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ORDERED JOIN HYPERLATTICES

A. Soltani Lashkenari1, Bijan Davvaz2

In this paper, we consider join hyperlattices and we define ordered join hy-

perlattices. Then, we consider product of two orderd join hyperlattices and we study
prime ideals on them. Moreover, we define semiprime ideals on ordered join hyperlat-
tices and prove some results about them. Also, we define a regular relation on ordered

join hyperlattice L such that the quotient of L is an ordered join hyperlattice. Then, we
investigate isomorphism on product of two ordered join hyperlattices with such regular
relations.
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1. Introduction and basic definitions

The first step in the history of the development of hyperstructures theory was the
8th congress of Scandinavian mathematicians from 1934, when Marty [13] introduced the
notion of hypergroup, analyzed its properties and applied them to non-commutative groups,
algebraic functions, rational fractions. One of the structures that are most extensively used
and discussed in mathematics and its applications is lattice theory (see [1]). The notion of
partial and lattice order goes back to 19th century investigations in logic. Konstantinidou
and Mittas introduced the concept of hyperlattices in [12] and the concept of ordering
hypergroup introduced by Chvalina [3] as a special class of hypergroups and studied by
many authors, see [2, 6, 9]. Now, by considering ordered hypergroups, we define ordered
hyperlattice. Product of two hyperlattice is defined in [5]. In first section, we investigate
conditions on product of two ordered hyperlattices such that prime ideals on them is defined.
Rav introduced the concept of semiprime ideals and filters in lattices [16]. Also, semiprime
ideals in ordered structures such as posets and other structures are studied in [17, 11, 10].
In second section, we generalize semiprime ideals and filters to ordered hyperlattices. Then,
we get results which connect this concepts to distributivity and other concepts in ordered
hyperlattices. Also, 0-distributive lattice are studied in [7, 8]. In the end of this section, we
intoduce 0-distributive hyperlattice and we investigate the connection between semiprime
ideals and this category of hyperlattices. The main tools in the theory of hyperstructures
are the fundemental relations and we study the quotient of hyperstructures with them. The
quotient hyperlattices studied by Xiao guang Li and Xiao long Xin [18]. In third section,
we define a regular relation on ordered join hyperlattice such that its quotient is an ordred
hyperlattice and we study some properties of such relations.

Let H be a non-empty set. A hyperoperation on H is a map ◦ from H×H to ℘∗(H),
the family of non-empty subsets of H. The couple (H, ◦) is called a hypergroupoid. For any
two non-empty subsets A and B of H and x ∈ H, we define A◦B = ∪a∈A,b∈B a◦b; A ◦x =
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A ◦ {x} and x ◦ B = {x} ◦ B. A hypergroupoid (H, ◦) is called a semihypergroup if for all
a, b, c of H we have (a ◦ b) ◦ c = a ◦ (b ◦ c). Moreover, if for any element a ∈ H equalities
a ◦H = H ◦ a = H hold, then the pair (H, ◦) is called a hypergroup.

Join hyperlattice. Let L be a non-empty set,
∨

: L×L −→ ℘∗(L) be a hyperoper-
ation, and ∧ : L× L −→ L be an operation. Then, (L,

∨
,∧) is a join hyperlattice if for all

x, y, z ∈ L the following conditions hold:
(1) x ∈ x

∨
x and x = x ∧ x;

(2) x
∨
(y

∨
z) = (x

∨
y)

∨
z and x ∧ (y ∧ z) = (x ∧ y) ∧ z;

(3) x
∨
y = y

∨
x and x ∧ y = y ∧ x;

(4) x ∈ x ∧ (x
∨
y) ∩ x

∨
(x ∧ y).

L is called a strong join hyperlattice, if y ∈ x
∨
y implies that x = x ∧ y and if for all

x ∈ L, there exists 1 ∈ L such that x ≤ 1, we say L is bounded. Also, L is said to be
distributive if for all x, y, z ∈ L, we have x∧ (y

∨
z) = (x∧y)

∨
(x∧z) and L is s-distributive

if x
∨
(y ∧ z) = (x

∨
y) ∧ (x

∨
z). Moreover, we call x ∈ L is complemented if there exist

y ∈ L, such that x∧y = 0 and 1 ∈ x
∨
y. If each x ∈ L is complemented, we say hyperlattice

L is complemented.

Example 1.1. Let (L,≤) be a partial order set. we define hyperoperations as follows:
a
∨
b = {x ∈ L : x ≤ a, x ≤ b} and a

∧
b = {x ∈ L : a ≤ x, b ≤ x}. Then, (L,

∨
,
∧
) is a join

hyperlattice.

Definition 1.1. Let I be a non-empty subset of L. Then, I is called an ideal of L if: (1)
for every x, y ∈ I, x

∨
y ⊆ I; (2) x ≤ I implies x ∈ I. The intersection of all ideals of

L containing A is denoted by (A] and by [6], in ordered hyperlattice, we have (A] = {x ∈
L; ∃a ∈ A, x ≤ a}.

Now, let (L,
∨
,∧) be a join hyperlattice. We call (L,≤) is an ordered hyperlattice, if

≤ is an equivalence relation and x ≤ y implies that x
∨
z ≤ y

∨
z and x ∧ z ≤ y ∧ z. Note

that for any A,B ⊆ L, A ≤ B means that there exist x ∈ A, y ∈ B such that x ≤ y. Notice
that if L is a s-distributive hyperlattice, then L is an ordered hyperlattice but the converse
is not true in general.

