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ON THE APPROXIMATE DUALITY OF G-FRAMES AND FUSION
FRAMES

Morteza MIRZAEE AZANDARYANI!

In this paper we obtain some new results for the approrimate duality of
frames and g-frames in Hilbert spaces; especially we consider approximate duals of Riesz
bases and g-Riesz bases. We also introduce a new kind of approzimate duals for g-
frames and fusion frames and generalize some of the results obtained for duals and
approzimate duals. Moreover, we introduce 6 and (6, ||0||)—approximate g-duals, where
0 is a bounded operator on a separable Hilbert space and we show that in this case
approximate duals share many useful properties with those introduced for frames, g-
frames and fusion frames.
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1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [11] in 1952
to study some problems in nonharmonic Fourier series, reintroduced in 1986 by Daubechies,
Grossmann and Meyer [10].

Let H be a separable Hilbert space and let I be a finite or countable index set. A
family F = {fi }ier C H is a frame for H, if there exist two positive numbers A and B such
that

AIFIP < DRSSP < BIAIP,
iel

for each f € H. A and B are the lower and upper frame bounds, respectively. If A = B,
F is called an A—tight frame. If A = B = 1, it is called a Parseval frame. If only the
second inequality is required, J is a B-Bessel sequence. If F is a Bessel sequence, then the
synthesis operator Ty : £2(I) — H which is defined by Ty ({c; }icr) = > ic1 Cifi is bounded.
Its adjoint operator Tix(f) = {(f, fi) }icr is called the analysis operator of F. The operator
S(f) = T5T5(f) = > ic;{f5 fi) fi is bounded and positive. If JF is a frame, we call Sy
the frame operator of F which is invertible. In this case {SS,?1 fitier is also a frame and if
fi = S}lfi, then each f € H can be reconstructed as

SR ==Y (1)

icl il
F = {fiYicr is called the canonical dual of F. We say that a Bessel sequence {g;}ics is
an alternate dual or a dual for a Bessel sequence {f;};cr, if for each f € H, we have
[ = > icilf, fi)gi or equivalently f = . ,(f, g:)fi. For more results about frames in
Hilbert spaces, see [8].

Fusion frames [7] and g-frames [23] are two important generalizations of frames. For

each i € I, let H; be a Hilbert space. In this paper L(H, H;) is the set of all bounded
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operators from H into H; and L(H, H) is denoted by L(H). We call A = {A; € L(H, H;) :
i € I} a g-frame for H with respect to {H; : i € I} if there exist two positive constants A
and B such that

AJFIP <D IALI1? < BIFIP,
i€l
for each f € H. If only the second inequality is required, we call it a g-Bessel sequence with
upper bound B.

Note that ®icrH; = {{fi}ie]|fi € Hi,|{fitietl,® = >ier Ifill? < oo p with pointwise

operations and the inner product defined by ({fi}ier, {gi}icr) = >_;c;(fi» i) is a Hilbert
space. If H; = H for each i € I, we denote ®;c;H; by ¢*(I, H).

For a g-Bessel sequence A = {A;, € L(H,H;) : i € I} the synthesis operator is Ty :
QierH; — H, Ta({fi}ier) = >_;c; A fi and its adjoint operator which is TX(f) = {Aif }ier
is called the analysis operator of A. The operator Sy is defined by Sy = ThT}. If A is a
g-frame, then Sy is invertible. The canonical g-dual for A is defined by A= {IL}ZG 1 where
A = AiSXI which is a g-frame and for each f € H, we have

F=Y"NAf=D KA.

i€l el

Also a g-Bessel sequence I' = {T'; € L(H, H;) : i € I} is called an alternate g-dual or a g-dual
for a g-Bessel sequence A if

= TiNf =) NTif,

i€l i€l

for each f € H.

Let {W;};c; be a family of closed subspaces of a Hilbert space H. Let {w;};cs be a
family of weights, i.e., w; > 0 for each ¢ € I. Then W = {(W;, w;) }icr is a fusion frame, if
there exist two positive numbers A and B such that for each f € H,

AlFI? < Y @i lmwi (D17 < BIFIP,

i€l

where myy, is the orthogonal projection onto the subspace W;. If only the right-hand in-
equality is required, then W is called a Bessel fusion sequence. Parseval and tight g-frames
and fusion frames are defined similar to frames.

