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PERFORMANCE MAPPING OF K-LUT BASED FPGAS

I. 1. BUCUR!

Circuitele FPGA sunt tot mai mult utilizate in cele mai diverse aplicatii:
pentru prototipare rapidd a produselor noi (inclusive implementarea rapida a
ASIC), pentru emularea logicd, pentru producerea uni lot mic de produse, ori daca
un dispozitiv trebuie sa fie, in uz, reconfigurabil (calcul reconfigurabil). A
determina daca o functie, posibil mare, poate fi implementatd printr-un bloc logic
programabil, din nefericire, este in general, o problema dificild. Aceasta problema
este numitd problema potrivirii Boole-ene. Lucrarea de fatd introduce
implementarea unui nou algoritm menit sa implementeze orientat spre viteza retele
combinationale utilizand FPGA-uri bazate pe k-LUT.

FPGA circuits are increasingly used in many fields: for rapid prototyping of
new products (including fast ASIC implementation), for logic emulation, for
producing a small number of a device, or if a device should be reconfigurable in use
(reconfigurable computing). Determining if an arbitrary, given wide, function can
be implemented by a programmable logic block, unfortunately, it is generally, a very
difficult problem. This problem is called the Boolean matching problem. This paper
introduces a new implemented algorithm able to map for performance
combinational networks using k-LUT based FPGAs.

Keywords: 4-LUT based FPGAs, combinational circuits, performance-driven
mapping.

1. Introduction

The Field Programmable Devices (FPDs) have been widely used for
implementation of small to medium size digital circuits.

There are two major types of FPDs - Field Programmable Gate Arrays
(FPGASs) that usually consist of small programmable logic cells, such as k-input
single-output lookup tables, and Complex Programmable Logic Devices (CPLDs)
that are based on multiple-input and multiple-output PLA-like logic cells. Both of
FPGAs and CPLDs have been widely used [1], [2], [3], and [4].

The programmable gate array technology was introduced in the mid-1980s
as a lesser-cost substitute for the implementation of application-specific integrated
circuits (ASICs).
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Main difference between the mask-programmable gate array technology
and the cell library technology for ASICs, and FPGA is that the last one does not
need to go through the fabrication process for circuit implementation and is field
programmable and often field reprogrammable (LUT based ones).

Although the FPGA in general has a lower gate density and slower circuit
speed, its advantages of programmability, shorter design turnaround time, and
lower initial nonrecurring engineering cost (good for low to medium volume
production) often offset its disadvantages.

FPGA circuits are increasingly used in many fields: for rapid prototyping
of new products (including fast ASIC implementation), for logic emulation, for
producing a small number of a device, or if a device should be reconfigurable in
use (reconfigurable computing).

FPGAs consist of three kinds of programmable elements: programmable
logic blocks (PLBs), routing resources, and input—output (I/O) blocks. Each logic
block contains combinational components such as multiplexers (MUXs), simple
gates (e.g., OR and AND), programmable lookup tables (LUTs), and sequential
components such as flip-flops [5], [6], [7], and [8].

Routing resources include segmented interconnects and switching blocks.
The segmented interconnects connect to the inputs and outputs of logic blocks
while the switching blocks link the segments to form long routing tracks to
implement routing topology.

The 1/0 blocks can be programmed to become the primary inputs (PIs) or
primary outputs (POs) of the circuits on FPGAs.

Most commonly used FPGAs are based on k-input single-output lookup
tables (k-LUTs). LUTs are the basic logic blocks in many FPGAs today. A k-input
LUT (k-LUT) consists of static random access memory (SRAM) cells that can
store the truth table of an arbitrary k-input function [5], [9], and [10].

Every &-LUT can implement any function with no more than & inputs. In
practice, k is usually small, for example, 4-LUTs are widely used in commercial
FPGAs, as the area of a k-LUT grows exponentially with large k. It was showed
[30], and [24] that 4-input, single-output LUT cell yields the smallest FPGA area
of any A-LUT cell for a wide range of programming technologies and routing
pitches.

