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ORDERED JOIN HYPERLATTICES

A. Soltani Lashkenari', Bijan Davvaz?

In this paper, we consider join hyperlattices and we define ordered join hy-
perlattices. Then, we consider product of two orderd join hyperlattices and we study
prime ideals on them. Moreover, we define semiprime ideals on ordered join hyperlat-
tices and prove some results about them. Also, we define a regular relation on ordered
join hyperlattice L such that the quotient of L is an ordered join hyperlattice. Then, we
investigate isomorphism on product of two ordered join hyperlattices with such reqular
relations.
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1. Introduction and basic definitions

The first step in the history of the development of hyperstructures theory was the
8th congress of Scandinavian mathematicians from 1934, when Marty [13] introduced the
notion of hypergroup, analyzed its properties and applied them to non-commutative groups,
algebraic functions, rational fractions. One of the structures that are most extensively used
and discussed in mathematics and its applications is lattice theory (see [1]). The notion of
partial and lattice order goes back to 19th century investigations in logic. Konstantinidou
and Mittas introduced the concept of hyperlattices in [12] and the concept of ordering
hypergroup introduced by Chvalina [3] as a special class of hypergroups and studied by
many authors, see [2, 6, 9]. Now, by considering ordered hypergroups, we define ordered
hyperlattice. Product of two hyperlattice is defined in [5]. In first section, we investigate
conditions on product of two ordered hyperlattices such that prime ideals on them is defined.
Rav introduced the concept of semiprime ideals and filters in lattices [16]. Also, semiprime
ideals in ordered structures such as posets and other structures are studied in [17, 11, 10].
In second section, we generalize semiprime ideals and filters to ordered hyperlattices. Then,
we get results which connect this concepts to distributivity and other concepts in ordered
hyperlattices. Also, O-distributive lattice are studied in [7, 8]. In the end of this section, we
intoduce 0-distributive hyperlattice and we investigate the connection between semiprime
ideals and this category of hyperlattices. The main tools in the theory of hyperstructures
are the fundemental relations and we study the quotient of hyperstructures with them. The
quotient hyperlattices studied by Xiao guang Li and Xiao long Xin [18]. In third section,
we define a regular relation on ordered join hyperlattice such that its quotient is an ordred
hyperlattice and we study some properties of such relations.

Let H be a non-empty set. A hyperoperation on H is a map o from H x H to p*(H),
the family of non-empty subsets of H. The couple (H, o) is called a hypergroupoid. For any
two non-empty subsets A and B of H and x € H, we define Ao B = Ugcapep a0b; Aoz =
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Ao {z} and x o B = {x} o B. A hypergroupoid (H, o) is called a semihypergroup if for all
a,b,c of H we have (aob)oc = ao(boc). Moreover, if for any element a € H equalities
ao H = H oa = H hold, then the pair (H, o) is called a hypergroup.

Join hyperlattice. Let L be a non-empty set, \/ : L x L — ©*(L) be a hyperoper-
ation, and A : L x L — L be an operation. Then, (L,\/, A) is a join hyperlattice if for all

x,y,z € L the following conditions hold:
(D zezVzand =z A,

1)
(2) zV(yVz)=@Vy)VzandzA(yAz)=(zAy) Az
B)zVy=yVzandx ANy=yAux;

HharzexN(@\Vy Nz\V(xAy).
L isg (?,alled a st(ro\r{g goin l\léf(perlat)tice, if y € x\/y implies that z = z A y and if for all

x € L, there exists 1 € L such that z < 1, we say L is bounded. Also, L is said to be
distributive if for all z,y,z € L, we have z A (y  z) = (x Ay) V(x Az) and L is s-distributive
if e\V(yAz) = (xVy)A(xVz). Moreover, we call z € L is complemented if there exist
y € L, such that ztAy =0and 1 € x\/ y. If each x € L is complemented, we say hyperlattice
L is complemented.

Example 1.1. Let (L,<) be a partial order set. we define hyperoperations as follows:
aVVb={zeL:z<ax<blandaA\b={zx e L:a<uzb<z} Then, (L,\/,\) is a join
hyperlattice.

Definition 1.1. Let I be a non-empty subset of L. Then, I is called an ideal of L if: (1)
for every x,y € I, x\/y C I; (2) x < I implies x € I. The intersection of all ideals of
L containing A is denoted by (A] and by [6], in ordered hyperlattice, we have (A] = {z €
L;Ja € A jx < a}.

