density benefits resulting from 
heterogeneous FPGAs, which provide either an array of homogeneous PLBs, each 
configured to implement circuits with LUTs of different sizes, or an array of 
physically heterogeneous LUTs.  

The PLBs in FPGAs made by Xilinx, XC4000 series [34], Lucent, 
ORCA2C series [25], and the recently announced Vantis, VF1 [2], can be 
configured to have heterogeneous LUTs, as examples of versatile heterogeneous 
FPGAs. These heterogeneous FPGAs do not have limitations on the availability of 
LUTs of specific configurable sizes (as long as within the chip capacity) due to 
their PLB configuration flexibility. 

The field programmable gate-array appeared last decade of previous 
millennium as alternative to application-specific integrated circuit (ASIC) 
projects. Static random-access memory (SRAM) is dominant FPGA technology in 
which programmability is realized by using SRAM cells to implement both 
programmable logic blocks and control programmable routing resources.  
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Basic reported algorithms and techniques used for mapping k-LUT based FPGAs 
circuits are summarized, compared and evaluated using only delays minimum 
criteria. We designed and developed one of these algorithms.  
  

2. Problem formulation and preliminaries 
 

A Boolean network N can be represented as a directed acyclic graph 
(DAG) where each node represents a logic gate, and a directed edge (i,j) exists if 
the output of gate i is an input of gate j. Primary input (PI) nodes have no 
incoming edge, and primary output (PO) nodes have no outgoing edge. It is used 
input(v) to denote the set of fanins of gate v.  

Given a subgraph H of the Boolean network, let input(H) denotes the set 
of distinct nodes outside which supply inputs to the gates in H.  

For a node v in the network, a k-feasible cone at v, denoted Cv, is a 
subgraph consisting of and its predecessors (u is a predecessor of v if there is a 
directed path from u to v), such that |input(Cv)| ≤ k and any path connecting a node 
in Cv and v lies entirely in Cv.  

The level of a node is the length of the longest path from any PI node to v. 
The level of a PI node is zero. The depth of a network is the largest node level in 
the network [33]. A Boolean network is k-bounded if |input(v)| ≤ k for each node 
in the network. 

In this paper, the primary considered objective is to minimize the circuit 
mapping delay under the LUT-delay model through technology mapping. 
Therefore, a mapping solution is said to be optimal if the mapping delay is 
minimized. The secondary objective is to reduce the area used in the technology 
mapping solution. 
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Fig. 1. Schematic Block Diagram of Xilinx 
4000 CLB. 
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3. Logic optimization 
 

A logic block (XC4000 CLB) contains three LUT’s noted U, V and W as 
shown in Fig. 1. Four independent inputs (u1, u2, u3, and u4) and (v1, v2, v3, and v4) 
are provided for each of two 4-input LUT’s U and V. The LUT W has internal 
inputs from U, V and a third input from outside the block (w1). With this design, a 
XC4000 CLB (as an example) can be used to implement  

(i) Any two functions of up to four variables, or  
(ii) Any single function of five variables, or 
(iii)  Any function of four variables together with some function of five 

variables, or 
(iv) Some function of up to nine variables.  
The flexibility provided by XC4000 CLB, however, also creates a great deal 

of difficulty to have efficient use of all resources [34]. To implement a Boolean 
network on XC4000 FPGA’s, the common approaches is to first map the network 
into a k-LUT network and then pack the k-LUT network into XC4000 CLB’s.  
Parameter k can be set to either 4 or 5. If one set k = 4, then U and V LUT’s in a 
XC4000 CLB can implement every two 4-LUT’s in the mapping solution, but the 
W LUT is left unused. 

