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STEEL STRIP SURFACE DEFECT IDENTIFICATION BASED 

ON BINARIZED STATISTICAL FEATURES 

Zoheir MENTOURI1 2, Abdelkrim MOUSSAOUI3, Djalil 

BOUDJEHEM1, Hakim DOGHMANE4 

In the steel hot rolling process, flat products that are shaped by a gradual 

reduction of the thickness and the increasing of the length may exhibit different 

surface defects, which should be identified. The solution, widely adopted, and still 

considered as a challenge is the automatic inspection. It is assumed, allowing an 

immediate detection with accurate identification of the defect that starts appearing 

during production. However, for a perfect labeling of the occurring defects, 

inspection system should be provided with reliable algorithms. In this paper, tools 

are combined to provide a high-efficiency solution. The suggested method is based 

on the recent Binarized Statistical Image Feature extractor used, to date, in 

biometrics. Combined with a relevant reduction-data method and the K nearest 

neighbors classifier, this solution showed improved recognition rates of the strip 

surface defects in the hot rolling process, outperforming, the reported results in 

previous works. 

 

Keywords: Computer vision, statistical features; classification, strip surface 

defects, hot rolling process. 

1. Introduction 

Surface defects may seriously impact the quality of steel products and lead 

to their rejection, causing needless additional expenses. To efficiently recognize 

them and enable an immediate decision-making, the online automatic surface 

inspection is the solution widely adopted and still considered as a challenge. 

Then, for many categories of steel products, different techniques based on 

the frequency domain as the FFT or spatial-frequency analysis used with some 

adaptive learning methods as SVM or NN-BP reached rates around 90% in strips, 

thick plates and slabs defect categorization [1][2][3]. Whereas some other 

techniques as background difference, region growing or co-occurrence matrix, 
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were used in detection of different types of hot and cold rolled strips and gave 

interesting results [4][5][6][7].  

What should be noted, is that due to the lack of defect standards [1], there 

is no ideal method combination which could be suitable for all surface defects. In 

practice, their large number makes of their labeling a complex multi-class issue, 

of which, the solution always depends on application needs [8][9][10][11][12]. 

On the other hand, a key step to an efficient classification is the prior 

defect description task. As reported, it can be based on human experience in 

defining heuristics that view, for instance, scratch defects as sharp edges with 

almost white pixels and dents as areas with extreme gray values [13], or on some 

transformations as PCA-SOM to detect complex shape defects as oxidation, 

exfoliation and waveform and Hough transform for well-defined shapes as 

welding, clamps, and holes [14]. Moreover, the defect description can use the 

statistical properties as defect geometry, grayscale and shape, to build a feature 

space, wherein the elements have not only to satisfy the invariance to defect size 

and orientation changes, but should have a certain stability against noise too [15] 

[16]. 

In this paper, we present an efficient tool combination, to categorize the 

surface defects of hot rolled steel products. We introduce, in this field, a recent 

local image descriptor, namely the Binarized Statistical Image Features (BSIF) 

used, to date, in some face recognition applications [17][18]. Thus, an overview 

about the used filters is given in the second section, as well as, a BSIF operation. 

In the next section the suggested approach is presented with the general scheme. 

The section four is concerned with the experimental study, where we present the 

used defects database, we describe the applied image processing tasks and we 

present and discuss all results. The paper ends with a conclusion. 

2. Overview on Filters determination and Binarized Statistical Image 

Features (BSIF) 

Conversely to some known methods, where filters are predefined 

manually, those of BSIF descriptor, provided in [17], are based on a statistical 

information learning with 13 natural images from Hyvarinen [19].  

The convolution of a Filter with an image provides pixels description 

based on their neighborhood. Hence, for an original image patch X of a size m x 

m, and a filter Fi of equal size, the corresponding value of the filtered patch is 

determined by the product of their respective vectors: 

xTf
i

h .=                                                        (1) 

Then, as formulated in equation 2, the use of n appropriate filters, allows 

getting a vector of n filtered outputs that are statistically independent. 
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xFh .=                                                            (2) 

Where, F is the filter matrix of dimension n x m2.  

This filter matrix is assumed to be the product of two appropriate matrices 

defined as follows: 

yMxPMh ... ==                                                    (3) 

Where, M is an estimated orthogonal matrix and P is a canonical preprocessing 

matrix, computed respectively by Independent Component Analysis and Principal 

Component Analysis Algorithms.  

In practice, for the use of Principal Component Analysis, image patches 

are randomly chosen and centered around zero and the covariance matrix is 

computed then, eigen-decomposed by: 
TUDUC ..=                                                       (4) 

Where D: the diagonal matrix of the eigenvalues, organized in a decreasing order.  