Now, let (L, \/,A) be a join hyperlattice. We call (L, <) is an ordered hyperlattice, if
< is an equivalence relation and x < y implies that x\/z < y\/ z and x A z < y A z. Note
that for any A, B C L, A < B means that there exist x € A,y € B such that < y. Notice
that if L is a s-distributive hyperlattice, then L is an ordered hyperlattice but the converse
is not true in general.

Example 1.2. Let H = {0, x1,z2,1}. Consider the following tables:
\/ ‘ 0 X1 i) 1
0 0 X T2 1
z1 |21 {0,z1} 1 {za,1}

o | T2 1 {0,332} {3?1,1}
1 | xo 1 1 H

AN ‘ 0 Tr1 T2 1
010 0 O

T 0 T 0 T
xTo 0 0 To T2
110 21 2o 1

We define < as {(x1,21), (x2, z2), (x1,22)}. Then, (L,\/, A, <) is not s-distributive but it is
an ordered hyperlattice.

Example 1.3. Let (L,\/,A) be a strong join hyperlattice such that x\/y = xz\/xUyVy
and if z\/x = y\/y, then x = y. We define the relation < as x < y implies x € y\/ y.
Thus, (L,\/, N\, <) is an ordered hyperlattice.

Definition 1.2. [5] Let (L1,\/;, A1, <1) and (La,\,, A2, <2) be two odered hyperlattice.
Give (Ly x Lo, \/',\', <), \/ and N are two hyperoperations on Ly x Ly such that for any
(z1,91), (B2, 42) € L1 X Lo, we have (x1,51) V' (22, y2) = {(w,v);u € 21V, 22,0 € y1 92},
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(z1,71) < (x2,y2) if and only if x1 <1 2,91 <o yo. The hyperoperation \' is defined similar
to \/'.

Definition 1.3. [4] Let R be an equivalence relation on a nonempty set L and A, B C L,
ARB means that Ya € A,3b € B such that aRb and Vb’ € B,3a’ € A such that a'Rb'.
Also, R is called a regular relation respect to V (respect to N) if xRy implies that xV 2R y V
2z A2RyAz), for all z,y,z € L. R is called a reqular relation if it is reqular respect to V
and N, at the same time.

Theorem 1.1. [14] Let (L,\/,A) be a hyperlattice and v be an equivalence relation on L.
Then, (L/v, Y, \) is a hyperlattice if and only if v is a regular relation.

2. Properties of prime ideals in product of two ordered join hyperlattices

In this section, we consider strong join hyperlattices. First we define prime ideals in
strong join hyperlattices. Then, we investigate sufficient conditions of a subset of product
of two ordered strong join hyperlattices is a prime ideal. Also, we define special elements
in ordered strong join hyperlattices and we investigate the connection betwen this elements
and ideals in ordered strong join hyperlattices.

By [14] an ideal P of a join hyperlattice L is prime if for all z,y € L and 2 Ay € P,
we have z € P or y € P.

Proposition 2.1. Let L be a join hyperlattice. A subset P of a hyperlattice L is prime if
and only if L\ P is a subhyperlattice of L.

Proof. Let z,y € L\ P. Then, by definition of prime ideal we have zAy & P. So, zAy € L\ P.
Now, we show that x\/y C L\ P. Let xt\/y C P and « ¢ P,y ¢ P. Since P is an ideal of
hyperlattice L, we have (z\/ y)Axz € P, (z\/ y) Ay € P. So, by definition of join hyperlattice
we have z € (z\/ y) Az. Therefore, x € P,y € P and this is contradiction. Thus, z\/y € P
and z\/y C L\ P. Similarly, we show that x Ay € L'\ P and L\ P is a subhyperlattice of
L. Now, Let L\ P is a subhyperlattice of L and x Ay € P,z,y € P. Thus, z,y € L\ P and
we have z Ay € L\ P. Therefore, x Ay ¢ P and this is contradiction and we conclude that
rePoryeP. 0

Theorem 2.1. Let (L1,\/{,A1,<1) and (L2, \/5, A2, <2) be two ordered strong join hyper-
lattices and L C L1 X Lo. L is a prime ideal if and only if there exist a prime ideal I C L
and J C Lo with the properties that for any x € Ly,2’ € Ly and y € I,y € J, we have
z\,yCILa'\/,y CJand L= (I x La)U(Ly xJ).