From a functional decomposition point of view, a XC4000 CLB can 
implement any function of the form g (y1(X1), y2(X2), xn), where: 

 X = {x1, x2,… xn}, n ≤ 9, X1, X2 ⊂ X, |X1| ≤ 4,  and |X2| ≤ 4.     
Given function f (X), it can be implemented by a XC4000 CLB, if f (X) can 

be transformed into the XC4000-CLB form. For example, when n =5, the 
Shannon expansion: 

)0()1()( 55

_

55 =+== xfxxfxXf                             (1) 
 

It transforms f(X) into the XC4000-CLB form, where )1( 5 =xf  and 
)0( 5 =xf  correspond to y1 and y2 respectively and g (y1, y2, x5) has the 

functionality of a 2-input multiplexer.  
There are several criteria to distinct basic design techniques focusing on k-

LUT FPGA based circuits. One could recognize a first approach named logic 
optimization, which transforms the gate level network into another equivalent 
gate-level network more suitable for the subsequent step.  
Other approach is technology mapping, which transforms the gate-level network 
into a network of cells targeting specific technology by covering initial network 
with the specific cells.  

This classification is used, in general, in logic design domain as 
alternatives to the same two main low-level design approaches.  
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First approach is making technology independent optimization based on 
given network particularities, and is generally known as logic optimization. Logic 
optimization operates using mainly knowledge of gates and network functionality 
and tools are Boolean optimization techniques.  

Given a multilevel network of logic gates, combinational logic synthesis 
transforms it into a network of look-up tables, each of no more than k inputs, 
where parameter k is determined by the FPGA technology.  

The second approach, named technology mapping, ignores any 
independent optimization, following only structural information of the network, 
specific technology optimization, and uses only combinatorial optimization 
techniques. It’s essential to outline that these approaches are using different 
techniques having distinct characteristics.  

However many reported synthesis algorithms and systems are using both 
approaches. In many synthesis systems dedicated to k-LUT based FPGAs circuits, 
a separate mapping or coverage step doesn’t exit because a gate-level network k-
bounded gate input can be considered an a k-LUT network.  
 

4. Optimization objectives and optimality 
 

There are several optimization targets for k-LUT Based FPGAs. Among 
them the most used are: 

• The delay minimization objective is to minimize the delay from primary 
inputs to primary output in FPGA implementation. 

• The area minimization objective is to use the minimum chip area in order 
to implement the circuit. 

• The routability objective is to make the k-LUT network more routable in 
the subsequent placement and routing steps. 

• The power minimization objective is to minimize the power dissipation of 
the implementation. 
Accurate measurement of these objectives requires information that’s 

available only after layout synthesis. That’s the reason most of the reported 
specific applications are using either estimation using function cost models or 
quick layout synthesis. 

Delay of a k-LUT network is measured by the length of the longest path 
from primary input to a primary output, where the length is the computed by the 
accumulation of delays of nodes and edges along the path.  
For a given technology the k-LUT delay is approximately a constant. Various 
delay models focus mostly on the internal various connections delays. The most 
commonly used model is the unit delay model, assuming each net has constant 
delay. This assumption involves that delay minimization is equivalent to depth 
minimization. 
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Area of a k-LUT network is usually estimated by the number of k-LUTs, 
or any actual logic elements used in a specific FPGA architecture. 
Routability is usually modeled by interconnection complexity, more specific, the 
size and the terminal distribution of the net.  
Simplified estimations, currently used, are the pin-to-net ratio and the pin-to-cell 
ratio. 

Power consumption minimization is of relative new interest in logic 
synthesis. Power consumption can be estimated based on the output load 
capacitance and transition frequency of k-LUT and primary inputs. Load 
capacitance changes dynamically with the mapping process. 

Optimization objectives may be mutually less-suitable. Minimization the 
number of k-LUTs may lead to a larger delay. It involves necessity of finding a 
proper balance among different objectives. 
 

5. Previous reported algorithms 
 

A number of technology mapping algorithms have been proposed which 
optimize for area and performance in lookup table-based FPGA designs. Some of 
these efforts are described below. 

The chortle program, one of the earliest mapping algorithms [16] divides 
the Boolean network into a forest of trees and determines an optimal mapping of 
each tree using the dynamic programming techniques.  

It does not exploit the relationship among nodes across the trees. Chortle-
crf [18] chortle’s successor employs bin-packing heuristics for gate-level 
decomposition and technology mapping, achieving significant improvement over 
the previous algorithm in the solution quality as well as in run-time efficiency.  