Example 1.2. Let H = {0, x1, x2, 1}. Consider the following tables:∨
0 x1 x2 1

0 0 x1 x2 1
x1 x1 {0, x1} 1 {x2, 1}
x2 x2 1 {0, x2} {x1, 1}
1 x2 1 1 H

∧ 0 x1 x2 1
0 0 0 0 0
x1 0 x1 0 x1

x2 0 0 x2 x2

1 0 x1 x2 1

We define ≤ as {(x1, x1), (x2, x2), (x1, x2)}. Then, (L,
∨
,∧,≤) is not s-distributive but it is

an ordered hyperlattice.

Example 1.3. Let (L,
∨
,∧) be a strong join hyperlattice such that x

∨
y = x

∨
x ∪ y

∨
y

and if x
∨
x = y

∨
y, then x = y. We define the relation ≤ as x ≤ y implies x ∈ y

∨
y.

Thus, (L,
∨
,∧,≤) is an ordered hyperlattice.

Definition 1.2. [5] Let (L1,
∨

1,∧1,≤1) and (L2,
∨

2,∧2,≤2) be two odered hyperlattice.

Give (L1 × L2,
∨′

,∧′,≤),
∨′

and ∧′ are two hyperoperations on L1 × L2 such that for any
(x1, y1), (x2, y2) ∈ L1×L2, we have (x1, y1)

∨′
(x2, y2) = {(u, v);u ∈ x1

∨
1 x2, v ∈ y1

∨
2 y2},
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(x1, y1) ≤ (x2, y2) if and only if x1 ≤1 x2, y1 ≤2 y2. The hyperoperation
∧′

is defined similar
to

∨′
.

Definition 1.3. [4] Let R be an equivalence relation on a nonempty set L and A,B ⊆ L,
AR̄B means that ∀a ∈ A,∃b ∈ B such that aRb and ∀b′ ∈ B, ∃a′ ∈ A such that a′Rb′.
Also, R is called a regular relation respect to ∨ (respect to ∧) if xRy implies that x∨ zR̄ y ∨
z(x∧ zR̄ y ∧ z), for all x, y, z ∈ L. R is called a regular relation if it is regular respect to ∨
and ∧, at the same time.

Theorem 1.1. [14] Let (L,
∨
,∧) be a hyperlattice and υ be an equivalence relation on L.

Then, (L/υ,g,f) is a hyperlattice if and only if υ is a regular relation.

2. Properties of prime ideals in product of two ordered join hyperlattices

In this section, we consider strong join hyperlattices. First we define prime ideals in
strong join hyperlattices. Then, we investigate sufficient conditions of a subset of product
of two ordered strong join hyperlattices is a prime ideal. Also, we define special elements
in ordered strong join hyperlattices and we investigate the connection betwen this elements
and ideals in ordered strong join hyperlattices.

By [14] an ideal P of a join hyperlattice L is prime if for all x, y ∈ L and x ∧ y ∈ P ,
we have x ∈ P or y ∈ P .

Proposition 2.1. Let L be a join hyperlattice. A subset P of a hyperlattice L is prime if
and only if L \ P is a subhyperlattice of L.

Proof. Let x, y ∈ L\P . Then, by definition of prime ideal we have x∧y ̸∈ P . So, x∧y ∈ L\P .
Now, we show that x

∨
y ⊆ L \ P . Let x

∨
y ⊆ P and x ̸∈ P, y ̸∈ P . Since P is an ideal of

hyperlattice L, we have (x
∨
y)∧x ∈ P, (x

∨
y)∧y ∈ P . So, by definition of join hyperlattice

we have x ∈ (x
∨
y)∧x. Therefore, x ∈ P, y ∈ P and this is contradiction. Thus, x

∨
y ̸⊆ P

and x
∨

y ⊆ L \ P . Similarly, we show that x ∧ y ∈ L \ P and L \ P is a subhyperlattice of
L. Now, Let L \P is a subhyperlattice of L and x∧ y ∈ P, x, y ̸∈ P . Thus, x, y ∈ L \P and
we have x ∧ y ∈ L \ P . Therefore, x ∧ y ̸∈ P and this is contradiction and we conclude that
x ∈ P or y ∈ P . �

Theorem 2.1. Let (L1,
∨

1,∧1,≤1) and (L2,
∨

2,∧2,≤2) be two ordered strong join hyper-
lattices and L ⊆ L1 × L2. L is a prime ideal if and only if there exist a prime ideal I ⊆ L1

and J ⊆ L2 with the properties that for any x ∈ L1, x
′ ∈ L2 and y ∈ I, y′ ∈ J , we have

x
∨

1 y ⊆ I, x′ ∨
2 y

′ ⊆ J and L = (I × L2) ∪ (L1 × J).