Proof. First we prove the converse. We show that L is a prime ideal of L; x Ls. Let
(x,2), (y,w) € L. If z,y € I, we have z\/; y C I. Since L is a join hyperlattice, we have
z\/yw C Ly. Thus, (z,2) V' (y,w) =2V, yx 2\/ow C I x Ly C L. If z € Jyw € Ly, by
condition of L; we have (z,2)\ (y,w) =x\/,yx z\/yw C I xJ CIx Ly C L. Now, let
(z,y) € L1 X Ly, (z,w) € L. If z € I and w € Ly, we have (x,y) \'(z,w) € I x Ly C L and if
z € Ly and w € J, we have (z,y) \'(z,w) € L1 x J C L. Now, we show that L is prime. Let
(z,y) \'(z,w) € L. Thus, we have £ A1 z X y Apw € L. Therefore, (1) zA1 2 € [, yAgw € Lo
or (2) x A1 z € L,y Asw € J. In the first case, since I is prime we have z € T or z € I.
Thus, (z,y) € I X Ly or (z,w) € I x Ly. The second case is similar to first. Therefore, L is
a prime ideal of L. Now, let L is a prime ideal and (x, z) € L. We show that {z} x Ly C L
or Ly x {z} C L. If these relations are not true, there exist y € Lo and w € Ly such that
(z,y) € L and (w,z) € L. Since L is prime, we have (z A; w) X (y A2 z) € L. Also, since
L is an ideal and (z,z) € L, (w,y) € L1 X Lg, we have (z Ay w) X (y Az z) € L and this is
contradiction. Now, we define A = {z € L1;{z} x Ly C L} and B={z € Ly; L1 x{u} C L}
and I = {y € Ly;y <y a for somea € A} and J = {y € Lo;y <1 b for someb € B}.
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By these definitions, we can easily prove L = (I x L) U (Ls x J). Now, we show that
I is a prime ideal and it has the property which is stated in the assumpation of theorem.
Let x,y € Ly and x Ay y € I. Thus, there exists a € A such that z Ay y <1 a. Also,
(z,a) N'(y,a) = (x Ay y,aAga) € I x Ly C L. Since L is a prime ideal, we have (z,a) € L
or (y,a) € L. Therefore, since a € L1, we have x € I or y € I. Now, let © € L1,y € I. So,
there exists a € A such that y <; a. Thus, z\/;y <1 a\/;y. Since a\/;y C I and I is an
ideal, we have z\/, y € I and proof is completed. O

Definition 2.1. Let (L,\/, A, <) be an ordered strong join hyperlattice which is not bounded
and x € L. If (@ ALl = Uyer Ay ={y € Lyy < a for somea € x AL} = L, then, we
call x is right simple element. Now, let L is bounded with greatest element 1, x € L is right
simple element, if (v AN L] =L\ {1}.

Example 2.1. [15] Let L = {0, 21, z2,1}. Consider the following tables:

\ ‘ 0 1 To 1
0 0 {x1,3:2,1} {:Z?g, 1} 1
Ty {1’1,1172, 1} T {ZL‘Q, 1} 1
Zo {.’EQ, 1} {iCQ, ].} xZo 1
1 1 1 1 1

AN ‘ 0 1 =z 1
0j0 0 O

T 0 r1 1 X1
o |0 1 T2 To
1 0 r1 X2 1

Then, xo € L is a right simple element of L.

Theorem 2.2. Let L be a distributive ordered strong join hyperlattice and R be the set of
all right simple elements of L. Then, we have R is a subhyperlattice of L. Also, if for any
arbitary subset A,B C L,y € L we have y € A\/ B implies that y € A ory € B and L\ R
is nonempty, then L\ R is a mazimal ideal of L.