Most of actually commercially available FPGAs are using, indeed, LUTs
of input size of 4 or 5 ([10], [11], and [12]). In many FPGAs, small LUTs are
connected by fast local connections to form a programmable logic block (PLB)
for implementation flexibility, better performance, and proficient utilization of
silicon area. A PLB can often implement one arbitrary k-input function, where is
determined by the PLB architecture or some /arge function of more than & inputs
[13],[14], [15],[16], [17], and [18].
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Determining if an arbitrary, given wide, function can be implemented by a
PLB, unfortunately, it is generally, a very difficult problem. This problem is
called the Boolean matching problem.

Most of existing technology mapping algorithms first produce a A-LUT
mapping solution, and then pack LUTs into PLBs [9], [10], [11], [19], and [20].
An ample survey of representative FPGA technology mapping approaches can be
found in [10] and [26].

While placement and routing is strongly connected with the detailed
architecture inside of the chip and mostly managed by the commercial FPGA
software, the optimization and mapping can be more influenced by the user [21],
[22], [23], [24], and [25].

Recent innovations in field-programmable gate array (FPGA) architecture
has led to the development of heterogeneous FPGA families [23] that combine
diverse sets of logic resources on the same silicon substrate, having heterogeneous
blocks, similar to Apex20KE [3].

To support wide fan-in, low logic density sub-circuits, such as finite state
machines, some contemporary FPGA architectures [20] contain SRAM-
configurable PLAs. Unlike fine-grained LUTs, PLAs can implement sets of logic
functions with minimal interconnect, the most area expensive resource in
contemporary FPGAs. For m terms based PLA structures, this area efficiency
often comes at the cost of increased minimum delay for PLA paths versus
corresponding LUT paths, requiring resource balance. When coupled with fine-
grained LUTs, PLAs provide an integrated programmable resource that can be
used in many digital system designs to support non-critical-path control logic for
LUT-based data paths [27], [28], [29], [30], [31], [32] and [33].

In order to maximize performance and device utilization, recent
generations of FPGAs take advantage of speed and density benefits resulting from
heterogeneous FPGAs, which provide either an array of homogeneous PLBs, each
configured to implement circuits with LUTs of different sizes, or an array of
physically heterogeneous LUTs.

The PLBs in FPGAs made by Xilinx, XC4000 series [34], Lucent,
ORCA2C series [25], and the recently announced Vantis, VF1 [2], can be
configured to have heterogeneous LUTs, as examples of versatile heterogeneous
FPGAs. These heterogeneous FPGAs do not have limitations on the availability of
LUTs of specific configurable sizes (as long as within the chip capacity) due to
their PLB configuration flexibility.

The field programmable gate-array appeared last decade of previous
millennium as alternative to application-specific integrated circuit (ASIC)
projects. Static random-access memory (SRAM) is dominant FPGA technology in
which programmability is realized by using SRAM cells to implement both
programmable logic blocks and control programmable routing resources.
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Basic reported algorithms and techniques used for mapping A-LUT based FPGAs
circuits are summarized, compared and evaluated using only delays minimum
criteria. We designed and developed one of these algorithms.

2. Problem formulation and preliminaries

A Boolean network N can be represented as a directed acyclic graph
(DAG) where each node represents a logic gate, and a directed edge (i,j) exists if
the output of gate i is an input of gate j. Primary input (PI) nodes have no
incoming edge, and primary output (PO) nodes have no outgoing edge. It is used
input(v) to denote the set of fanins of gate v.

Given a subgraph H of the Boolean network, let input(H) denotes the set
of distinct nodes outside which supply inputs to the gates in H.

For a node v in the network, a k-feasible cone at v, denoted C,, is a
subgraph consisting of and its predecessors (u is a predecessor of v if there is a
directed path from u to v), such that |input(C,)| < k and any path connecting a node
in C, and v lies entirely in C,.

The level of a node is the length of the longest path from any PI node to v.
The level of a PI node is zero. The depth of a network is the largest node level in
the network [33]. A Boolean network is k-bounded if |input(v)| < k for each node
in the network.

In this paper, the primary considered objective is to minimize the circuit
mapping delay under the LUT-delay model through technology mapping.
Therefore, a mapping solution is said to be optimal if the mapping delay is
minimized. The secondary objective is to reduce the area used in the technology
mapping solution.