Note that W = {(W;,w;) }ier is a Bessel fusion sequence (resp. a fusion frame) if and only
if Aw = {wimw, }ier is a g-Bessel sequence (resp. a g-frame). Hence every Bessel fusion
sequence generates a g-Bessel sequence.

Frames usually provide non-unique representations of vectors and this property is desirable
in applications especially in signal processing. As we see in the definition of duals, if a
dual of a frame is obtained, then every signal can be easily reconstructed. For a finite-
dimensional Hilbert space, the inverse of the frame operator can be obtained using linear
algebra methods. Hence the canonical dual of a frame is simply calculated. But in the
infinite-dimensional case, the canonical dual and also alternate duals are often difficult to be
found. In this situation approximate duals can be useful. If G is an approximate dual of F,
then the composition of the synthesis and analysis operators of § and F is invertible and we
use this invertible operator for the reconstruction of signals instead of the frame operator.
For more applications of approximate duals, see [6, 24, 15, 9].

Approximate duality of frames was recently investigated by Christensen and Laugesen in
[9]. Now we recall the definition:
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Definition 1.1. Let F = {fi}icr and G = {g:}ier be two Bessel sequences for H. Suppose
that Sgy = TgTs". We say that F and G are approximately dual frames if |Idg — Sgz|| < 1
or |[Idg — Syg|| < 1. In this case we call G (resp. F) an approximate dual of F (resp. G).

Recently the present author and A. Khosravi introduced approximate duality for g-
frames in [19] and some applications of approximate duals such as the stability under small
perturbations and facilitating the reconstruction of signals were obtained (see also [21]).
Trivially duals and approximate duals can be defined for a fusion frame as some kind of
g-frame. We obtained some results for approximate duals of fusion frames in Corollaries
2.4, 3.3, 3.9 and Proposition 2.14 in [19] (see also [2, 3]). In this paper we introduce
Q-approximate duality for g-frames and fusion frames and generalize some of the results
obtained for duals and approximate duals of frames and g-frames. We also introduce 6 and
(0, |18|])—approximate g-duals, where 6 is a bounded operator on a separable Hilbert space.

2. Approximate duals for g-frames

In this section we get some new results for approximate duals of frames and g-frames.
First we recall the definition of approximate duality for g-frames from [19]:

Definition 2.1. Let A and T" be two g-Bessel sequences and Sppy = TrTph™. Then A and T
are approzimately dual g-frames if ||[Idg — Sra|l < 1 or ||[Idg — Sar|| < 1. In this case, we

say that T (resp. A) is an approzimate dual g-frame or an approximate g-dual of A (resp.
r).

The conditions in the above definition are equivalent because (Idy — Sta)* = Idy —
Sar. Since ||[Idg—Sar|| < 1, we obtain that Sar is invertible with Sar ™" = S°0°  (Idy — Sar)".
Now for each f € H, we have the following reconstruction formulas:

=Y Sar(Iduy —Sar)"f, f=Y_ (Idu — Sar)"Sar f.

n=0 n=0

It is also obtained from Theorem 2.3 in [19] that if A and I are approximately dual g-frames,
then A and I" are g-frames.

Throughout this section A = {A; € L(H,H;) :i €I} and ' = {I'; € L(H,H;) : i € I} are
g-Bessel sequences with upper bounds B and D, respectively.

Theorem 2.1. Let F; = {fij}jes, and G; = {gij}jes, be B; and D}-Bessel sequences for
H;, respectively with sup;c{B;} < 0o and sup;c;{D}} < 0.

(1) If A is a g-dual of T with BD < 1 and F; is an approzimate dual of G;, for each i € 1,
then {A}(fij)}ier,jes; is an approzimate dual of {I';(gi;)}ier je;-

(ii) Let F; be a dual of G;, for each i € I. Then A is an approzimate g-dual (resp. a
g-dual) of T if and only if {A}(fij)}icr je, is an approzimate dual (resp. a dual) of

{T5(9i5) Yier,jer.-

Proof. (i) It is easy to see that F = {Af(fi;) }ier,jes, and G = {TF(gi;) }ier,jes; are B'B and
D’ D-Bessel sequences, respectively where B’ = sup,;{B;} and D’ = sup;c;{D;}. Since
”quﬁtz” < V B;D; < vB'D', we get Zie] ”SSKﬂAZf‘P < B/D/B||fH2v for each f € H.
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Hence ® = {Sg,5,A;}icr is a g-Bessel sequence. Now we have