As a result, it reduces the area by 14% when compared with the original 
Chortle algorithm. Chortle-crf is optimal for K ≤ 5. It also exploits reconvergent 
paths and replication at multi-fan out nodes, but if there are too many 
reconvergent paths terminating at a node then it tends to lose its run-time 
efficiency.  

The idea in Chortle-crf was then extended to depth (delay) minimization 
in the Chortle-d algorithm [17]. In addition, it minimizes area as a secondary 
objective by using area-optimal node decomposition along critical path, as well as 
predecessor packing. Mapping solutions of Chortle-d use an average of                 
35% fewer levels of LUTs than those of Chortle-crf, at the cost of an average of 
59% larger area. Both Chortle-crf and Chortle-d have very efficient 
implementations. Chortle algorithms have solved the optimal mapping problem 
for an un-bounded tree, but a prior tree partitioning often could compromises the 
mapping quality. 
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Another early algorithm was the original MIS-pga [27] was an extension 
of the UC Berkeley MIS-II logic synthesis system [6]. This system evolved finally 
in SIS-1.2. It is applicable to general networks for area minimization. The 
algorithm has two close related steps, logic optimization and technology mapping. 
It’s the first implemented algorithm pointing out the importance of the logical 
optimization of the network before technological mapping.  

First step uses partial implemented Roth-Karp decomposition [31] kernel 
extraction (multilevel optimization) and AND-OR decomposition to make 
network transformation into a k-bounded one. Last part of the first step proceeds 
by collapsing nodes into their fan-outs, while maintaining it k-bounded. Nodes are 
collapsed is a heuristically order.  

Technological mapping step uses node covering based enumeration. This 
synthesis application had an improvement named MIS-pga(new) [29] where first 
step was substantially enhanced with three other decomposition techniques: cube 
partitioning, cofactoring and cube-packing. All decomposition methods are tried 
and best result is kept. This enhancements and many other did lead to area 
reduction by 28.2% compared to the old version. 

Other version of this application was MIS-pga(delay) [28] targeting delay 
minimization. Algorithm, proceeds by collapsing each critical node, in the 
network, into its critical fan outs. Such collapsing proved successful, i.e. keeping 
network k-bounded or nodes not satisfying this condition are re-decomposed 
according to a cube-packing based quick estimation procedure, will not increase 
delay in circuit and will reduce cost area. This procedure is re-iterated until no 
more collapsing is possible. Best solution for technological mapping is computed 
using heuristic binate covering. 

Notable progress in k-LUT based FPGA synthesis was development of 
delay-optimal technology mapping algorithms based on DAGMap algorithm [8].  

This was the first polynomial-time depth-optimal mapping algorithm for 
general k-bounded circuits. DAGMap transforms a general network into a depth-
minimum 2-bounded simple gates network using AND-OR and Huffman tree 
decomposition.  

Mapping section is performed using dag-map algorithm. Obtained solution 
is improved using two post-processing operations. 

This algorithm evolved in FlowMap algorithm [9]. It uses same logic 
optimization as DAGMap but has an improved procedure for technological 
mapping, named FlowMap, and post processing uses one new step named 
flowpack. FlowMap is computing one minimum height k-bounded cone rooted in 
each internal node of the network. This feature guarantees depth-optimal mapping 
for general k-bounded networks.  

However, if there are more than one such k-bounded cone rooted in each 
internal node of the network, it is ignored, narrowing solutions space. The used 
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MinCut-MaxFlow procedure implies this feature. Mapping results proved is 
superior to Chortle-d and MIS-pga(delay) because these algorithms use 9 – 50% 
more LUTs with up to 7% larger depth on average compared to FlowMap. 
 

6. Implemented mapping algorithm for k-bounded circuits 
 

We recently introduced algorithm named minDepth [5]. It proceeds using 
similar approach as FlowMap and MIS-pga(delay). Logical optimization is done 
with typical procedures implemented with structure and routine in SIS-1.2 [32]. 
 MinDepth is designed to compute all k-bounded cones rooted in each internal 
node of the network.  This feature provides more freedom degrees in building-up 
technological mapping solutions. 