Fig. 1. Schematic Block Diagram of Xilinx
4000 CLB.
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3. Logic optimization

A logic block (XC4000 CLB) contains three LUT’s noted U, V and W as
shown in Fig. 1. Four independent inputs (u1, u2, u3, and u4) and (vi, v2, v3, and v4)
are provided for each of two 4-input LUT’s U and V. The LUT W has internal
inputs from U, V and a third input from outside the block (w). With this design, a
XC4000 CLB (as an example) can be used to implement

(i) Any two functions of up to four variables, or

(il))  Any single function of five variables, or

(iii))  Any function of four variables together with some function of five

variables, or

(iv)  Some function of up to nine variables.

The flexibility provided by XC4000 CLB, however, also creates a great deal
of difficulty to have efficient use of all resources [34]. To implement a Boolean
network on XC4000 FPGA’s, the common approaches is to first map the network
into a k-LUT network and then pack the k-LUT network into XC4000 CLB’s.
Parameter k£ can be set to either 4 or 5. If one set k=4, then U and V' LUT’s in a
XC4000 CLB can implement every two 4-LUT’s in the mapping solution, but the
W LUT is left unused.

From a functional decomposition point of view, a XC4000 CLB can
implement any function of the form g (y;(X}), y2(X2), x,,), where:

X={x1,x2,... X}, n <9, X1, X2 C X, |[Xi| £4, and |X;| < 4.

Given function f'(X), it can be implemented by a XC4000 CLB, if /(X) can
be transformed into the XC4000-CLB form. For example, when n =5, the
Shannon expansion:

f(X):xSf(x5=1)+)_csf(x5=0) (H

It transforms f{X) into the XC4000-CLB form, where f(x,=1) and
f(x;=0) correspond to y; and ), respectively and g (y1, y», xs5) has the

functionality of a 2-input multiplexer.

There are several criteria to distinct basic design techniques focusing on k-
LUT FPGA based circuits. One could recognize a first approach named logic
optimization, which transforms the gate level network into another equivalent
gate-level network more suitable for the subsequent step.
Other approach is technology mapping, which transforms the gate-level network
into a network of cells targeting specific technology by covering initial network
with the specific cells.

This classification is used, in general, in logic design domain as
alternatives to the same two main low-level design approaches.
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First approach is making technology independent optimization based on
given network particularities, and is generally known as logic optimization. Logic
optimization operates using mainly knowledge of gates and network functionality
and tools are Boolean optimization techniques.

Given a multilevel network of logic gates, combinational logic synthesis
transforms it into a network of look-up tables, each of no more than £ inputs,
where parameter & is determined by the FPGA technology.

The second approach, named fechnology mapping, ignores any
independent optimization, following only structural information of the network,
specific technology optimization, and uses only combinatorial optimization
techniques. It’s essential to outline that these approaches are using different
techniques having distinct characteristics.

However many reported synthesis algorithms and systems are using both
approaches. In many synthesis systems dedicated to k-LUT based FPGAs circuits,
a separate mapping or coverage step doesn’t exit because a gate-level network k-
bounded gate input can be considered an a k&-LUT network.

4. Optimization objectives and optimality

There are several optimization targets for ~-LUT Based FPGAs. Among
them the most used are:

e The delay minimization objective is to minimize the delay from primary
inputs to primary output in FPGA implementation.

e The area minimization objective is to use the minimum chip area in order
to implement the circuit.

e The routability objective is to make the /-LUT network more routable in
the subsequent placement and routing steps.

e The power minimization objective is to minimize the power dissipation of
the implementation.

Accurate measurement of these objectives requires information that’s
available only after layout synthesis. That’s the reason most of the reported
specific applications are using either estimation using function cost models or
quick layout synthesis.

Delay of a £-LUT network is measured by the length of the longest path

from primary input to a primary output, where the length is the computed by the
accumulation of delays of nodes and edges along the path.
For a given technology the A-LUT delay is approximately a constant. Various
delay models focus mostly on the internal various connections delays. The most
commonly used model is the unit delay model, assuming each net has constant
delay. This assumption involves that delay minimization is equivalent to depth
minimization.
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Area of a k&-LUT network is usually estimated by the number of k-LUTs,
or any actual logic elements used in a specific FPGA architecture.

Routability is usually modeled by interconnection complexity, more specific, the
size and the terminal distribution of the net.