[Sgf = fII = ZF;(Z<Aifyfij>gij) fH
iel jeds
= | orisss A - fH TS - TeTi f)
el
< @(Z 1Sg., —IdHiIQIIAifHQ)? < VBD|{].
el

This means that ||Sgy — Idy| < vBD < 1, so F is an approximate dual of G.
(ii) Let f € H. Then

Ssaf =YY (LA Fi)Ti(e) = Y.T; < > (A, fij>gij>

el je s icl jeds
= E LiAf = Sraf.
icl

The above equality implies that F is an approximate dual (resp. a dual) of § if and only if
A is an approximate g-dual (resp. a g-dual) of T. |

Corollary 2.1. (i) Suppose that {fij}jes, is an A;—tight frame such that there exist
positive numbers By and By with By < A; < Bs, for eachi € I. Then A is an approz-
imate g-dual (resp. a g-dual) of T if and only if {A}(fij)}icr jet, s an approzimate
dual (resp. a dual) Of{firf(fij)}iel,jeh-

(ii) Let {fi;};jes, be a Parseval frame, for each i € I. Then A is an approzimate g-dual
(resp. a g-dual) of T if and only if {Af(fi;)}icrjes, is an approzimate dual (resp. a
dual) of {I'; (fij)}ier e -

Proof. (i) It is easy to see that F; = {fi;},es, is a dual of §; = {A%fij}jeji, for each i € I.
Now the result follows from part (ii) of Theorem 2.1.
(ii) We get the result from part (i) by considering A; = 1, for each i € I. O

Since an orthonormal basis is a Parseval frame, part (i) of Theorem 2.5 in [19] is a
special case of the above corollary.

Proposition 2.1. T is an approximate g-dual of A if and only if there exists an operator T
on H with |T — Idg|| <1 such that {T;T1},cr is a g-dual of A.

Proof. Since T' is an approximate g-dual of A, we have ||Sar — Idy|| < 1. By Neumann
algorithm T' = Syr is invertible and 3 AjFinllf = f, foreach f € H. Hence {I'; T 1};er
is a g-dual of A.

For the converse, suppose that there exists an operator 7' on H with ||T' — Idgl|| < 1 such
that ® = {I; T '},c; is a g-dual of A. Now we have

1Sra = Ide || = [IT"Sea — Idu|| = (T = Ida)"|| < 1.

icl

This means that I" is an approximate g-dual of A. O

We say that {fi}icsr is a Riesz basis for H, if it is complete in H and there exist two
constants 0 < A < B < o0, such that

AY el <

i€F

2
S BZ |Ci|27

i€l

Zcifi

i€l
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for each sequence of scalars {c¢;};cr, where F is a finite subset of I.
A={A, € L(H,H;) : i € I} is called g-complete if {f : A;f =0,Vi e I} ={0}. Wecall A a
g-orthonormal basis for H, if

<A:1fi17A;<2fi2> = 6i1,i2<fi1>fi2>> i1,12 € I7 fil € Hilyfm € Hi27

and >, |AifII? = [|f||?, for each f € H. {A;}ies is a g-Riesz basis for H, if it is g-complete
and there exist two constants 0 < A < B < oo, such that for each finite subset F' C I and

fie H,ieF,
2
A ISP <|[DoAf|| < BY Il
iCF icF ieF

Recall that if P is an invertible operator on H and A; = I'; P, for each i € I, then we say
that A and I' are P-equivalent. Also if {f;}icr,{gi}icr € H and f; = Pg;, for each i € I,
then {fi}ier and {g; }ier are P-equivalent (see [5]). Note that if { f;}:er is a Riesz basis, then
Theorem 3.2.2 in [8] implies that {f;};c; is the unique dual of {f;}ics and it is also a Riesz
basis. A similar result can be obtained for g-Riesz bases using Theorem 3.1 in [23]. But
a Riesz basis can have many approximate duals. For example if {e;};cr is an orthonormal
basis for H and 0 < a < 2, then {ae; };cr is an approximate dual for {e;};cr. In the following
proposition and corollary we show that every approximate g-dual (resp. approximate dual)
of a g-Riesz basis (resp. Riesz basis) is also a g-Riesz basis (resp. Riesz basis).

Proposition 2.2. Let A be a g-Riesz basis. Then
(i) T is an approzimate g-dual of A if and only if there exists an operator T on H with
T — Idg|| <1 such that Ty = A;T, for each i € I.
(ii) IfT is an approzimate g-dual of A, then I and A are P- equivalent for some invertible
operator P on H and I is a g-Riesz basis.