Proof. First we prove the converse. We show that L is a prime ideal of L1 × L2. Let
(x, z), (y, w) ∈ L. If x, y ∈ I, we have x

∨
1 y ⊆ I. Since L2 is a join hyperlattice, we have

z
∨

2 w ⊆ L2. Thus, (x, z)
∨′

(y, w) = x
∨

1 y × z
∨

2 w ⊆ I × L2 ⊆ L. If z ∈ J,w ∈ L2, by

condition of L1 we have (x, z)
∨′

(y, w) = x
∨

1 y × z
∨

2 w ⊆ I × J ⊆ I × L2 ⊆ L. Now, let

(x, y) ∈ L1×L2, (z, w) ∈ L. If z ∈ I and w ∈ L2, we have (x, y)
∧′

(z, w) ∈ I×L2 ⊆ L and if
z ∈ L1 and w ∈ J , we have (x, y)

∧′
(z, w) ∈ L1×J ⊆ L. Now, we show that L is prime. Let

(x, y)
∧′

(z, w) ∈ L. Thus, we have x∧1 z×y∧2w ∈ L. Therefore, (1) x∧1 z ∈ I, y∧2w ∈ L2

or (2) x ∧1 z ∈ L1, y ∧2 w ∈ J . In the first case, since I is prime we have x ∈ I or z ∈ I.
Thus, (x, y) ∈ I × L2 or (z, w) ∈ I × L2. The second case is similar to first. Therefore, L is
a prime ideal of L. Now, let L is a prime ideal and (x, z) ∈ L. We show that {x} × L2 ⊆ L
or L1 × {z} ⊆ L. If these relations are not true, there exist y ∈ L2 and w ∈ L1 such that
(x, y) ̸∈ L and (w, z) ̸∈ L. Since L is prime, we have (x ∧1 w) × (y ∧2 z) ̸∈ L. Also, since
L is an ideal and (x, z) ∈ L, (w, y) ∈ L1 × L2, we have (x ∧1 w) × (y ∧2 z) ∈ L and this is
contradiction. Now, we define A = {x ∈ L1; {x}×L2 ⊆ L} and B = {z ∈ L2;L1×{u} ⊆ L}
and I = {y ∈ L1; y ≤1 a for some a ∈ A} and J = {y ∈ L2; y ≤1 b for some b ∈ B}.
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By these definitions, we can easily prove L = (I × L1) ∪ (L2 × J). Now, we show that
I is a prime ideal and it has the property which is stated in the assumpation of theorem.
Let x, y ∈ L1 and x ∧1 y ∈ I. Thus, there exists a ∈ A such that x ∧1 y ≤1 a. Also,
(x, a)

∧′
(y, a) = (x ∧1 y, a ∧2 a) ∈ I × L1 ⊆ L. Since L is a prime ideal, we have (x, a) ∈ L

or (y, a) ∈ L. Therefore, since a ∈ L1, we have x ∈ I or y ∈ I. Now, let x ∈ L1, y ∈ I. So,
there exists a ∈ A such that y ≤1 a. Thus, x

∨
1 y ≤1 a

∨
1 y. Since a

∨
1 y ⊆ I and I is an

ideal, we have x
∨

1 y ∈ I and proof is completed. �

Definition 2.1. Let (L,
∨
,∧,≤) be an ordered strong join hyperlattice which is not bounded

and x ∈ L. If (x ∧ L] = ∪y∈L x ∧ y = {y ∈ L; y ≤ a for some a ∈ x ∧ L} = L, then, we
call x is right simple element. Now, let L is bounded with greatest element 1, x ∈ L is right
simple element, if (x ∧ L] = L \ {1}.

Example 2.1. [15] Let L = {0, x1, x2, 1}. Consider the following tables:∨
0 x1 x2 1

0 0 {x1, x2, 1} {x2, 1} 1
x1 {x1, x2, 1} x1 {x2, 1} 1
x2 {x2, 1} {x2, 1} x2 1
1 1 1 1 1

∧ 0 x1 x2 1
0 0 0 0 0
x1 0 x1 x1 x1

x2 0 x1 x2 x2

1 0 x1 x2 1

Then, x2 ∈ L is a right simple element of L.

Theorem 2.2. Let L be a distributive ordered strong join hyperlattice and R be the set of
all right simple elements of L. Then, we have R is a subhyperlattice of L. Also, if for any
arbitary subset A,B ⊆ L, y ∈ L we have y ∈ A

∨
B implies that y ∈ A or y ∈ B and L \ R

is nonempty, then L \R is a maximal ideal of L.

Proof. Let a, b ∈ R. Thus, we have (a∧L] = L, (b∧L] = L and L = (a∧L] = (a∧ (b∧L]] ⊆
(a ∧ b ∧ L]. Therefore, a ∧ b ∈ R. Since (A]

∨
(B] ⊆ (A

∨
B] and L is distributive, we have

L = (a ∧ L]
∨
(b ∧ L] ⊆ ((a

∨
b) ∧ L]. So, a

∨
b ∈ R. Now, let x, y ∈ L \ R. If x

∨
y ⊆ R,

we have L = ((x
∨
y) ∧ L]. Let z ∈ L. Thus, there exists z′ ∈ (x

∨
y) ∧ L such that z ≤ z′.

Therefore, there exists w ∈ L such that z′ = (x
∨
y) ∧ w. Thus, z′ ∈ (x ∧ w)

∨
(y ∧ w).

By assumpation, we conclude that z′ ∈ x ∧ w or z′ ∈ y ∧ w. Therefore, z ≤ z′ ∈ x ∧ w or
z ≤ z′ ∈ y∧w. Thus, z ∈ (x∧L] or z ∈ (y∧L] and L = (x∧L] or L = (y∧L]. So, x

∨
y ̸⊆ R

and x
∨
y ⊆ L \ R. Let x ∈ L \ R and y ∈ L. We show that x ∧ y ∈ L \ R. Let x ∧ y ∈ R.

