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THE UNCERTAINTY ANALYSIS OF THE PIPELINE
SYSTEM

Laszl6 POKORADI!

Pe parcursul studierii modelelor matematice a unor sisteme tehnice reale ne
putem intdlni cu o incertitudine de anumit tip si mérime. In cazul sistemelor de
transport al lichidelor sursele incertitudinii parametrice pot fi diferentele dintre
parametrii sistemului tehnic, valorile caracteristice al regimului de functionare,
respectiv compozitia, parametrii fizici ai lichidului transportat. Lucrarea prezintd
evaluarea rezultatelor de analiza obtinute prin exemplul unui sistem simplu. Aceste
concluzii, experiente pot fi folosite la analiza incertitudinii parametrice a sistemelor
de conducte geotermale, cum ar fi incertitudinea caracteristicilor lichidelor

During mathematical model investigation of real technical systems we can
meet any type and rate model uncertainty. In case of pipeline systems the sources of
parameter uncertainties can be anomalies of technical system data, the mode of
Sfunctioning values, composition and physical parameters of the fluid. The paper
shows the methodology for sensitivity analysis and the discussion of its results by an
easy pipeline system model case. These conclusions and experiences can be used to
investigate parametrical uncertainties of geothermal pipeline systems, such as fluid
characteristic’s indeterminations.
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m
c — average flow velocity |:—} ;
S
. m3
V — volume flow rate | — |;
S
d — intern diameter [m1] ;
/ — tube length [m];
Re — Reynolds-number [—] ;
A — pipe loss coefficient [—] ;

— head loss of pipe [m1].

3]
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— the pressure loss of the pipe [Pa] ;

— the end loss of the pipe fitting [72] ;

— the pressure loss of the pipe fitting [ Pa];
pipe fitting loss coefficient [—] ;

— the coefficient matrix of dependent variables;

— the coefficient matrix of independent variables;
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— sensitivity coefficient matrix.
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During mathematical modeling of the real technical systems we can meet
any type and rate model uncertainty [9]. They appear due to approximations of
models or data inaccuracy. Classification of uncertainties, with respect to their
sources, distinguishes between aleatory and epistemic ones. The aleatory
uncertainty is an inherent data variation associated with the investigated system or
the environment. Therefore it is named parametric uncertainty. Epistemic
uncertainty is due to the lack of the knowledge of quantities, processes of the
system or the environment. Aleatory uncertainty is primarily associated with
objectivity but epistemic uncertainty may be comprised of substantial amounts of
both objectivity and subjectivity [8].

In case of geothermal pipeline (for example heating) systems, parametrical
model (system) uncertainties mean the indetermination of physical parameters of
the fluid. These characteristics influence the system parameters such as loss at the
ends, therefore required pump power.

Following Ferson and Tucker [2] the uncertainty analysis is a systematic
study in which the neighborhood of alternative assumptions is selected and the
corresponding interval of inferences is identified. According to Macdonald and
Strachan [5], the sensitivity analysis is an important technique to determine the
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effect that uncertainties or model variations have on the model predictions. The
analysis can be carried out from a simple level to a comprehensive treatment. In
practice, sensitivity analysis is used in an ad hoc way in a lot of practical
modeling studies.

Mahdavi studied various sources of the uncertainty in building
performance simulation [6]. In his paper, the potential errors due to i) inaccurate
building descriptions, ii) uncertain micro-climatic assumptions and iii) deficient
building users' information are discussed, using original data and analysis.

Two mathematical models both dynamic and stationary, which are useful
in the studying hydraulic systems are presented in a paper of Prodan and lacob,
[11]. Bucur and Isbasoiu studied the influence of air pockets trapped in pipeline
systems over the entire system pressure [1].

Following Guta et al. the simulating or the operating regime of systems or
subsystems represents an important step in design process. Obtaining
mathematical model helps in the decision making regarding the way of optimizing
system [3]. Mirel et al. stated that, the geothermal waters are very valuable
thermo-energetic resources [7]. The corrosive and hardness characteristics of
geothermal waters — which are sources of geothermal water pipeline system
uncertainties — can be eliminated by applying some specific treatment
technologies according to water temperature, the chemical characteristics and the
user’s requirements.

The aim of this paper is to show the methodology of the sensitivity
analysis and its possibility of use by an easy pipeline system model and
discussions of results. These - basically theoretical — conclusions and
experiences can be used to investigate parametrical uncertainties of the
geothermal pipeline system, such as fluid characteristic’s indeterminations.