Proof. (i) Since A is a g-Riesz basis, by Theorem 3.1 in [23] and Theorem 5.5.4 in [8], A
is the unique g-dual of A. Hence by Proposition 2.1, I" is an approximate g-dual of A if
and only if there exists an operator T on H such that |T — Idg| < 1 with I;T~! = A;
consequently I'; = X;T, for each i € I.

(ii) It follows from part (i) that there exists an invertible operator T on H with I'; = A;T =
A,»,S’XlT. Since P = leT is invertible, I' and A are P-equivalent. Because A is a g-Riesz
basis, by Corollary 3.4 in [23], there exists a g-orthonormal basis {Q;};c; and an invertible
operator U on H such that A; = Q;U, so I'; = Q;UP and since UP is invertible, again by
Corollary 3.4 in [23], we obtain that I" is a g-Riesz basis. a

Now using Propositions 2.1, 2.2 and the equivalent conditions for a frame to be a
Riesz basis stated in Definition 3.3.1 and Theorem 3.3.7 in [8], we get the following result
for frames:

Corollary 2.2. (i) {g:i}icr is an approzimate dual of {f;}icr if and only if there exists
an operator T on H with |T — Idg|| < 1 such that {T1g;}ies is a dual of {fi}icr-
(ii) Let {fi}icr be a Riesz basis. Then {g;}icr is an approzimate dual of {f;}icr if and
only if there exists an operator T on H with ||T — Idg|| < 1 such that g; = Tﬁ. In
this case {fi}icr and {gi}ic1 are P-equivalent, for some invertible operator P on H
and {g; }icr is also a Riesz basis.

3. Q—approximate duality for g-frames and fusion frames

In this section, we introduce a new kind of approximate duality for g-frames and
fusion frames and we study their properties. In this section W and V are {(W;,w;)}ier and
{(Vi,vi) Yier, respectively. Also Aw = {wimw, hier and Ay = {v;my, bier-
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First we recall parts (i) and (ii) of the following definition from [16] and [14], respectively.
Part (iii) uses the fact that every Bessel fusion sequence generates a g-Bessel sequence.

Definition 3.1. Let W and V be Bessel fusion sequences for H.
(i) If there exists an operator Q € L(£*(I,H)) such that Ta,,QTx = Idy, then W is
called a Q-dual of V.
(ii) Let V be a fusion frame. Then we say that W is an alternate dual or a dual of V if
Yicr viwmwiSXéﬂ'Vif = f, for each f € H.
(iii) We say that W is a g-dual of V if Ay is a g-dual of Av.

Now we introduce @-duals and Q-approximate duals for g-Bessel sequences:

Definition 3.2. Let A and I" be g-Bessel sequences for H.
(i) If there exists an operator Q € L(®;erH;) such that TaQT} = Idy, then A is called
a @Q-dual of T
(ii) If there exists an operator Q € L(®;erH;) such that |TAQTYE — Idyll < 1, then A is
called a Q-approximate dual of T'.

Note that if A is an approximate g-dual (resp. g-dual) of T', then A is a Q-approximate
dual (resp. Q-dual) of I with Q = Id(g,_, a,)-
Theorem 3.1. Let A and T' be g-Bessel sequences for H. If A is a Q-approximate dual of
I', then
(i) [TrQ*T} — Idpll < 1.
(i) T is injective and ThQ is surjective.
(iil) T% is injective and TrQ* is surjective.
(iv) A and T are g-frames.
Proof. (i) We have
[TrQ*Ty — Idul| = [(TAQTy — Idu)™|| = [TAQTy — Idul| < 1.

(i) Since ||TAQT} — Idg|| < 1, by Newmann algorithm T)QT7 is invertible. Hence T} is
injective and T Q is surjective.

(iii) We can obtain the result similar to (ii) by using part (i).

(iv) Let Sagr = TAQTY: and D be an upper bound for I'. Then SXQF = Srg-a and since
ISagr — Idu|| < 1, Sagr and Srg-a are invertible. Now for each f € H, we have

I£Il = 1Srg-aSr-afll < ISrg-alllSro-afl

= 15eeal( sup, I(Sr-a1.9)])

llgll=1
= ISreall( sup Q" ({Asfier). Tig))
g =
< 11SrgealllQIH{Af Yier IITF
1
_ « 2
< VDSl (X It
il
Therefore ———1———— is a lower bound for A. Similarly we can see that I' is a g-
D|Spg«all2 Q112
frame. |

Now we introduce @Q-approximate duality for Bessel fusion sequences:

Definition 3.3. Let W and V be Bessel fusion sequences for H. If there exists an operator
Q € L((*(I, H)) such that |Ta,,QTx  — Idy|| <1, then W is called o Q-approximate dual
of V.
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As a consequence of Theorem 3.1 we get the following result which is a generalization
of Lemma 3.2 in [16] to the approximate duality of fusion frames.