Proof. Let a,b € R. Thus, we have (aAL] =L, (bAL]=Land L = (aAL] = (aAN(bAL] C
(a Ab A L. Therefore, a Ab € R. Since (A] V/(B] C (AV B] and L is distributive, we have
L=@ANLVOAL C ((aVb)AL]. So,a\/be R. Now, let z,y € L\ R. If x\/y C R,
we have L = ((z\/y) A L]. Let z € L. Thus, there exists 2z’ € (z\/ y) A L such that z < 2’
Therefore, there exists w € L such that 2z’ = (z\/y) A w. Thus, 2/ € (x Aw)\(y A w).
By assumpation, we conclude that 2z’ € x Aw or 2/ € y Aw. Therefore, z < 2z’ € x Aw or
z <z €yAw. Thus, z € (xtAL]orz € (yALland L = (xALjor L = (yAL]. So,z\/y Z R
and \/y CL\R. Let z € L\ Rand y € L. We show that t Ay € L\ R. Let z Ay € R.
We have L = (x Ay A L] C (z A L] = L and this is contradiction. So, x Ay € L'\ R. We can
easily show that L\ R is a maximal idael of L and proof is completed. (|

Theorem 2.3. Let (L,\/, A, <) be an ordered strong join hyperlattice and I be an ideal of
L such that for any y € I and x € L\ I there exists z € x A L such that y < z. Then, L'\ I
is the set of all right simple elements of L.

Proof. Let x € L'\ I and y € L. By assumpation there exists z € A L such that y < z.
Thus, y € (x A L] and L = (x A L]. Now, let © € R and = € I. Thus, for any b € L we have
aNb<aeland L= (aAL]CI. Thus, L\I isright simple elements of L. O
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3. Semiprime ideals in ordered join hyperlattices

In this section, we consider order relation < as x < y if and only if z = x A y and we
introduce semiprime ideals in ordered join hyperlattices. Then, we prove some results about
them.

Definition 3.1. Let (L,\/, A, <) be an ordered join hyperlattice and I C L be an ideal and
F be a filter of L. We call I is a semiprime ideal if for every x,y,z € L, x ANy € I and
x Az €I implies that x A (y\/ z) C I. Also, we call F is a semiprime filter if xt\/y C F
and xz\/ z C F implies that x\/(y AN z) C F.

Notice that every prime ideal I is semiprime. Since if t Ay € I and z Az € I, we
havex € Toryelandz €lorzel. Ifxel,byaxA(y\z) <xwehavexA(y\z) CI.
Otherwise, we have y,z € I. So, y\/z C T and z A (y\/ z) C I.

Proposition 3.1. Let (L,\/,A, <) be an ordered join hyperlattice and I be a semiprime
ideal of L. Also, for any A,B C L, A < B C I implies that A C I. Then, I = {J €
Id(L); J C I} is a semiprime ideal of L. If L is a finite hyperlattice, I = U{J;J C I} is a
semiprime ideal of L.

Proof. Let Jy,Jo C I. Then, J;\/ Jo C I'\/I. Since I is an ideal of L, we have I'\/I C I.
Therefore, J; \/ J2 C I. Now, Let J1AJy C Iy, J1AJ3 C I; for any Jy, Jo, J3 € Id(L). Then,
let 2 € Jy A(J2\/ J3). Thus, 2’ =z Ay for z € Jy,y € Jo\/ J5. Therefore, y =y’ \/ y” for
some 3y’ € Jo and vy’ € J3. We have x Ay’ € JyAJy C I and xAy” € Jy AJ3 C I. Therefore,
since I is semiprime, we have x A (y' \/y”) C I and J; A (J2\ J5) C I. Now, if L is finite,
we show that Is is a semiprime ideal. Let z,y € Io. Thus, z € J; C I and y € Jo C I.
Therefore, x\/y C J1\/ Jo CI. Let <y € J; C I. Since I is an ideal, we have z € I and
x € I. Since L is finite, the semiprimeness of I is ensumered. O

Theorem 3.1. Let L be a s-good(xz\/ 0 = z) bounded ordered join hyperlattice and I be an
ideal and F be a filter of L such that INF =0 and for any A C L, A\J 1 C F implies that
A C F. If F is a semiprime filter, there exists a semiprime ideal J such that I C J and
JNF =40.