Simplified estimations, currently used, are the pin-to-net ratio and the pin-to-cell
ratio.

Power consumption minimization is of relative new interest in logic
synthesis. Power consumption can be estimated based on the output load
capacitance and transition frequency of A-LUT and primary inputs. Load
capacitance changes dynamically with the mapping process.

Optimization objectives may be mutually less-suitable. Minimization the
number of £-LUTs may lead to a larger delay. It involves necessity of finding a
proper balance among different objectives.

5. Previous reported algorithms

A number of technology mapping algorithms have been proposed which
optimize for area and performance in lookup table-based FPGA designs. Some of
these efforts are described below.

The chortle program, one of the earliest mapping algorithms [16] divides
the Boolean network into a forest of trees and determines an optimal mapping of
each tree using the dynamic programming techniques.

It does not exploit the relationship among nodes across the trees. Chortle-
crf [18] chortle’s successor employs bin-packing heuristics for gate-level
decomposition and technology mapping, achieving significant improvement over
the previous algorithm in the solution quality as well as in run-time efficiency.

As a result, it reduces the area by 14% when compared with the original
Chortle algorithm. Chortle-crf is optimal for K < 5. It also exploits reconvergent
paths and replication at multi-fan out nodes, but if there are too many
reconvergent paths terminating at a node then it tends to lose its run-time
efficiency.

The idea in Chortle-crf was then extended to depth (delay) minimization
in the Chortle-d algorithm [17]. In addition, it minimizes area as a secondary
objective by using area-optimal node decomposition along critical path, as well as
predecessor packing. Mapping solutions of Chortle-d use an average of
35% fewer levels of LUTs than those of Chortle-crf, at the cost of an average of
59% larger area. Both Chortle-crf and Chortle-d have very efficient
implementations. Chortle algorithms have solved the optimal mapping problem
for an un-bounded tree, but a prior tree partitioning often could compromises the
mapping quality.
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Another early algorithm was the original MIS-pga [27] was an extension
of the UC Berkeley MIS-II logic synthesis system [6]. This system evolved finally
in SIS-1.2. It is applicable to general networks for area minimization. The
algorithm has two close related steps, logic optimization and technology mapping.
It’s the first implemented algorithm pointing out the importance of the logical
optimization of the network before technological mapping.

First step uses partial implemented Roth-Karp decomposition [31] kernel
extraction (multilevel optimization) and AND-OR decomposition to make
network transformation into a k-bounded one. Last part of the first step proceeds
by collapsing nodes into their fan-outs, while maintaining it k-bounded. Nodes are
collapsed is a heuristically order.

Technological mapping step uses node covering based enumeration. This
synthesis application had an improvement named MIS-pga(new) [29] where first
step was substantially enhanced with three other decomposition techniques: cube
partitioning, cofactoring and cube-packing. All decomposition methods are tried
and best result is kept. This enhancements and many other did lead to area
reduction by 28.2% compared to the old version.

Other version of this application was MIS-pga(delay) [28] targeting delay
minimization. Algorithm, proceeds by collapsing each critical node, in the
network, into its critical fan outs. Such collapsing proved successful, i.e. keeping
network k-bounded or nodes not satisfying this condition are re-decomposed
according to a cube-packing based quick estimation procedure, will not increase
delay in circuit and will reduce cost area. This procedure is re-iterated until no
more collapsing is possible. Best solution for technological mapping is computed
using heuristic binate covering.

Notable progress in k-LUT based FPGA synthesis was development of
delay-optimal technology mapping algorithms based on DAGMap algorithm [8].

This was the first polynomial-time depth-optimal mapping algorithm for
general k-bounded circuits. DAGMap transforms a general network into a depth-
minimum 2-bounded simple gates network using AND-OR and Huffman tree
decomposition.

Mapping section is performed using dag-map algorithm. Obtained solution
is improved using two post-processing operations.

This algorithm evolved in FlowMap algorithm [9]. It uses same logic
optimization as DAGMap but has an improved procedure for technological
mapping, named FlowMap, and post processing uses one new step named
flowpack. FlowMap is computing one minimum height k-bounded cone rooted in
each internal node of the network. This feature guarantees depth-optimal mapping
for general k-bounded networks.