The outline of the paper is as follows: Section 2 shows the sensitivity
analysis. Section 3 presents an easy case study by a pipeline system model.
Section 4 interprets the result of the sensitivity analysis. Section 5 summaries the
paper and outlines the prospective scientific work of the author.

2. The Sensitivity Analysis

The essence of the sensitivity analysis is that the anomalies and variations
of dependent system parameters are simulated by changing its independent (input
and inner) variables. On the basis of the mathematical model of the investigated
system one can determine how sensitive dependent system variables are to
simulated changes. If only one independent variable is changed, the investigation
will be called one-parameter sensitivity analysis. If the number of the changed
independent variables is more than one, the several-parameter sensitivity analysis
is used.
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It is important to mention that changes of independent variables cannot be
more than about 1 or 5 %, depending on the intensity of the original model
nonlinearity. Depending on the nonlinearity of the original model, results of the
sensitivity analysis can have differences from real influences of simulated
changes. But these results show the direction and order of the magnitude of real
simulated changes.

To determine the sensitivity coefficient as a first step, the total differential
of both sides of the initial equation

Yy=J0x1,20,0,%,) (1
should be formed:
dy = 8f(x1;x2;...xn)dx1 - of (x;5%,5...X,)

d 2
ox, Ox o @

n

Then both sides of the last equation should be multiplied by same sides of

the general equation and all elements should be multiplied by %
X

i

dy _ o (x3xy5...x,) X dx1+...+af(x1;x2;"'x”) X, dx,
y ox, S x5x,5.0.x,), ox, S (x5%,5...x,)x,
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Introducing the sensitivity coefficients:
K . :af(xl;x2;"'xn) xl' :Qﬁ (4)
n ox, f(x;%05...x,)  Ox; y
and considering
dn _An
ar AN _ s
n n 7
the following linear system can be achieved:
B =K 0y, o+ Ky Sy %)

The equation mentioned above, shows how sensitive dependent system
output parameters will be to uncertainties of input ones. For example, these
uncertainties can occurr due to measurement inaccuracies.

If the investigated system has several dependent variables, the equations
determined above can be written in the following matrix form:

Aoy =Box (6)

where 4 and B are coefficient matrices of external and internal parameters of the

investigated system.
Using the sensitivity coefficient matrix of investigated system,

D=4"'B (7)

the equation
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dy=DSx (®)

can be used for sensitivity investigations.
3. Creating Sensitivity Model (Case study)

In this case study, the pressure loss and end loss of two main pipeline
system structural elements (linear pipe and pipe fitting) will be investigated.
Therefore, the illustrative system consists of only one linear pipe and only one
pipe fitting. The system was modeled in case of different Reynolds-number
intervals (that is streams).

The kinematic viscosity of the fluid is:

v=£ ©)
P
the average flow velocity:
4y
c= 10
pE (10)
and the Reynolds number:
Re = ed (11)
v

The pipe loss coefficient can be determined, depending on Reynolds-
number, by empirical equations in case of different Reynolds-number intervals
[10].

If Re <2320 then

h= s (12a)
if 2320 <Re <8-10" then
0,316
= (12b)
if 2:10* <Re<2-10° then
A, =0,0054+0,396Re™"’ ; (12¢)
if 10° <Re <10° then
A, =0,0032+0,211Re %7 . (12d)
The end loss of the pipe is
2
%:§éz, (13)
g

and its pressure loss
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p ool
Ap,=—c —A
pCS 2 d
The end loss of the pipe fitting is
2
ho=>—¢
=g
and its pressure loss
P 2
Ap. =—c
P =50

(14)

(15)

(16)

Taking into account the main aim of the investigation, equations (9) —
(16) form a system of equations, which is the nonlinear mathematical model of the
investigated easy pipeline system. For getting sensitivity coefficient matrix, these

equations should be linearized.
In case of the equation (9):

ov=0u—-op
In case of the equation (10):

=0V -2x
In case of the equation (11):

ORe=oc+dd -ov

In case of equations (12a) — (12d):

oA =KO6Re
If Re <2320 then
K, =-1;
if 2320<Re <8-10* then
K, =-025 ;
if 2:10* <Re<2-10° then
0,1188

<7 0,0054Re "3+ 0,396

b

if 10° <Re <10® then
0,074477

47 0,0032Re 40,221

In case of the equation (13):
Ol =20c+0l+O0A—od
In case of the equation (14):
OAp., =0p+26c+0dl—dod+A
In case of the equation (15):
Oh!. =20c+ o0&
In case of the equation (16):