The canonical preprocessing matrix is defined by: 

TUDP .2
1−

=                                                      (5) 

Of which, the elements are the whitened principle components, computed with the 

first (most significant) eigenvalues of D. 

The next step concerns the determination of the orthogonal estimated 

matrix M. Given the Equations 3 and 5, ICA algorithm is used to determine M by: 

hMy .1−=                                                        (6) 

Then, the product of the two computed matrices P and M gives the filter 

matrix F. An example of a filter set responses is presented in Fig. 1, below. 
 

  
Fig. 1: Set of 7x7 sized pre-defined filters (number=12) 

 

For the determination of a local image description, a BSIF procedure is 

applied as shown in Fig. 2.  

It consists in applying a filter set matrix of nxm2 of a size to an image 

patch X of m x m of size, then in attributing to the filtered-response R, a binary 

code, based on a zero thresholding as in equation 7.  
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Fig. 2: BSIF encoding of a patch central-pixel  

3. Application of the suggested approach 

For defects identification, the implementation scheme is based on three 

main stages, as shown in Fig. 3. Defect images are firstly filtered by applying 

BSIF filters to provide new-scaled images. This transformation makes data more 

relevant for the subsequent steps that are features extraction and classification. 
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Fig. 3: Application Scheme for Strip Defects Identification 

 

In the application, one BSIF operation consists in convolving the whole    

z x z sized image with a filter Fl of m x m size, binarizing the response, affecting a 

weight to the obtained binary code and repeating the operation n times, according 

to the number of filters in the considered set, to obtain a pixel code word. Final 

pixels new-values are computed by summing all the 2(n-l) - weighted response-

codes as formulated in equation 8.  

 −
−

=
−

 =
n
l

ln
lB

ln
XlFConvCoden

l 1
)

)(
2.(]

)(
2)).,((

1
[           (8) 

Where, n and l are respectively the number of filters and the rank of a filter in the 

concerned filters set. 

The described procedure is applied to all images in the database and an 

example of their transformed aspect is shown in Fig. 4. 
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Fig. 4: Example of six image-defect samples. The 1st row, from left to right: 

Patch, Crazing, Inclusion, Pitted surface, Scratch and rolled-in-scale. The 2nd 

row : the corresponding binarized images using Filters set of size 7x7x12 

 

Further, the invariance of the histogram to rotation and translation as well 

as, its low computational cost, makes of this tool and efficient means to represent, 

by a single vector, image statistical properties. Thus, the pixel values of new 

encoded image, are stacked into 2n -long and [0 1]-normalized proper histograms 

Hi, which are concatenated in a single global matrix H, defined by: 

 sHHHH ..,,2,1=                                                  (9) 

Where, s is the number of the used images of all classes. 

4. Experimental Study 

4.1. Description of Strip Steel Surface Dataset  

Typically, surface defects in rolling process are quite diverse. What may 

explain the fact that in many studies it was dealt, each time, with only some of 

them, depending on the application needs. Therefore, in this study, we use a 

Northeastern University surface defect database [20], shown in Fig. 5. It includes 

six types of common defects of the hot rolled strips, with 300 variants of each one 

and totaling 1800 defect grayscale-images. The different samples present many 

variabilities in defect orientation, size and grayscale level, which might be subject 

to the illumination effect in industrial environment. 

The defects consist in Patches: surface with oxide not completely removed 

by a faulty pickling process; Crazing: a type of network of fine cracks; Inclusions: 

non-metallic particles that show through at the surface of the steel; Pitted surface: 

sharp depressions in the surface related to chemical attack; Scratches: sharp 

indentation in the surface caused by a machine and Rolled-in scale: a scale 

partially rolled into the surface of the steel sheet.  

As shown in the figure below, the defects may be, localized and of a 

compact appearance, with relatively clear edges such as patches and scratches or 

scattered while affecting the whole surface such as pitted surface or crazing. 

Owing to this pattern heterogeneity, we consider, in this application, the entire 

image as an area of interest. There is no need to, more, reduce its size or remove 
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any possible useless regions. The medium size of 200x200 pixels presents a good 

compromise between the amount of information in the images and time 

processing considerations. It, also, eases the comparison with the state of art. 

 

  
Fig. 5: Samples of defect images of NEU Database. One defect type per row: 

Patches, Crazing, Inclusion, Pitted surface, Scratches and Rolled-in-scale 

4.2. Data Projection and similarities computing 

In data dimensionality-reduction and projection, the unsupervised 

Principal Component Analysis method (PCA), known for its class variations 

description, is widely used as a means of data representation, even though, 

without, necessarily, being efficient in class distinction [21].  