We have L = (x∧ y ∧L] ⊆ (x∧L] = L and this is contradiction. So, x∧ y ∈ L \R. We can
easily show that L \R is a maximal idael of L and proof is completed. �

Theorem 2.3. Let (L,
∨
,∧,≤) be an ordered strong join hyperlattice and I be an ideal of

L such that for any y ∈ I and x ∈ L \ I there exists z ∈ x ∧ L such that y ≤ z. Then, L \ I
is the set of all right simple elements of L.

Proof. Let x ∈ L \ I and y ∈ L. By assumpation there exists z ∈ x ∧ L such that y ≤ z.
Thus, y ∈ (x ∧ L] and L = (x ∧ L]. Now, let x ∈ R and x ∈ I. Thus, for any b ∈ L we have
a ∧ b ≤ a ∈ I and L = (a ∧ L] ⊆ I. Thus, L \ I is right simple elements of L. �
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3. Semiprime ideals in ordered join hyperlattices

In this section, we consider order relation ≤ as x ≤ y if and only if x = x ∧ y and we
introduce semiprime ideals in ordered join hyperlattices. Then, we prove some results about
them.

Definition 3.1. Let (L,
∨
,∧,≤) be an ordered join hyperlattice and I ⊆ L be an ideal and

F be a filter of L. We call I is a semiprime ideal if for every x, y, z ∈ L, x ∧ y ∈ I and
x ∧ z ∈ I implies that x ∧ (y

∨
z) ⊆ I. Also, we call F is a semiprime filter if x

∨
y ⊆ F

and x
∨
z ⊆ F implies that x

∨
(y ∧ z) ⊆ F .

Notice that every prime ideal I is semiprime. Since if x ∧ y ∈ I and x ∧ z ∈ I, we
have x ∈ I or y ∈ I and x ∈ I or z ∈ I. If x ∈ I, by x∧ (y

∨
z) ≤ x we have x∧ (y

∨
z) ⊆ I.

Otherwise, we have y, z ∈ I. So, y
∨
z ⊆ I and x ∧ (y

∨
z) ⊆ I.

Proposition 3.1. Let (L,
∨
,∧,≤) be an ordered join hyperlattice and I be a semiprime

ideal of L. Also, for any A,B ⊆ L, A ≤ B ⊆ I implies that A ⊆ I. Then, I1 = {J ∈
Id(L); J ⊆ I} is a semiprime ideal of L. If L is a finite hyperlattice, I2 = ∪{J ; J ⊆ I} is a
semiprime ideal of L.

Proof. Let J1, J2 ⊆ I. Then, J1
∨
J2 ⊆ I

∨
I. Since I is an ideal of L, we have I

∨
I ⊆ I.

Therefore, J1
∨
J2 ⊆ I. Now, Let J1∧J2 ⊆ I1, J1∧J3 ⊆ I1 for any J1, J2, J3 ∈ Id(L). Then,

let x′ ∈ J1 ∧ (J2
∨

J3). Thus, x′ = x ∧ y for x ∈ J1, y ∈ J2
∨
J3. Therefore, y = y′

∨
y′′ for

some y′ ∈ J2 and y′′ ∈ J3. We have x∧y′ ∈ J1∧J2 ⊆ I and x∧y′′ ∈ J1∧J3 ⊆ I. Therefore,
since I is semiprime, we have x ∧ (y′

∨
y′′) ⊆ I and J1 ∧ (J2

∨
J3) ⊆ I. Now, if L is finite,

we show that I2 is a semiprime ideal. Let x, y ∈ I2. Thus, x ∈ J1 ⊆ I and y ∈ J2 ⊆ I.
Therefore, x

∨
y ⊆ J1

∨
J2 ⊆ I. Let x ≤ y ∈ J1 ⊆ I. Since I is an ideal, we have x ∈ I and

x ∈ I2. Since L is finite, the semiprimeness of I2 is ensumered. �
Theorem 3.1. Let L be a s-good(x

∨
0 = x) bounded ordered join hyperlattice and I be an

ideal and F be a filter of L such that I ∩ F = ∅ and for any A ⊆ L, A
∨
1 ⊆ F implies that

A ⊆ F . If F is a semiprime filter, there exists a semiprime ideal J such that I ⊆ J and
J ∩ F = ∅.

Proof. Let F be a semiprime filter and θ be a congruence on L which is defined as aθb if and
only if F : a = F : b where F : a = {x ∈ L; a

∨
x ⊆ F}. Clearly, θ be an equivalence relation.

Now, we show that θ is compatible with
∨

and ∧. Let aθb, since F is semiprime filter, we have
F : a∧c = (F : a)∩(F : c) = (F : b)∩(F : c) = F : b∧c. Thus, a∧cθb∧c. Let y ∈ F : a

∨
c.

Thus, y
∨

a
∨

c ⊆ F and therefore y
∨
c ⊆ F : a = F : b. So, y

∨
c
∨
b ⊆ F and y ∈ F : c

∨
b.

Therefore, θ is compatible with
∨
. Clearly, θ is a strongly regular relation and therefore

L/θ is a lattice. Now, we show that L/θ is a distributive lattice. Let sθx ∧ (y
∨
z) and

u ∈ F : s = F : x ∧ (y
∨
z). Therefore, A = u

∨
(x ∧ (y

∨
z)) ⊆ F . Since L is bounded,

we have A ≤ u
∨
(1 ∧ (y

∨
1)) ≤ u

∨
(y

∨
1). So, we have u

∨
y ⊆ F and u

∨
x ⊆ F . By

semiprime property of F , we have u
∨
(x∧y) ⊆ F and since u

∨
(x∧y) ≤ u

∨
(x∧y)

∨
(x∧z).