(17)
(18)
(19)
(20)

(20a)

(20b)

(20c)

(20d)

e2y)
(22)

(23)
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OAp, =0p+20c+0& (24)
Introducing the vector of dependent parameters
=l pvoa 1 g, (25)
and the vector of independent parameters
Y = [V ¢ Re A hy Apes h Apsz] ) (26)
their coefficient matrices are:
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 - 1 0 0 0 0 0
0 0 -K 1 0 0 0 0
4= 27)
= 0 -2 0 -1 1 0 0 0
0 -2 0 -1 0 1 0 0
0 -2 0 0 0 0 1 0
| 0 -2 0 0 0 0 0 1
1 -1 0 0 0 0
0 0 1 -2 0 0
0 0 O 1 0 O
o 0o o0 o0 0 o0
B= (28)
= 0O 0 0 -1 1 0
0 I 0 -1 1 0
0o 0 o0 o0 o0 1
0 1 0 0 O 1

Because the system is investigated in different Reynolds-number intervals
— using equations (7), (20), (27) and (28) the sensitivity coefficient matrices were
determined. In last two intervals, the coefficient K depends on Reynolds-number.
They are calculated by given Reynolds-numbers — see equations (29¢) and (29d).

If Re<2320 » K, =-1I:
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if 2320<Re<8-10* —

IS

™
[

if 10° <Re<10*

0

-1

0,25
0,25
0,25
0
0

0,2999
0,2999
0,2999

-0,2999 -0,2999  0,2999

-1 0 0 0 0
0 1 -2 0 0
1 1 -1 0 0
-1 -1 1 0 0
; (29a)
-1 1 -4 1 0
0 1 -4 1 0
0 2 -4 0 1
1 2 -4 0 1)
K, =-0,25:
0 0 0 0]
1 -2 0 O
1 -1 0 O
-025 -025 025 0 O
(29b)
-0,25 1,75 =475 1 0
0,75 L75 =475 1 0
2 -4 0 1
2 -4 0 1]

if 2:10* <Re<2-10° (Re=1-10°) — K, =-0,2999351775:

0 0
1 -2
1 -1

S O = = O O O O
—_—_ = O O O O O O

(29¢)
-0,2999  1,7001 -4,7001
0,7001 1,7001 —4,7001
2 -4
2 -4

(Re=5-10°) — K, =-0,3369730350:
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! -1 0 0 0 0
0 0 1 -2 0 0
-1 1 1 -1 0 0
0337 -0337 -0337 0337 0 0
D, = (29d)
0337 -0337 1663 —-4663 1 0
0337 0,663 1663 —-4663 1 0
0 0 2 -4 0 1
0 1 2 -4 0 1

4. The result of the sensitivity analysis

Knowing the sensitivity coefficient matrix D, sensitivity of the system can
be investigated by modification of independent variables vectoroX. Results of
sensitivity analysis can be used for conclusions to come about features of the
given system and its behavior in case of simulated failures or parameter
uncertainty (for example instability of geothermal water viscosity). It is important
to mention that changes of independent variables cannot be higher than about 1 or
5 %, depending on the intensity of the original model nonlinearity.

In case of pipeline systems, the independent variables can be classified to
three categories:

The mode of functioning values determines the work of the system at the
investigated time.

The technical system data characterize system structure and geometrical
and other system parameters. These data have manufacturing anomalies and they
can change during the system operation too. In our study, the investigated
technical data are:

- the internal diameter of the tube,
- pipe fitting loss coefficient.

The physical parameters define the quality of the fluid. They are very
interesting in case of the geothermal pipeline system when water parameters (for
example salinity) — thereby the required pump power — can change easily.
These variables are:

- dynamic viscosity,
— fluid density.
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4.1. The investigation of the mode of functioning values uncertainties’
effects

Fig. 1. shows the effects of 1% increase of the volume flow rate in case of
different Reynolds-number intervals. The diagram demonstrates that constant
cross-section, volume flow rate can be increased only by greater flow velocity,
which generates greater Reynolds-number. Therefore, pipe loss coefficients will
decrease by different degrees. In case of the stable laminar flow (Re < 2320), it is
observable that the pipe loss coefficient is more sensitive than in other Reynolds-
number intervals. The relative increase of losses of the pipe (by Reynolds-number
domains) is equal. It is worth to note that, these parameters are less affective in
case of the stable laminar flow (Re <2320). Losses of the pipe fitting have the
greatest sensitivity; they depend on the volume flow rate fluctuation.
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Fig.1. The sensitivity of the System Depending on the Volume Flow Rate (W =+1%)