Theorem 3.2. Let W and V be Bessel fusion sequences for H. If W is a Q-approximate
dual of 'V, then
() 176y @TR,, — Idu| < 1.
ii) Ty, is injective and Ty, Q is surjective.
(iii) Ty, is injective and Ta, Q" is surjective.
(iv) W and V are fusion frames.

—~

If W and V are Bessel fusion sequence and fusion frame, respectively, then by Lemma
3.9 in [7], the series ), ; viwimw, S’Xéwvi f converges for each f € H. Hence the operator
Sy, defined on H by Sy, f = > ,c; viwimw, SX;?TVi f is bounded. Now we have two kinds
of approximate duals for fusion frames which are special cases of Q-approximate duals (see
also [1, 2, 3]):

Definition 3.4. (i) Let W and 'V be Bessel fusion sequences and Swy = Ta,, Ty . Then
we say that W is an approximate g-dual of V if Ay is an approximate g-dual of Av,
equivalently ||Swv — Idgl| < 1.

(ii) Let W and V be Bessel fusion sequence and fusion frame, respectively. Then we say
that W is an approzimate dual of V if || Sv,, — Idg] < 1.

If W is an approximate g-dual of V, then W is a @Q-approximate dual of V with
Q = Idg(1,my- Also if W is an approximate dual of V, then W is a Q-approximate dual of V
with Q({fi}ier) = {SX& fi}icr. Hence using Theorem 3.2, we get the following result which
is a generalization of Theorem 2.3 in [19] and Proposition 2.8 in [14] to the approximate
duality of fusion frames.

Proposition 3.1. (i) If W is an approximate g-dual of V, then W and V are fusion
frames.
(ii) If' W is an approzimate dual of V, then W is a fusion frame.

Note that if W is a g-dual (resp. a Q-dual, an alternate dual) of V, then W is
an approximate g-dual (resp. a Q-approximate dual, an approximate dual) of V because
Swv = Idg (resp. TrywQTy, = Idg, Sv,, = Idg). If W is an approximate g-dual
(resp. a @Q-approximate dual) of V, then V is also an approximate g-dual (resp. a Q*-
approximate dual) of W since || Svw — Idg|| = [|(Swv —Idg)*|| = |(Swv —Idg)|| < 1 (resp.
[Try QTR,, — Idul| <1).

Example 3.1. (i) Let H be a Hilbert space, W = {(H,1)} and V = {(H,2)}. Then
Sv,, = i.IdH, so ||Sv,, — Idyll = % < 1. Thus W is an approzimate dual of V. We
also have Sw, = 4.Idy. Hence ||Sw, — Idg| =3 > 1. This shows that V is not an
approximate dual of W.

(ii) Let 'V be an A—tight fusion frame with A > 2. Then Sy, = Idy and Syy = A.Idy.
Therefore 'V is an approximate dual of itself but it is not an approrimate g-dual of
itself.

(iif) Let W= {(H,2)} and V = {(H, 3)}. Then Syw = Idy and Sy, = 4.Idy. Hence W
is an approximate g-dual of V but it is not an approximate dual of V.

In the following two propositions and corollary F; = {fi;}jes,, Fi' = {fi;}jes; and

Si = {gij}tjesn, G’ = {9i;}jeu; are Bessel sequences for W; and V;, respectively such that

the sequence of their upper bounds are bounded above.