Therefore, u ∈ F : (x ∧ y)
∨
(x ∧ z) and L/θ is a distributive lattice. Also, in L/θ we have

Iθ ∩ Fθ = ∅. Becuse if there exists y ∈ Iθ ∩ Fθ, we have IθF . Thus, F : I = F : F and
since 0

∨
F = F ⊆ F , we have 0 ∈ F : I. Therefore, 0

∨
I = I ⊆ F and this is contradiction

with I ∩ F = ∅. So, Iθ ∩ Fθ = ∅. Now, By theorem of [15] there exists Pθ ∈ L/θ such that
Iθ ⊆ Pθ and Pθ is a prime ideal. We consider canonical map h : L −→ L/θ by h(a) = θ(a).
So, we have I ⊆ h−1(Pθ) = P , P ∩ F = ∅ and P is a prime(semiprime) ideal of L. �
Theorem 3.2. Let (L,

∨
,∧,≤) be an ordered join hyperlattice. L is a distributive hyper-

lattice if and only if for every ideal I and filter F of L such that I ∩F = ∅, there exist ideal
J and filter G of L such that I ⊆ J , F ⊆ G, J ∩G = ∅, J or G is semiprime and for every
x ∈ L, we have x ∈ J ∪G.
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Proof. Let L be a distributive hyperlattice. By [15] one side proof of theorem is completed.
Now, we consider such ideal and filter with their properties exist. We show that L is
distributive. Let x, y, z ∈ L and I be the ideal which is generated by (x ∧ y)

∨
(x ∧ z) and

F be a filter which is generated by x ∧ (y
∨
z). Now, let x ∧ (y

∨
z) � (x ∧ y)

∨
(x ∧ z).

Therefore, I ∩ F = ∅. Thus, there exist ideal J and filter G such that I ⊆ J and F ⊆ G,
J ∩G = ∅. If J is semiprime ideal, since x ∧ y ∈ J and x ∧ z ∈ J , we have x ∧ (y

∨
z) ⊆ J .

Since x ∧ (y
∨
z) ⊆ G, we have J ∩ G ̸= ∅ and this is contradiction. If G is semiprime, we

have x ∈ G and y
∨
z ⊆ G. If y ∈ G, since x ∈ G, we have x ∧ y ∈ G, and if z ∈ G, we

have x ∧ z ∈ G, this is contradict with J ∩G = ∅. So, neither y nor z are not in G. If both
y, z ∈ J , y

∨
z ⊆ J . This is contradiction with J ∩ G = ∅. So, both y, z ∈ J is imposible.

Let y ̸∈ J and z ∈ J . We have x ∧ z ∈ J . Since x ∧ y ≤ (x ∧ y)
∨
(x ∧ z) ∈ J , we have

x∧y ∈ J . But x∧y ∈ G, and this is contradiction. So, we have x∧(y
∨

z) ≤ (x∧y)
∨
(x∧z).

Now, let (x ∧ y)
∨
(x ∧ z) � x ∧ (y

∨
z) and I is an ideal which is generated by x ∧ (y

∨
z),

F be a filter which is generated by (x ∧ y)
∨
(x ∧ z). Similar to above arguments, we get to

contadiction and the proof is completed. �
Theorem 3.3. Let (L,

∨
,∧,≤) be an ordered join hyperlattice and for each x ∈ L, we have

x
∨
x = x. Then, L is distributive if and only if for every x, y ∈ L, (x

∨
y] is a semiprime

ideal.

Proof. Let L be a distributive hyperlattice and a ∧ b ∈ (x
∨

y], a ∧ c ∈ (x
∨
y] for any

a, b, c ∈ L. Then, (a ∧ b)
∨
(a ∧ c) ≤ (x

∨
y)

∨
(x

∨
y) = x

∨
y. So, a ∧ (b

∨
c) ∈ (x

∨
y]

and (x
∨
y] is semiprime. Now, we show that x ∧ (y

∨
z) ≤ (x ∧ y)

∨
(x ∧ z), for any

x, y, z ∈ L. Since x ∧ y ≤ (x ∧ y)
∨
(x ∧ z) and x ∧ z ≤ (x ∧ y)

∨
(x ∧ z), there exist

v, w ∈ (x ∧ y)
∨
(x ∧ z) such that x ∧ y ≤ v, x ∧ z ≤ w. Notice that v ≤ v

∨
w and

w ≤ v
∨
w. So, since (v

∨
w] is semiprime ideal, we have x ∧ (y

∨
z) ≤ v

∨
w. We have

v
∨
w ⊆ ((x ∧ y)

∨
(x ∧ z))

∨
(x ∧ y)

∨
(x ∧ z)) = (x ∧ y)

∨
(x ∧ z).Therefore, x ∧ (y

∨
z) ≤

(x∧y)
∨
(x∧ z). Now, Let I = (x∧ (y

∨
z)]. Since I is an ideal of L and x∧y ∈ I, x∧ z ∈ I,

we have (x ∧ y)
∨
(x ∧ z) ⊆ I. So, (x ∧ y)

∨
(x ∧ z) ≤ x ∧ (y

∨
z). �

Theorem 3.4. Let (L,
∨
,∧,≤) be an ordered join hyperlattice which has an element c such

that (c], [c) is semiprime and for each x ∈ L, x
∨
x = x and has the properties of 3.1. Also,

for any ideal I, J ⊆ L with I ⊆ J , if I is semiprime, we have J is semiprime and for any
filter F, J ⊆ L with J ⊆ F , if J or F is semiprime, we have other subset is semiprime.
Then, L is a distributive hyperlattice.