4.2. The investigation of technical system data uncertainties’ effects

Fig. 2. shows the effects of 1% increase of the internal diameter of the
tube. It can be seen that, diameter increase (which is cross section in Fig. 2.) adds
up to the decreasing of the Reynolds-number. It can be noticed that, pipe loss
coefficients will increase (in case of Re <2320 by most large measure) and tube
losses will decrease by different degrees.
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Fig. 2. The Sensitivity of the System Depending on the Internal Diameter (od = +1% )

Results of 1% increase of the pipe fitting loss coefficient can be seen in
Fig. 3. The diagram shows, that the uncertainty of the pipe fitting loss coefficient
generates only losses of the pipe fitting.
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Fig. 3. The Sensitivity of the System, Depending on the Pipe Fitting Loss Coefficient
(0 =+1%)
4.3. The investigation of physical parameters of fluid uncertainties
effects

g ——bh —1c—=—d

% 2

1,5
0 T T T / T ‘

051 Nu t\?yémbda hes dpcs hsz dpsz
14 /

-1,5 9

-2

Fig. 4. The Sensitivity of the System Depending on the Dynamical Viscosity (O = +1%)
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The effects of 1% dynamical viscosity increase are shown in Fig. 4. The
diagram shows that dynamic viscosity increasing (in case of the constant fluid
density) accrues kinematical viscosity and decreases the Reynolds-number. In this
case, the pipe loss coefficient and losses of the pipe have similar sensitivities in
each Reynolds-number interval. It is perceptible, that the uncertainty of the
dynamical viscosity has not effect on pipe fitting losses.

It can be established in Fig. 5, that effects of the fluid density are in
contradiction with results of the dynamic viscosity anomaly. In Re <2320
Reynolds-number interval, the pipe loss coefficient and head loss of the pipe have
the greatest sensitivity.
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Fig. 5.The Sensitivity of the System Depending on the Fluid Density (Jp = +1%)

During the investigation of physical fluid parameters’ effects, the several-
parameter sensitivity analysis is worth to be performed. It is probable that the
change of the feature (for example salinity) of the fluid can produce the change of
its density and dynamical viscosity. Therefore, Su=+1% and Jp=+1%

situation will be investigated as the modeling of the increase of the salinity. Its
results are shown in Fig. 6. The graph shows that, the increase of the water
salinity has not influence on system parameters excluding the pressure losses.

The statement mentioned above is misleading. Because the density and
dynamical viscosity of the fluid will not change equally: they depend on water
salinity. In case of 1% water salinity increase, the density increases with 0,21 %
and the dynamical viscosity of the fluid increases with 4,885 % [4]. Therefore the
vector of the relative change of independent variables will modified to:

sxl =[4885 021 0 0 0 0] (30)
Results of the modeling are shown in Fig. 7.



The uncertainty analysis of the pipeline system 213

wg——bh ——¢c —=—d

2

(%]

1,5 A
14

) /\/
0 T T T T T

051 Nu c Re Lambda hcs dpcs hsz dpsz
-1

-1,5
2

Fig. 6. The Sensitivity of the System (9t = +1% and dp =+1%)
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Fig. 7. The Sensitivity of the System ( ou = +4,885% and dp =+0,21%)

The first conspicuous conclusion is: the dependent system variables have
the highest sensitivities depending on the salinity of the water. Correspondingly
with the result of the one parameter sensitivity analysis, the system is most
sensible in case of the stable laminar flow (Re < 2320).

5. Conclusions, future works

The author of this paper would like to point out the importance and
possibilities of use of the mathematical model uncertainty analysis. This basically
theoretical paper has shown the sensitivity analysis. Then the methodology of
sensitivity test, which is based on uncertainty analysis, has been shown by the
case study of an easy pipeline system.

During prospective scientific research related to this field of applied
mathematics and technical system modeling, the author would like to complete
following tasks:

- the sensitivity analysis of complex pipeline system and pipe-network;
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(1]
(2]
(3]

(7]

(8]

(9]

data collection for depicting correctly the influence of the salinity to water
physical parameters and required pump power;

to investigate possibilities of the adaptation of linear interval equations for
parametric pipeline system uncertainty analysis.
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