Proposition 3.2. Assume that F;' and G;" are duals of F; and G;, respectively such that F!

and G. are biorthogonal for each i € I. Then W is an approximate g-dual (resp. a g-dual)

of V if and only if {w;fijtier je, is an approzimate dual (resp. a dual) of {vigi;}ticr jeu, -
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Proof. Let B be an upper bound for W and C' = sup;c;{C;}, where C; is an upper bound
for F;. Now for each f € H, we have

SN Hhwili)P => Wl Y [mw S, fig))? < C Y willmw, f1* < CB| 1%,

el jed; el JjeJ; el

so {w; fijtier je, is a Bessel sequence. Similarly we can see that {v;g;; }ier jes; is a Bessel
sequence for H. Let f € H. Then

Sywf = Zviwmvi ( Z (f, fij>fi/j>

icl jed;

= Z szwz fvfw WszJ Z Z Z VWi fvfzj ngzk>gzk
i€l jeJ; i€l jeJ; ked;

= D) (fwifij)vigi; = Sgyr f,
i€l jed;

where Fyw = {w; fij }ier jes, and Gy = {vigij }ier jes,- This yields that W is an approximate
g-dual (resp. a g-dual) of V if and only if Fyy is an approximate dual (resp. a dual) of
Gv. O

Corollary 3.1. Suppose that {fi;};jcs, is a Riesz basis for W; with upper bound B; and
sup;c;{Bi} < co. Then W is an approzimate g-dual (resp. a g-dual) of itself if and only if

{wi fijtier,jes, is an approzimate dual (resp. a dual) of {w;fij}icr jeu, -

Proof. Let F; = {fi;}jcs, = G, and G; = {:f;}je]i = 7;’. Now we can get the result from
the above proposition and Theorem 5.5.4 in [8]. O

The following proposition is a generalization of Theorem 3.12 in [16] to the approxi-
mate duality of fusion frames.

Proposition 3.3. Suppose that Q € L(¢*(I, H)) which is defined by
QU{hitier) ={>2;c, (his fij)gij tier. Then the following conditions are equivalent:

() {Uzgzj}zel,jeJ 8 an approximate dual Of {w’bflj}lel,jEJ
(i) V= {(Vi,vi)}ier is a Q-approzimate dual of W = {(W;,w;) }ier-

Proof. Similar to the proof of Theorem 3.12 in [16], we can obtain that @ is well-defined and
bounded, also Ta, QTR (f) = D icr 2 ey, (frwifij)vigij = Sz f, where F = {w; fij bier je s
and § = {Uigij}iejﬁje‘]i. Hence ||TA\7QT/"\<M7 - IdHH < 1 if and only if HSg{} — IdHH <1l. 0O

4. Approximate duals for operators

Recently g-frames for operators and local g-atoms have been introduced in [4] as
generalizations of frames for operators and local atoms for subspaces, for more results see
[12, 13, 20].

In this section, we introduce #—approximate g-duals and (6, ||0||)—approximate g-duals,
where 6 is a bounded operator on a separable Hilbert space. First we recall the following
definition from [4].

Definition 4.1. Let 0 € L(H). Then {A\; € L(H, H;) : i € I} is called a 0—g-frame in H
if the following holds:
(i) The series Y ,.; Ajg; converges for all {g;}icr € ®icrH;.
(ii) There exists B > 0 such that for each f € H there exists {g; ticr € ®icrH; such that
0f =2 icr Nigi and 3o llgill* < B fI>.
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It was proved in Theorem 2.5 in [4] that A = {A;, € L(H,H;) : « € I} is a 6—g-
frame if and only if {A;};csr is a g-Bessel sequence and there exists a g-Bessel sequence
I'={Ty € L(H, H;) : i € I} such that 0f = >, _; A;Tf = Sarf, for each f € H. In this
case I is called a 8—g-dual of A. Because in this case Sxr = 0, we have Spp = 0*. Thus if
I' is a f—g-dual of A, then A is a 6*—g-dual of T.

Definition 4.2. Let A and T’ be g-Bessel sequences and 6 € L(H). Then

(i) T is called a —approximate g-dual of A if || — Sar|| < 1.
(i) Let||0]] < 1. ThenT is called a (0,|/0||)—approximate g-dual of A if [|0 — Sar|| < ||€]-

Since [|0* —Srall = [[(0 —Sar)*|| = (|0 —Sar|| and ||0]| = [|0* |, if [" is a 6 —approximate
g-dual (resp. (6, ||0]])—approximate g-dual) of A, then A is a §*—approximate g-dual (resp.
(6*,110*||) —approximate g-dual) of T".

Proposition 4.1. Let 0 be a self-adjoint operator on H. Then

(i) If there exist two g-Bessel sequences A and I’ such that T' is a 0—approzimate g-dual
(resp. (0,|0||)—approzimate g-dual) of A and {%} is a g-dual of A, for some A > 1
(resp. A > |6]|), then 6 is a positive operator.