Proof. It suffices to show that for any x, y, z ∈ L, K = ((x∧y)
∨
(x∧ z)] is semiprime. Since

by x∧y ∈ K, x∧z ∈ K and semiprime property of K, we have x∧(y
∨
z) ≤ (x∧y)

∨
(x∧z).

First, we show that for any x ∈ L, (x] is semiprime. If we show this, we have (x ∧ y] ⊆
(x ∧ y]

∨
(x ∧ z] ⊆ ((x ∧ y)

∨
(x ∧ z)], and by supposition proof is completed. To show that

(x] is semiprime, let x ∈ L. If c ≤ x, then (c] ⊆ (x]. Since (c] is semiprime, we have (x] is
semiprime and proof is completed. Now, let c � x. If we show that (c ∧ x] is semiprime, by
(c ∧ x] ⊆ (x] proof is completed. Let A be the intersection of semiprime ideals of L which
contains (c ∧ x]. So, A is semiprime ideal. If we show that A = (c ∧ x], proof is completed.
Since A contains (c∧ x], we have (c∧ x] ⊆ A. Now, let a ∈ A. Therefore a ∈ Ii such that Ii
are semiprime ideals which contains (c∧x]. If a ≤ c∧x, A ⊆ (c∧x]. Otherwise, let a � c∧x.
Then, let I = (x∧c] and F = [a

∨
(x∧c)). Clearly, I∩F = ∅ and by hypothesise [a

∨
c) ⊆ [c)

is semiprime. Also, [a
∨
c) ⊆ [a

∨
(x ∧ c)). So, F is semiprime filter and by theorem 3.1,

there exists a semiprime ideal J such that I ⊆ J and J ∩ F = ∅. Since c ∧ x ∈ J and J is
semiprime ideal which contains (c ∧ x], we conclude that a ∈ J . Therefore, a

∨
(c ∧ x) ⊆ J .

But a
∨
(c ∧ x) ⊆ F and this is contradiction with J ∩ F = ∅. So, a ≤ c ∧ x and A = (c ∧ x]

is a semiprime ideal. Now, Let I = (x∧ (y
∨
z)]. Since x∧ y ∈ I, x∧ z ∈ I and I is an ideal,

we have (x ∧ y)
∨
(x ∧ z) ⊆ I. So, (x ∧ y)

∨
(x ∧ z) ≤ x ∧ (y

∨
z). �
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Definition 3.2. Let (L,
∨
,∧,≤) be an ordered join hyperlattice. We call L be 0-distributive

if a∧ b = a∧ c = 0, then a∧ (b
∨
c) = 0. For each x ∈ L, we define x⊥ = {y ∈ L;x∧ y = 0}.

Proposition 3.2. Let (L,
∨
,∧,≤) be an ordered join hyperlattice which is 0-distributive.

Then, x⊥ is a semiprime ideal of L.

Proof. Let u, v ∈ x⊥. Thus, x∧u = 0 and x∧v = 0. Since L is 0-distributive, x∧(u
∨
v) = 0.

So, u
∨
v ⊆ x⊥. If a ≤ b and b ∈ x⊥., we have a ∧ x ≤ b ∧ x = 0. Therefore, a ∈ x⊥. Now,

let a∧ b ∈ x⊥ and a∧ c ∈ x⊥. So, a∧ b∧ x = 0 and a∧ c∧ x = 0. Since L is a 0-distributive
hyperlattice, a ∧ x ∧ (b

∨
c) = 0. Therefore, x ∧ (a ∧ (b

∨
c)) = 0 and a ∧ (b

∨
c) ⊆ x⊥. So,

x⊥ is a semiprime ideal of L. �

Theorem 3.5. Let (L,
∨
,∧,≤) be a good(0

∨
0 = 0) ordered join hyperlattice. Then, the

following statements are equivalent:
: (1) L is 0-distributive;
: (2) If for any a, b ∈ L which a � b, we have a ∧ b = 0, then [p) is a prime filte(for any

p ∈ L);
: (3) for every x ∈ L, x⊥ is an ideal of L.

Proof. (1) =⇒ (2). Let x, y ∈ [p). Thus, p ≤ x and p ≤ y. Since ≤ is an order relation, we
have p ∧ p ≤ x ∧ y. Thus, x ∧ y ∈ [p). Now, let x ≤ y and x ∈ [p). We have p ≤ x ≤ y.
Therefore y ∈ [p). Let x

∨
y ⊆ [p). If x ̸∈ [p) and y ̸∈ [p), we have p � x and p � y. By

hypothesise p∧x = 0 and p∧ y = 0. Since L is 0-distributive, p∧ (x
∨

y) = 0 and this result
is contradiction with p ≤ x

∨
y. So, x ∈ [p) or y ∈ [p).