Proof. Let F be a semiprime filter and 6 be a congruence on L which is defined as a6b if and
onlyif F:a=F :bwhere F:a={x € L;a\/x C F}. Clearly, 6 be an equivalence relation.
Now, we show that 6 is compatible with \/ and A. Let a8b, since F is semiprime filter, we have
F:anc=(F:a)N(F:c)=(F:b)N(F :c)=F :bAc. Thus, aAcObAc. Let y € F:a\/c.
Thus, y \/ a\/ ¢ C F and thereforey\/cC F:a=F:b. So,y\/c\VbC Fandye F:c\b.
Therefore, 6 is compatible with \/. Clearly, 6 is a strongly regular relation and therefore
L/0 is a lattice. Now, we show that L/6 is a distributive lattice. Let sfz A (y\/ z) and
w€F:s=F:xzA(y\z). Therefore, A =u\/(z A (y\z)) C F. Since L is bounded,
we have A < uV(1A(yV1) <uV(yV1). So, we have u\/y C F and u\/z C F. By
semiprime property of F', we have u \/(zAy) C F and since u \/(zAy) < u\/(xAy) V(zAz).
Therefore, u € F : (x Ay)\/(x A z) and L/6 is a distributive lattice. Also, in L/ we have
Iy N Fy = (. Becuse if there exists y € Iy N Fy, we have I0F. Thus, FF: I = F : F and
since 0\ F = F C F, we have 0 € F : I. Therefore, 0\/ I = I C F and this is contradiction
with TN F = (. So, Iy N Fy = (). Now, By theorem of [15] there exists Py € L/6 such that
Iy C Py and Py is a prime ideal. We consider canonical map h: L — L/6 by h(a) = 0(a).
So, we have I C h™1(Py) = P, PN F = ) and P is a prime(semiprime) ideal of L. O

Theorem 3.2. Let (L,\/,A, <) be an ordered join hyperlattice. L is a distributive hyper-
lattice if and only if for every ideal I and filter F of L such that INF = (), there exist ideal
J and filter G of L such that I CJ, F C G, JNG =10, J or G is semiprime and for every
x €L, we have x € JUG.
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Proof. Let L be a distributive hyperlattice. By [15] one side proof of theorem is completed.
Now, we consider such ideal and filter with their properties exist. We show that L is
distributive. Let z,y,z € L and I be the ideal which is generated by (z Ay) \/(z A 2) and
F be a filter which is generated by = A (y\/ z). Now, let z A (y\V/2) £ (z Ay)V(z A 2).
Therefore, I N F' = (). Thus, there exist ideal J and filter G such that I C J and F' C G,
JNG =10. If J is semiprime ideal, since z Ay € J and x Az € J, we have z A (y\/ z) C J.
Since z A (y\ z) € G, we have J NG # 0 and this is contradiction. If G is semiprime, we
have z € G and y\/z C G. If y € G, since z € G, we have z Ay € G, and if z € G, we
have x A z € G, this is contradict with J NG = . So, neither y nor z are not in G. If both
y,z € J, y\/ z C J. This is contradiction with J NG = (. So, both y,z € J is imposible.
Let y ¢ Jand z € J. We have x Az € J. Since x Ay < (z Ay)V(z Az) € J, we have
xAy € J. But Ay € G, and this is contradiction. So, we have zA (y '/ 2) < (zAy) V(zAz).
Now, let (z Ay)V(zAz) £ xA(yVz) and I is an ideal which is generated by z A (y/ 2),
F be a filter which is generated by (z A y) V/(x A z). Similar to above arguments, we get to
contadiction and the proof is completed. O

Theorem 3.3. Let (L,\/, A, <) be an ordered join hyperlattice and for each x € L, we have
x\ x =x. Then, L is distributive if and only if for every x,y € L, (x\/ y] is a semiprime
ideal.

Proof. Let L be a distributive hyperlattice and a Ab € (x\yl,a Ac € (z\y] for any
a,b,c € L. Then, (a Ab)V(aAec) < (zVy)V(@Vy) =z\y. So,an(dVe) € (zVy]
and (z\/y] is semiprime. Now, we show that z A (yV 2) < (z Ay)V(z A z), for any
x,y,z € L. Since x Ay < (zAy)V(xAz)and x Az < (z Ay)V(z A z2), there exist
v,w € (z Ay)V(x A z) such that x Ay < v, Az < w. Notice that v < v\/w and
w < v\ w. So, since (v\/w] is semiprime ideal, we have z A (y\/ z) < v\/w. We have
vVw C (zAy)VeAz)V(@eAy) V(zAz) = (xAy)V(zA z). Therefore, 2 A (y\/ 2) <
(xAy)V(zAz). Now, Let I = (xA(yV z)]. Since I is an ideal of L and z Ay € I, x Az € I,
we have (z Ay)\(zAz) CI. So, (x Ay)V(zAz)<xzA(yVz). O

Theorem 3.4. Let (L,\/, A, <) be an ordered join hyperlattice which has an element ¢ such
that (], [¢) is semiprime and for each x € L, x\/ x = x and has the properties of 3.1. Also,
for any ideal I,J C L with I C J, if I is semiprime, we have J is semiprime and for any
filter F,J C L with J C F, if J or F is semiprime, we have other subset is semiprime.
Then, L is a distributive hyperlattice.