Generation of all k-feasible cones rooted in every node of a node in 
network is has to be considered in the context of network model. 
Let N  be a k-bounded network, and u a node of N.  Then, a k-feasible cone of the 
node u, noted C(u) could be identified by the set:  

input(C(u)) = {v1, v2, …., vm}, m ≤ k.                        (2)  
 

Such a set can be represented as the product (conjunction) of the elements 
(literals) of the set p = v1v2…. vm. The set of all feasible cones of node u, noted 
cones(u), can be represented as the sum (reunion) of each of the product (cube) 
representing the respective cone: 

∪
i

i uinputucones ))(C(  )( =           (3)  

Representing each k-feasible cone of the node u as a conjunction, in above 
relation, it becomes: 

∪ "
i

imii vvvucones 21  )( =                         (4) 

Then it holds: 
Lemma1. Given a node u having as immediate predecessors input(u) = {v, 

w, …, z}, each predecessor having already computed the set of all k-feasible 
cones, respective cones(v), cones(w), …, cones(z), than the set cones(u), of all the 
k-feasible cones of node u, is included in the set: 

{ v ∪ ( cones(v))∩( w ∪ cones(w))∩…∩( z ∪ cones(z))}            (5) 
Proof the Lemma1 is exposed in [4].It was proved that this algorithm 

computes all possible mapping solution for each node (all details of the 
implemented algorithm are exposed in [4]). 

Computing the sum-of-products (SOP) form of the expression (5), and 
eliminating (as soon as possible) all the products having more than k literals, one 
can determine cones(u), the set of all k-feasible cones of the node u. 

It is not difficult to remark that there is only polynomial number of               
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k-feasible cones in the predecessor’s maximum transitive cone of the node u, 
since the total number of possible combinations of k or fewer nodes is O(nk), 
where n is the number of nodes in the predecessor’s maximum transitive cone of 
the node u. 

 
7. Experimental results 

 
Measurements, made using minDepth on MCNC91 benchmark circuits, 

are presented in Table 1. Most of these well-known benchmark circuits are 
currently used in order to evaluate technological mapping algorithms.  
Results of minDepth algorithm are compared with published homologues results 
of FlowMap algorithm.  

Mapping results proved it is superior to FlowMap, because this algorithm 
uses 19% more LUTs with up to 25.8% larger depth on average, compared to 
minDepth algorithm. 
 
 

Table 1 
Experimental results. 

 FlowMap minDepth 
Circuit Delay Area Delay Area 
5xp1 3 24 2 19 

9symml 5 61 3 7 
C499 5 154 4 65
C5315 - - 8 498 
C880 8 232 7 126 
alu2 8 162 5 120
alu4 10 268 5 546 

apex6 4 257 4 221 
apex7 4 89 4 67 
count 3 76 3 74 
des 5 1308 5 1010 

duke2 4 187 4 151 
misex1 2 15 2 21 
rd84 4 83 3 14 
rot 6 268 6 209 
vg2 4 45 3 35 
z4ml 3 13 2 5 

 
8. Conclusions 

 
Internal potential of minDepth algorithm makes it suitable for 

technological mapping refinements. It was tested flexible delay mapping with 
optimal area targeting different delays (greater than minimum possible but with 
less LUT count) for each primary output. Such solution is useful in practical 
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environment because designer could tailor more appropriate solutions involving 
not-necessary best delay (seldom used in practice) but an optimum equilibrium 
between delay, on one side, and LUT count (area), on other side, in order to 
satisfy particular design features.  

Latest version of this algorithm, named minLevelMapIII was released for 
technological mapping using clusters partitions of circuits in order to achieve best 
solutions using signal flow in networks. Such an approach will make this 
algorithm more compliant with balanced usage of connecting and I/O resources in 
mapping FPGAs circuits. 
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