(2) =⇒ (3). Let a, b ∈ x⊥. If x � a
∨
b or a

∨
b � x, we have x ∧ (a

∨
b) = 0. Now,

let x ̸= 0 ≤ a
∨
b. There exists t ∈ a

∨
b such that x ≤ t. Therefore, a

∨
b ∈ [x) and since

by hypothesise [x) is a semiprime filter, a ∈ [x) or b ∈ [x). Thus, x ∧ a = x or x ∧ b = x.
By a, b ∈ x⊥, x = 0 and this is contradiction. So, x ≤ a

∨
b is not hold. (3) =⇒ (1). Let

a∧ b = 0 and a∧ c = 0. Therefore, b ∈ a⊥ and c ∈ a⊥. Since a⊥ is an ideal of L, b
∨
c ⊆ a⊥.

So, a ∧ (b
∨

c) = 0 and L is a 0-distributive hyperlattice. �

Theorem 3.6. Let (L,
∨
,∧,≤) be a s-good bounded 0-distributive join hyperlattice which

is s-distributive and not complemented. Also, L has the property that for every A,B ⊆ L,
1 ∈ A ≤ B implies that 1 ∈ B and A

∨
1 ⊆ F implies A ⊆ F .Then, there exist semiprime

ideals I, J such that I ⊆ J .

Proof. Let c ∈ L has no complement in L. Since L is not complemented, such element
exists. Now, consider c⊥ = {x ∈ L;x ∧ c = 0}. By proposition 3.2, c⊥ is a semiprime ideal
of L. Consider F = {x ∈ L; 1 ∈ x

∨
c}. We show that F is semiprime filter of L. Let

x, y ∈ F . Thus, 1 ∈ x
∨
c and 1 ∈ y

∨
c and (x

∨
c) ∧ (y

∨
c) = c

∨
(x ∧ y). Therefore,

1 ∈ c
∨
(x ∧ y) and we conclude that x ∧ y ⊆ F . Also, if x ≤ y and 1 ∈ x

∨
c, we have

x
∨
c ≤ y

∨
c. So, 1 ∈ y

∨
c and y ∈ F . Now, let a ∧ b ∈ F, a ∧ d ∈ F . Thus, 1 ∈ (a ∧ b)

∨
c

and 1 ∈ (a ∧ d)
∨
c ≤ (a ∧ (b

∨
d))

∨
c. Therefore, 1 ∈ (a ∧ (b

∨
d))

∨
c and a ∧ (b

∨
d) ∈ F .

Notice that I ∩F = ∅. Since if there exists x ∈ I ∩F , we have x∧ c = 0 and 1 ∈ x
∨
c. This

is contradiction with c has not complement. Now, by theorem 3.1 there exists a semiprime
ideal J such that I ⊆ J and J ∩ F = ∅. �

4. Quotient of ordered join hyperlattices with a regular relation

In this section, we study special relation which is regular on ordered join hyperlattices
which has conection with order on L and we derive ordered join hyperlattice from an ordered
join hyperlattice with such regular relation.

Let (L,
∨
,∧,≤) be an ordered strong join hyperlattice and υ be a relation which

is transitive and contains the relation ≤. Moreover, for any x, y ∈ L, if xυy, we have
x
∨
z ῡ y

∨
z and x ∧ z ῡ y ∧ z, for all z ∈ L and x ∈ y

∨
z implies that xυy, yυx, xυz, zυx,
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we call such relations as quasi-ordered relations. We know that if υ is a regular relation, the
quotient L/υ is a hyperlattice. But this relation is not equivalence relation. So, we define
υ⋆ = {(a, b) ∈ υ×υ; aυb, bυa} and in the following theorem we show that L/υ⋆ is an ordered
hyperlattice.

Theorem 4.1. Let (L,
∨
,∧,≤) be an ordered strong join hyperlattice and υ⋆ ba a relation

which is defined above. Thus, L/υ⋆ is an ordered hyperlattice.

Proof. We can easily show that υ⋆ is an equivalence relation. Now, we show that υ⋆ is a reg-
ular relation. Let xυ⋆y , z ∈ L and x′ ∈ x

∨
z. Thus, xυy and yυx. Therefore, x

∨
zῡy

∨
z,

y
∨

zῡx
∨

z and we conclude there exists y′ ∈ y
∨
z such that x′υy′. By property of υ, we

have y′υz and zυx′. So, y′υx′ and x
∨

zῡ⋆y
∨
z. Since ∧ is binary operation, we can easily

show that x ∧ zῡ⋆y ∧ z. So, υ⋆ is a regular relation and L/υ⋆ is a hyperlattice. Now,
we show L/υ⋆ is ordered. Let υ⋆(x) 4 υ⋆(y). Thus, since L/υ⋆ is a hyperlattice, we have
υ⋆(x) g υ⋆(z) = υ⋆(z′) where z′ ∈ x

∨
z and υ⋆(y) g υ⋆(z) = υ⋆(w), w ∈ y

∨
z. Thus,

there exist x′ ∈ υ⋆(x) and y′ ∈ υ⋆(y) such that x′ ≤ y′. Therefore, we have x′ ∨ z ≤ y′
∨
z

and therefore x′ ∨ zυy′
∨

z. So, υ⋆(x′) g υ⋆(z) 4 υ⋆(y′) g υ⋆(z). Since υ⋆(x′) = υ⋆(x) and
υ⋆(y′) = υ⋆(y) , we have υ⋆(x) g υ⋆(z) 4 υ⋆(y) g υ⋆(z). Therefore, L/υ⋆ is an ordered
hyperlattice. �

Theorem 4.2. Let (L,
∨
,∧,≤) be an ordered strong join hyperlattice and υ be a quasi-

ordered relation. There is one to one correspondence between quasi-ordered relations on L
which contain υ and quasi ordered relations on L/υ⋆.