However, if there are more than one such k-bounded cone rooted in each
internal node of the network, it is ignored, narrowing solutions space. The used
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MinCut-MaxFlow procedure implies this feature. Mapping results proved is
superior to Chortle-d and MIS-pga(delay) because these algorithms use 9 — 50%
more LUTSs with up to 7% larger depth on average compared to FlowMap.

6. Implemented mapping algorithm for k-bounded circuits

We recently introduced algorithm named minDepth [5]. It proceeds using
similar approach as FlowMap and MIS-pga(delay). Logical optimization is done
with typical procedures implemented with structure and routine in SZS-1.2 [32].
MinDepth is designed to compute all k-bounded cones rooted in each internal
node of the network. This feature provides more freedom degrees in building-up
technological mapping solutions.

Generation of all k-feasible cones rooted in every node of a node in
network is has to be considered in the context of network model.

Let N be a k-bounded network, and u a node of N. Then, a k-feasible cone of the
node u, noted C(u) could be identified by the set:
input(C(u)) = {vi, vay vy Vm}, m < k. 2)

Such a set can be represented as the product (conjunction) of the elements
(literals) of the set p = viv,.... v,. The set of all feasible cones of node u, noted
cones(u), can be represented as the sum (reunion) of each of the product (cube)
representing the respective cone:

cones(u) = U input(C, (u)) 3)

Representing each k-feasible cone of the node u as a conjunction, in above
relation, it becomes:

cones(u) = U"n";z eV 4)
Then it holds:
Lemmal. Given a node u having as immediate predecessors input(u) = {v,
w, ..., z}, each predecessor having already computed the set of all k-feasible
cones, respective cones(v), cones(w), ..., cones(z), than the set cones(u), of all the
k-feasible cones of node u, is included in the set:
{v U (cones(v))N(w U cones(w))N...N(z U cones(z))} %)

Proof the Lemmal is exposed in [4].It was proved that this algorithm
computes all possible mapping solution for each node (all details of the
implemented algorithm are exposed in [4]).

Computing the sum-of-products (SOP) form of the expression (5), and
eliminating (as soon as possible) all the products having more than £ literals, one
can determine cones(u), the set of all k-feasible cones of the node u.

It is not difficult to remark that there is only polynomial number of
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k-feasible cones in the predecessor’s maximum transitive cone of the node u,
since the total number of possible combinations of & or fewer nodes is O(n"),
where #n is the number of nodes in the predecessor’s maximum transitive cone of
the node u.

7. Experimental results

Measurements, made using minDepth on MCNC91 benchmark circuits,
are presented in Table 1. Most of these well-known benchmark circuits are
currently used in order to evaluate technological mapping algorithms.

Results of minDepth algorithm are compared with published homologues results
of FlowMap algorithm.

Mapping results proved it is superior to FlowMap, because this algorithm
uses 19% more LUTs with up to 25.8% larger depth on average, compared to
minDepth algorithm.

Table 1

Experimental results.
FlowMap minDepth
Circuit Delay Area Delay Area

Sxpl 3 24 2 19
9symml 5 61 3 7
C499 5 154 4 65
C5315 - - 8 498
C880 8§ 232 7 126
alu?2 8 162 5 120
alu4 10 268 5 546
apex6 4 257 4 221
apex7 4 89 4 67
count 3 76 3 74
des 5 1308 5 1010
duke?2 4 187 4 151
misex] 2 15 2 21
rd84 4 83 3 14
rot 6 268 6 209
vg?2 4 45 3 35
z4ml 3 13 2 5

8. Conclusions

Internal potential of minDepth algorithm makes it suitable for
technological mapping refinements. It was tested flexible delay mapping with
optimal area targeting different delays (greater than minimum possible but with
less LUT count) for each primary output. Such solution is useful in practical
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environment because designer could tailor more appropriate solutions involving
not-necessary best delay (seldom used in practice) but an optimum equilibrium
between delay, on one side, and LUT count (area), on other side, in order to
satisfy particular design features.

Latest version of this algorithm, named minLevelMaplIl was released for
technological mapping using clusters partitions of circuits in order to achieve best
solutions using signal flow in networks. Such an approach will make this
algorithm more compliant with balanced usage of connecting and I/O resources in
mapping FPGAs circuits.
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