Proof. 1t suffices to show that for any z,y,z € L, K = ((x Ay) V/(x A 2)] is semiprime. Since
by zAy € K, x Az € K and semiprime property of K, we have 2 A (y\/ z) < (zAy) V(zAz).
First, we show that for any € L, (z] is semiprime. If we show this, we have (x A y] C
(xAylV(x Azl C((zAy)V(zAz)], and by supposition proof is completed. To show that
(x] is semiprime, let € L. If ¢ < z, then (¢] C (z]. Since (c] is semiprime, we have (z] is
semiprime and proof is completed. Now, let ¢ £ z. If we show that (¢ A ] is semiprime, by
(¢ A x] C (] proof is completed. Let A be the intersection of semiprime ideals of L which
contains (¢ A z]. So, A is semiprime ideal. If we show that A = (¢ A z], proof is completed.
Since A contains (¢ A z], we have (¢ Az] C A. Now, let a € A. Therefore a € I; such that I;
are semiprime ideals which contains (cAz]. If a < cAz, A C (¢cAz]. Otherwise, let a £ cAx.
Then, let I = (zAc] and F = [a\/(zAc)). Clearly, INF = () and by hypothesise [a {/ ¢) C [c)
is semiprime. Also, [a\/c) C [a\/(z A ¢)). So, F is semiprime filter and by theorem 3.1,
there exists a semiprime ideal J such that I C J and JNF = (. Since cAx € J and J is
semiprime ideal which contains (¢ A z], we conclude that a € J. Therefore, a \/(c A z) C J.
But a\/(cAx) C F and this is contradiction with JNEF = 0. So, a < cAz and A = (c A z]
is a semiprime ideal. Now, Let I = (z A (y\/ 2)]. Since x Ay € I, x Az € I and I is an ideal,
we have (z Ay)\(zAz) CI. So, (x Ay)V(zAz)<xzA(yVz). O
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Definition 3.2. Let (L,\/, A, <) be an ordered join hyperlattice. We call L be 0-distributive
ifaAb=aAc=0, thenaA(b\/c)=0. For each x € L, we define z+ = {y € L;z Ay = 0}.

Proposition 3.2. Let (L,\/,\, <) be an ordered join hyperlattice which is 0-distributive.
Then, x* is a semiprime ideal of L.

Proof. Let u,v € x*. Thus, zAu = 0 and xAv = 0. Since L is O-distributive, zA(u'\/ v) = 0.
So,u\/vCat. Ifa<bandbec zt., wehave a Ax < bAx=0. Therefore, a € 2. Now,
let aAb€xtandaAcext. So,aAbAz=0and aAcAz=0. Since L is a 0-distributive
hyperlattice, a Az A (b\/ ¢) = 0. Therefore, 2 A (a A (b\/¢c)) =0 and a A (b\/c) C 2. So,

|

z is a semiprime ideal of L.

Theorem 3.5. Let (L,\/, A, <) be a good(0\/0 = 0) ordered join hyperlattice. Then, the

following statements are equivalent:
: (Z)gL is 0-distributive;

: (2) If for any a,b € L which a £ b, we have a Nb =0, then [p) is a prime filte(for any
peL)
: (3) for every x € L, x* is an ideal of L.

Proof. (1) = (2). Let x,y € [p). Thus, p < x and p < y. Since < is an order relation, we
have pAp < x Ay. Thus, x Ay € [p). Now, let z < y and = € [p). We have p < x < y.
Therefore y € [p). Let \/y C [p). If & [p) and y & [p), we have p £ z and p £ y. By
hypothesise p Az = 0 and pAy = 0. Since L is 0-distributive, p A (z \/ y) = 0 and this result
is contradiction with p < z\/y. So, z € [p) or y € [p).