Proof. Let η be a quasi-ordered relation on L/υ⋆. We show

τ = {(x, y); (υ⋆(x), υ⋆(y)) ∈ η}

is a quasi-ordered relation on L which contains υ. Let x ≤ y. So, xυy and (υ⋆(x), υ⋆(y)) ∈
L/υ⋆. Since η is a quasi-ordered relation, it follows that (υ⋆(x), υ⋆(y)) ∈ η and so (x, y) ∈
τ , ≤⊆ τ . We can easily show that τ has transitive property. Now, let x ∈ y

∨
z. So,

υ⋆(x) ∈ υ⋆(y) g υ⋆(z) where g is hyperoperation on L/υ⋆. Therefore, (υ⋆(x), υ⋆(y)) ∈ η
and (υ⋆(x), υ⋆(z)) ∈ η. So, (x, y) ∈ τ , (x, z) ∈ τ , (y, x) ∈ τ , (z, x) ∈ τ and let (x, y) ∈ τ ,
a ∈ x

∨
z. So, υ⋆(a) ∈ υ⋆(x) g υ⋆(z) and since η is a quasi-ordered, there exists υ⋆(b) ∈

υ⋆(y)gυ⋆(z) such that (υ⋆(a), υ⋆(b)) ∈ η. So, (a, b) ∈ τ . Also, we can prove for ∧ and τ is a
quasi-ordered relation on L. Similarly, we can show that if we have a quasi-ordered relation
on L which contains υ, then there exists a quasi-ordered relation on L/υ⋆. �

Proposition 4.1. Let (L,
∨
,∧) be an ordered strong join hyperlattice and υ, τ be two quasi-

ordered relations on L such that υ ⊆ τ and υ⋆(x) τ/υ υ⋆(y) if and only if ∃a ∈ υ⋆(x), ∃b ∈
υ⋆(y), aυb. Then, τ/υ is a quasi-ordered relation on L/υ⋆.

Proof. Let (υ⋆(x), υ⋆(y)) ∈ τ/υ. Thus, there exist x ∈ υ⋆(a), y ∈ υ⋆(b) such that xυy.
Therefore, aυx and yυb. So, aυb and since υ ⊆ τ , we have aτb. We can easily show that
τ/υ contains 4 on L/υ⋆ and has transitive property. Now, we let (υ⋆(x), υ⋆(y)) ∈ τ/υ
and υ⋆(z) ∈ L/υ⋆, υ⋆(c) ∈ υ⋆(x) g υ⋆(z). Thus, (x, y) ∈ υ and c ∈ x

∨
z. Since τ

is a quasi-ordered relation, there exists u ∈ y
∨
z such that cτu. Therefore, there exists

υ⋆(u) ∈ υ⋆(y) g υ⋆(z) such that (υ⋆(c), υ⋆(u)) ∈ τ/υ. Also, let υ⋆(z) ∈ υ⋆(x) g υ⋆(y).
Thus, z ∈ x

∨
y and zτx, zτy, xτz, yτz. Therefore, (υ⋆(z), υ⋆(x)) ∈ τ/υ, (υ⋆(z), υ⋆(y)) ∈

τ/υ, (υ⋆(x), υ⋆(z)) ∈ τ/υ, (υ⋆(y), υ⋆(z)) ∈ τ/υ. Similarly, we prove for ∧ and proof is
completed. �

In the previous section, we study prime hyperideals in L1 × L2. Now, we investigate
quasi-ordered relation on L1 × L2 in the following theorem.
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Theorem 4.3. Let (L1,
∨

1,∧1,≤1) and (L2,
∨

2,∧2,≤2) be two ordered strong join hyper-
lattices and υ1, υ2 be quasi-ordered relations on L1 and L2. Then, (L1×L2)/υ

⋆ isomorphic
to L1/υ

⋆
1 × L2/υ

⋆
2 .

Proof. We define f : (L1×L2)/υ
⋆ −→ L1/υ

⋆
1×L2/υ

⋆
2 by f(υ⋆(a), υ⋆(b) = (υ⋆

1(a), υ
⋆
2(b)). We

can easily show that f is well defined and one to one. Now, we show that f is a homomor-
phism between two ordered join hyperlattices. f(υ⋆(a1, b1)gυ⋆(a2, b2)) = f(υ⋆(u, v)) where
u ∈ a1

∨
a2, v ∈ b1

∨
b2. So, we have f(υ

⋆(a1, b1)gυ⋆(a2, b2)) = (υ⋆(a1)
∨

1 υ
⋆(a2), υ

⋆(b1)
∨

2

υ⋆(b2)) = f(υ⋆(a1, b1))× f(υ⋆(a2, b2)). Similarly, these relations holds for binary operation
f and by definition of order on L1 ×L2, if υ

⋆(a1, b1) 4 υ⋆(a2, b2), we have (a1, b1)υ(a2, b2).
Therefore, (a1, a2) ∈ υ1 and (b1, b2) ∈ υ2. Thus, υ⋆

1(a1) ≤1 υ⋆
1(a2) and υ⋆

2(b1) ≤2 υ⋆
2(b2).

Therefore, f is an order preserving map and it is clear that f is onto. So, f is isomorphism
and proof is completed. �
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