(ii) If A is an A—tight g-frame, for some A > 1 (resp. A > ||0]|) such that A is a
0—approzimate g-dual (resp. (0, ||0||)—approzimate g-dual) of itself, then 6 is a positive
operator.

(iii) If there exists a Parseval g-frame which is a —approzimate g-dual or (6, |0]|)-approzimate
g-dual of itself, then 6 is a positive operator.

Proof. (i) Since {%}ie] is a g-dual of A, Syr = A.Idy. Therefore if T' is a §—approximate
g-dual of A, then [|§ — A.Idy| = ||0 — Sar|]| < 1 < A and if T is a (6, ]|6||)—approximate
g-dual of A with ||6]| < A, then (|6 — A.Idg| = |6 — Sar|| < ||6]] < A. Now Lemma 2.2.2 in
[22] implies that 6 is a positive operator.

(ii) Since A is an A—tight g-frame, {%}ie[ is a g-dual of A. Now the result follows from
part (i).

(iii) We get the result by considering A = 1 in part (ii). O

Proposition 4.2. Let 6 be a positive operator on H. Then

(i) If ||0]] < 1, then every ||0||—tight g-frame is a (8, ||0||)—approzimate g-dual of itself.
(ii) Fvery A—tight g-frame with ||0|| < A <1 is a O—approzimate g-dual of itself.

Proof. (i) Let A be a ||0]|—tight g-frame. Since 6 is positive, Lemma 2.2.2 in [22] implies
that |6 — Saall = 110 — 10]]-Ide]] < ||6]], so A is a (6, ]|0]])—approximate g-dual of itself.

(ii) Let A be an A—tight g-frame with [|0|| < A < 1. Since ||0|| < A, by Lemma 2.2.2 in [22],
|0 — Sanll =110 — A.Idg|| < A <1 and we get the result. O

Let ®; = {A;; € L(H;,H;j) : i € I} be a g-Bessel sequence for H;, with upper
bound B; such that B = sup{B; : j € J} < oo. Then {®;};c; is called a B-bounded
family of g-Bessel sequences or shortly B-BFGBS. In this case ®jc;®; = {Pjecslij €
L(®jesHj, ®jecsH;j;) 1 i € I} is a g-Bessel sequence with upper bound B (see Theorem 2.1
in [18]).

The following result is analogous to Proposition 3.2 in [18] and Proposition 2.8 in
[19]. In the following proposition ¥; = {I';; € L(H,;, H;;) : i € I}.

Proposition 4.3. Let {®;}jcs and {¥;};cs be BFGBS and 0; € L(H;). Then
(i) U, is a 8j—g-dual of ®;, for each j € J if and only if eV, is a ®,ecs0,—g-dual of
Djcs®;.
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(i) Let J be a finite set. If ¥; is a 6;—approzimate g-dual (resp. (0;,||6;||)—approzimate
g-dual) of ®;, for each j € J, then ®,;c;V; is a Bjcs0;—approrimate g-dual (resp.

J jeT¥; jesb;
((EBjEJGj),|| Djcs @H)—approximate g-dual) of @jcs®;. The converse holds for

0;—approzimate g-duals.

Proof. (i) Let B and D be upper bounds for ®;’s and ¥;’s, respectively. Since ¥; is a 0;—g-
dual of ®;, we have 0; = So,w,, 50 [0, = ||Se,v,|| < VBD. Hence @;e 0; is a bounded
operator on ®;csH;. Let {f;}jcr.{g9j}jcs € ®jesH;. Similar to the proof of Proposition
3.2 in [18], we can see that >, ;> 1 (Uij f, Mijgs) = D icr 2o jes(Lij fi, Aijgs) and now it
is easy to see that

(®jes0){fi}ier)Agitier) = (S@;cr)@,erv)({fi}ier) {9 }ier)

Hence @je0; = S(a,c,9,)(@,c,0,)s 50 Bjes¥; is a (©jes0;)—g-dual of ©jec;®;. The con-
verse is clear.
(ii) The result follows from the equalities

[(@je0;5) = S@;cr0,)(@;es9,) |l = maz{||0; — Se, v, : j € J},
and || ©jer 01| = max{||0; : j € J}. O

The converse of part (ii) is not necessarily true for (8;, ||0;||)—approximate g-duals.
For example if 6, = —1.Idy, 0 = L.1dy, &1 = ¥y = {J5-1dn} and @2 = ¥y = {0},

then U; @ 0, is a ((91 @ 0s),]|61 B 92\\>—appr0ximate g-dual of ®; ® ®5 but ¥; is not a

(61, ]|61]]) —approximate g-dual of ®;.