(2) = (3). Let a,b€ a*. If z £ a\/bora\/b <% x, we have z A (a\/b) = 0. Now,
let z # 0 < a\/b. There exists t € a\/ b such that z < ¢. Therefore, a\/ b € [z) and since
by hypothesise [z) is a semiprime filter, a € [x) or b € [z). Thus, x Aa =z or x Ab = z.
By a,b € 1, x = 0 and this is contradiction. So, z < a\/b is not hold. (3) = (1). Let
aAb=0and aAc=0. Therefore, b € at and c € at. Since at is an ideal of L, b\/ ¢ C a™.
So, a A (b ¢) =0 and L is a 0-distributive hyperlattice. O

Theorem 3.6. Let (L,\/,\, <) be a s-good bounded 0-distributive join hyperlattice which
18 s-distributive and not complemented. Also, L has the property that for every A,B C L,
1 € A < B implies that 1 € B and A\/ 1 C F implies A C F.Then, there exist semiprime
ideals I,J such that I C J.

Proof. Let ¢ € L has no complement in L. Since L is not complemented, such element
exists. Now, consider ¢ = {x € L;x A ¢ = 0}. By proposition 3.2, c* is a semiprime ideal
of L. Consider F = {x € L;1 € z\/c}. We show that F is semiprime filter of L. Let
z,y € F. Thus, 1 € z\/cand 1 € y\/cand (z\/c) A (yVec) = c\/(x Ay). Therefore,
1 € ¢\/(z Ay) and we conclude that z Ay C F. Also, if x < y and 1 € z\/ ¢, we have
xVe<y\e So,1eyVcandye€ F. Now,let aAbe FlaANd e F. Thus, 1 € (anb)\ ¢
and 1 € (aANd)Ve<(an(bVd))V c Therefore, 1€ (an(b\/d))\VcandaA (b\d) e F.
Notice that I NF = (). Since if there exists z € INF, we have z Ac=0and 1 € z\/ c. This
is contradiction with ¢ has not complement. Now, by theorem 3.1 there exists a semiprime
ideal J such that I C J and JNF = 0. O

4. Quotient of ordered join hyperlattices with a regular relation

In this section, we study special relation which is regular on ordered join hyperlattices
which has conection with order on L and we derive ordered join hyperlattice from an ordered
join hyperlattice with such regular relation.

Let (L,\/,A,<) be an ordered strong join hyperlattice and v be a relation which
is transitive and contains the relation <. Moreover, for any =,y € L, if xvy, we have
xVzoyVzandz Az 0yAz forall z€ L and x € y\/ 2z implies that zvy, yvz, zvz, zvz,
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we call such relations as quasi-ordered relations. We know that if v is a regular relation, the
quotient L/v is a hyperlattice. But this relation is not equivalence relation. So, we define
v* = {(a,b) € vxv;avb,bva} and in the following theorem we show that L/v* is an ordered
hyperlattice.

Theorem 4.1. Let (L,\/, A, <) be an ordered strong join hyperlattice and v* ba a relation
which is defined above. Thus, L/v* is an ordered hyperlattice.

Proof. We can easily show that v* is an equivalence relation. Now, we show that v* is a reg-
ular relation. Let xv*y , z € L and 2’ € x\/ z. Thus, xvy and yvx. Therefore, x\/ z0y V z,
y\/ 20z \/ z and we conclude there exists y’ € y\/ z such that z’vy’. By property of v, we
have y'vz and zvz'. So, y'vz’ and x\/ zv*y \/ 2. Since A is binary operation, we can easily
show that = A zv*y A 2. So, v* is a regular relation and L/v* is a hyperlattice. Now,
we show L/v* is ordered. Let v*(x) < v*(y). Thus, since L/v* is a hyperlattice, we have
v*(z) Y v*(z) = v*(2') where 2’ € z\/ 2z and v*(y) Y v*(2) = v(w), w € y\/z. Thus,
there exist 2’ € v*(z) and 3y’ € v*(y) such that 2’ < y’. Therefore, we have 2'\/ z <y’ \/ z
and therefore 2/ \/ zvy' \/ z. So, v*(2') Y v*(2) < v*(¥') Y v*(2). Since v*(z') = v*(x) and
v*(y') = v*(y) , we have v*(x) Y v*(z) < v*(y) Y v*(z). Therefore, L/v* is an ordered
hyperlattice. O

Theorem 4.2. Let (L,\/,A, <) be an ordered strong join hyperlattice and v be a quasi-
ordered relation. There is one to one correspondence between quasi-ordered relations on L
which contain v and quasi ordered relations on L/v*.