Given a number A of vectors randomly selected from the matrix H, and 

representing all classes, they are organized in a training matrix Tr [2n, A].  

The covariance matrix (total scatter matrix) of Tr is computed by equation 

10 and eigen-decomposed to find the optimal projection matrix Wpca, given by 

equation 11, and where the retained best vectors N<A, correspond to the N largest 

eigenvalues. 

TC .=                                                          (10) 

 
N

WWWCWTW
pca

W ...
21

maxarg ==                                (11) 

Where φ is the normalized and centered matrix of Tr and the wi (i=1, 2, .., N) are 

the N kept eigenvectors. 

The other method, which is, rather, class discrimination-oriented, is the 

Linear Discriminant Analysis. This latter is concerned with searching the best 
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discriminant vectors and is based on a maximization of a ratio of the between-

class scatter matrix of equation 12: 

T
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(  −− =
=                                 (12) 

and the with-in class scatter matrix of equation 13: 
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−=                    (13) 

Where γk is the kth sample in class ci, φci is the mean vector in class ci , φ is the 

overall mean of the data-classes, c is the number of classes and qi is the vector 

number in the class ci .  

Then, The scheme followed, to reduce the dimensionality of the BSIF 

histograms and project data into a smaller subspace, is the one that takes benefits 

from the two presented methods and addresses their shortcomings [22][23]. The 

flowchart of Fig. 6 gives an overview of the applied model computing procedure. 
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Fig. 6: The concept of PCA based LDA Data reduction 

 

The PCA method is pre-applied to the training set Tr as well as, a 

whitening operation of the resulting data. The PCA subspace Wpca is then, created 

with an adopted reduction level around 80% (Recommended at 75% in [20]) 

In a second step, an LDA procedure is applied. However, instead of using 

actual scatter matrices, computed by equations 12 and 13, it uses their projections 

into the computed PCA subspace in searching Wfld , which is the optimal LDA 

projection matrix, defined by the Fisher criterion of equation 14: 

WWSWW

WWSWW
W

pcaw

T

pca

T

pcab

T

pca

T

fld =                                           (14) 

Where pcab
T
pca WSW  and  pcaw

T
pca WSW  are (Sbp and Swp) respectively the 

projection of Sb and Sw matrices into the PCA subspace. 



152           Zoheir Mentouri, Abdelkrim Moussaoui, Djalil Boudjehem, Hakim Doghmane 

The obtained LDA subspace is used to project BSIF histograms of the test 

partition images, providing, thus, histogram features of the original defect images.  

In the classification step, distance similarities are computed to label all 

defects of the test dataset. This task is performed with the two commonly used 

techniques: The non-parametric K-nearest neighbor classifier (with K=3), based 

on the Euclidean matching distance and the supervised learning machine 

algorithm: multi-class SVM, with a radial basis kernel function (Rbf). 

4.3. Results and Compared methods 

In order to implement the most suitable BSIF descriptor, all filter sets, 

provided in [18], are evaluated. Their application on the NEU Database, shown in 

Fig. 7, revealed that the image content is better captured by 7x7x12 filters set, 

which is the one we retained for the method evaluation.  
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Fig. 7. Defect identification rates with different Filter Sets applied to NEU Database 

 

Further, to efficiently assess the performance of the whole algorithm and 

its reliability, a high number of computing trials is chosen and where, for each 

new trial, the global histogram matrix H is randomly partitioned to select, a 

different pair of training and test sets. Then, each presented result, below, is, in 

fact, the average value of five hundred rates, obtained by as much execution of the 

algorithm. 

The table 1 summarizes average rates of the identification methods, as 

well as their corresponding standard deviation (St), which characterizes results 

dispersion and allows getting, in a sense, an idea about the method robustness. 

Table 1 

Recognition rates of strip surface defects of NEU Database 

F. Descriptor Gabor_LDA Gabor_LDA BSIF_LDA BSIF_LDA BSIF_PCA 

Classifier KNN SVM KNN SVM KNN 

Results (%) 86.63±1.11 88.36±1.01 99.18±0.30 84.64±1.14 94.92±0.75 
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The PCA method, tested in our evaluation, showed a relative low result 

(94.92%) what may justify our use of a two projections method in dimensionality 

reduction, allowing a good classes discrimination. 

With the highest average (99.18%) and the lowest St (0.30), the BSIF 

descriptor with the two-projections PCA-LDA method and the KNN classifier 

constitute the combination (BSIF_LDA_KNN) that outperforms the compared 

methods and presents the best choice in term of computational cost.  