Let H and H’ be Hilbert spaces. Then the tensor product H ® H’ is a Hilbert
space, the inner product for simple tensors is defined by (z ® /.y ® ¥/) = (x,y)(a’, ),
where z,y € H and z’,3y’ € H'. If U and U’ are bounded operators on H and H’, respec-
tively, then U ® U’ is a bounded operator on H ® H’ which is defined on simple tensors by
UxU'(z@2") = (Uz)®(U'z") and we have (U U')* = U*@U"" and |[UU'|| = ||U||||U’].
For more results, see [22].

The following result is analogous to Proposition 2.10 in [19].

In the following proposition A" and I" denote {A’ € L(H',H}) : j € J} and {I'} €
L(H/,HJI) 1 € J}, respectively. AlsoT @I = {Fz (39 F;‘}iel,jEJa AN = {Az (9 A;}iel,jEJ
and 0’ € L(H").

Proposition 4.4. Let ' and I be (0, ]|0||)—approximate g-dual (resp. 6—approximate g-
dual) and 0'—g-dual of A and A, respectively with ||0'|| < 1. ThenT ®T" is a ((0@9'), |6 ®

0’||) —approximate g-dual (resp. (0 ® 6")—approxzimate g-dual) of A @ A'.

Proof. Similar to the proof of Proposition 2.10 in [19], we can see that ' ® IV and A @ A’
are g-Bessel sequences and Saga/)(rer) = Sar ® Sarr = Sar ® 0’. Now the result can be
obtained using the equalities [|(0 ® 0') — Siagar)rar) || = (0 — Sar) @ ¢'|| = [|0 — Sar|[[|¢']]
and (|6 @ 0'|| = [|0]][16"]]- O

Note that it is obtained from the proof of the above proposition that if I' and IV are
0 and 0'—g-duals of A and A’, respectively, then ' @ T is a ( ® 6')—g-dual of A ®@ A'.
We recall the following definition from [4].

Definition 4.3. Let A = {A; € L(H,H;) : i € I} be a g-Bessel sequence and Hy be a closed
subspace of H. Then A is called a family of local g-atoms for Hy with respect to {H;}icr,
if there exists a g-Bessel sequence I' = {I'; € L(Hy, H;) : i € I} such that f =5, ; AiT; f,
for each f € Hy.

el
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Now we introduce a family of approximately local g-atoms:

Definition 4.4. Let A = {A; € L(H,H;) : i € I} be a g-Bessel sequence and Hy be a closed
subspace of H. Then A is called o family of approximately local g-atoms for Hy with respect
to {H;}icr, if there exists a g-Bessel sequence I' = {I'; € L(Hy, H;) : i € I} and K < 1 such
that || f —> e AiLaf|| < K||f]], for each f € Hy.

It was proved in Theorem 2.14 in [4] that A is a family of local g-atoms for Hy with
respect to {H; }ier if and only if A has a Py, —g-dual, where Pp, is the orthogonal projection
from H onto Hy.

In the following theorem we obtain a similar result for approximately local g-atoms.

Theorem 4.1. Let A be a g-Bessel sequence. Then the following conditions are equivalent:

(i) A is a family of approxzimately local g-atoms for Hy with respect to {H;}icr.
(ii) A has a Py,—approzimate g-dual.

Proof. (i) = (ii) Suppose that I' = {I'; € L(Hoy, H;) : i € I} is a g-Bessel sequence and
K < 1suchthat || f —>,.; AjTf|| < K||f]], for each f € Hy. Let ¥ = {I'; Py, }icr. Then
it is easy to see that U is a g-Bessel sequence and || Py, f — Saw f|| < K| f]|, for each f € H.
Hence || Py, — Saw|| < K < 1, so ¥ is a Py,—approximate g-dual of A.

(ii) = (i) Suppose that ¥ = {4, };cs is a Py, —approximate g-dual of A, so || Py, —Saw|| < 1.
Now for I'; = ¢;Idy, and T' = {T'; };ey, it is easy to see that I' is a g-Bessel sequence and if
K= ||PH0 - SA\IJ”, then

Hf = 2NT| = 1Pm, f = Sawf | < KIfI]
icl
for each f € Hy. This means that A is a family of approximately local g-atoms for Hy with
respect to {H;}ier. O
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