Proof. Let ) be a quasi-ordered relation on L/v*. We show

7= {(z,y); (v*(2),v"(y)) € n}

is a quasi-ordered relation on L which contains v. Let z < y. So, zvy and (v*(x),v*(y)) €
L/v*. Since 7 is a quasi-ordered relation, it follows that (v*(z),v*(y)) € n and so (z,y) €
7, <C 7. We can easily show that 7 has transitive property. Now, let z € y\/z. So,
v*(x) € v*(y) Y v*(2) where Y is hyperoperation on L/v*. Therefore, (v*(x),v*(y)) € n
and (v*(z),v*(z)) € n. So, (z,y) € 7, (z,2) € 7, (y,x) € 7, (z,2) € T and let (z,y) € T,
a € z\/z. So, v*(a) € v*(x) Y v*(z) and since n is a quasi-ordered, there exists v*(b) €
v*(y) Y v*(z) such that (v*(a),v* (b)) € n. So, (a,b) € 7. Also, we can prove for A and 7 is a
quasi-ordered relation on L. Similarly, we can show that if we have a quasi-ordered relation
on L which contains v, then there exists a quasi-ordered relation on L/v*. O

Proposition 4.1. Let (L,\/, A) be an ordered strong join hyperlattice and v, T be two quasi-
ordered relations on L such that v C 7 and v*(z) 7/v v*(y) if and only if Ja € v*(x),3b €
v*(y),avb. Then, T/v is a quasi-ordered relation on L/v*.

Proof. Let (v*(x),v*(y)) € 7/v. Thus, there exist z € v*(a), y € v*(b) such that zvy.
Therefore, avx and yvb. So, avb and since v C 7, we have arb. We can easily show that
7/v contains < on L/v* and has transitive property. Now, we let (v*(z),v*(y)) € 7/v
and v*(z) € L/v*, v*(c) € v*(x) Y v*(2). Thus, (z,y) € v and ¢ € x\/ 2. Since 7
is a quasi-ordered relation, there exists u € y\/ z such that cru. Therefore, there exists
v*(u) € v*(y) Y v*(2) such that (v*(c),v*(u)) € 7/v. Also, let v*(z) € v*(z) Y v*(y).
Thus, z € 2\ y and z7z, 27y, 272,y72. Therefore, (v*(2),v*(x)) € 7/v, (V*(2),v*(y)) €
/v, (V*(x),v*(2)) € /v, (V*(y),v*(2)) € 7/v. Similarly, we prove for A and proof is
completed. O

In the previous section, we study prime hyperideals in Ly x Ly. Now, we investigate
quasi-ordered relation on L; X Ly in the following theorem.
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Theorem 4.3. Let (L1,\/{,N1,<1) and (L2, \/5, A2, <2) be two ordered strong join hyper-
lattices and vy, ve be quasi-ordered relations on Ly and Ly. Then, (Ly X La)/v* isomorphic
to L1 /vt x Ly/v3.

Proof. We define f : (L1 x Lg)/v* — L1 /vt x Lo /v by f(v*(a),v*(b) = (vi(a),vs(D)). We
can easily show that f is well defined and one to one. Now, we show that f is a homomor-
phism between two ordered join hyperlattices. f(v*(a1,b1) Y v*(az,b2)) = f(v*(u,v)) where
u € a1\ az,v € by \/ ba. So, we have f(v*(a1,b1)Yv*(az,b2)) = (v*(a1) V, v*(a2), v*(b1) Vo
v*(bg)) = f(v*(a1,b1)) x f(v*(az,bs)). Similarly, these relations holds for binary operation
A and by definition of order on Ly x Lo, if v*(a1,b1) < v*(ag, b2), we have (a1, b1)v(az, bs).
Therefore, (a1,a2) € vy and (b1,b2) € va. Thus, vi(ar1) <3 vi(az) and v3(b1) <2 v3(ba).
Therefore, f is an order preserving map and it is clear that f is onto. So, f is isomorphism
and proof is completed. ([l
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