What should be, further, reminded, is the efficiency of the Nearest 

Neighbor classifier. However, our choice the KNN classifier has been driven by 

the voting approach in this latter, which is assumed helping to minimize labeling 

errors and, really, in our application, gives an improved end-result 

The lowest obtained average, around 84%, concerns the multiclass SVM 

classifier when used with BSIF. Even though, the method is known for its 

interesting results, as reported in many works, it has not been more investigated, 

here, since the classifier seems to take more computing time.  

The proposed solution is compared to Gabor filtering too, which is the 

method frequently used for defect detection in steel industries (mainly for thick 

plates and slabs). The method has been tested with its parameters set to the 

optimal values of 8, 5 and 64 respectively, the numbers of filter bank orientations, 

scales and a down-sampling factor. Moderate classification rates with the SVM 

classifier are reached and slightly less with KNN, as shown in table 1.  

The main limitation encountered with Gabor filtering is the amount of 

data. In spite of reducing image size before and after filtering, the dimension of 

relevant vectors that are kept, remains important comparing to BSIF vectors, what 

has been considered as a constraint with respect to memory and time savings.  

To better appreciate, how powerful, is the suggested combination, 

performance curves of Fig. 8 are constructed. The results show that, whatever is 

the size of the selected training set, our suggested method, widely, outperforms all 

the others. 
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Fig. 8. Averages of identification rates of NEU Database Defects  
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The confusion matrix, in Table 2, is created in order to analyze the 

identification errors of the proposed method. The numbers of classified defects in 

this table, concern an identification rate of 99.22%, related to the last selected pair 

of sets (Train - test:50%-50%) among the five hundred trials of which the average 

rate is the highest one in the Table l. 
Table 2 

Confusion matrix of NEU Database defects classification 

 Predicted Class 

Cr In PS Pa RS Sc 

A
ct

u
al

 C
la

ss
 Cr 150 0 0 0 0 0 

In 3 146 1 0 0 0 

PS 0 2 148 0 0 0 

Pa 0 0 0 150 0 0 

RS 0 0 0 0 150 0 

SC 0 1 0 0 0 149 

 

The matrix indications show that the highest rated classifications (at 

100%) concern 3 of 6 defect types, which are visibly distinguishable from the 

other defect (Fig. 5). With 4 false identifications from the 150 predicted (correct at 

97.33%), the inclusion defects present more than 50% of global error, whereas the 

pitted surface defect is identified with 2 errors (correct at 98.66%).  

These types of defects are of more complex shape and sparseness. What 

may explain the misclassification of some defect variants, adding to that the 

illumination parameter. In such a system, even if provided with a highly efficient 

feature extractor and classifier, the illumination should, normally, be above 

critical conditions.  

As for the previous studies that dealt with the same dataset to assess some 

methods, the reported identification scores, although interesting, remain below to 

those of our suggested approach. The table 3 presents some of these results, where 

the training and test partition sizes, are as used in our application. 

 
Table 3 

Comparison of identification rates (%) of NEU surface defect Database 

Work Ref. 
Features 

Descriptor 
Classifier Results (%) 

Kenchen S.[15 ] SCN SVM 98.60±0.59 

Kenchen S.[16]  AECLBP SVM 98.93±0.63 

Kenchen S.[16]  CLBP SVM 98.28±0.51 

Li Yi [17] CNN CNN 99.05 

Suggested BSIF_LDA KNN 99.18±0.30 
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5. Conclusion 

The variety of the published works related to the identification of surface 

steel defects reported different performance level. The noted difficulty in such a 

task is, mainly, related to the complexity of these defects which may exhibit 

similarities between defects that belong to different classes and distinction 

between defects of the same class.  

In this paper, we suggested a new combination of tools, where the recent BSIF 

descriptor, used, to date, in some biometric applications, is introduced and 

assessed in the description of the surface defect of hot rolled products. Further, 

data are processed by a combined reduction method to present an optimal features 

space that eases the classification task. This latter is performed with KNN 

classifier assuring an efficient defect identification with a low computational cost. 

Applied to a defect database which contains enough defects and defect 

variabilities, this tool combination outperforms the methods that dealt with similar 

defects [1], and even the one that used the same database as in our application. 

Indeed, the proposed solution shows high classification rates with an interesting 

dispersion level of results. Moreover, identification results are consistently higher 

while varying the size of the training image set. Finally, the obtained results 

demonstrate the applicability of the used descriptor in this field and show the 

efficiency and reliability of the proposed solution, what confirms its suitability for 

industrial application.  
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