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SOME PROPERTIES OF MINIMAL AND MAXIMAL OPERATORS IN 
AN ABSTRACT FRAMEWORK

 Viorel Catană1 and Horia-George Georgescu2

The main goal of this paper is to give a two-parameter abstract framework

in which we build a theory of minimal and maximal operators associated to a linear

operator A : D(A) ⊂ X → X, with dense domain D(A), where X is a complex Banach

space. We prove an analogue of the Agmon-Douglis-Nirenberg inequality for pseudo-

differential operators in our abstract setting. Using this inequality, we show that the

minimal and maximal operators of the operator A are equal under suitable hypotheses

on the complex Banach space X and on the operator A. As an application, we study

the existence and regularity of weak solutions of the linear equations Au = f on the

reflexive complex Banach space X. Further, we prove a perturbation result regarding

the Agmon-Douglis-Nirenberg estimate when the operator A is perturbed by a potential

operator with some suitable properties. Moreover, an application to strongly continuous

semigroups of contractions generated by the operator A is given. Finally, we prove that

the minimal operator of the operator A is Fredholm under suitable hypotheses.
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1. Introduction

In this work, following Wong’s point of view in the paper [16], we build an abstract

framework in which we construct and study the minimal and maximal operators associated

to an operator A : D(A) ⊂ X → X, with dense domain D(A), where X is a complex Banach

space.

We must emphasize that this abstract framework includes certain concrete cases

of Lebesgue and Sobolev spaces and classes of pseudo-differential operators such as M-

hypoelliptic pseudo-differential operators (see [6], [7], [12]), SG-pseudo-differential operators

(see [4], [5], [8], [13]) or hybrid pseudo-differential operators (see [2]) defined on these spaces.

The paper is organised as follows.

In Section 2, we introduce the weighted Bessel potentials of orders (s1, s2) ∈ R2 and

we define the X-Sobolev spaces by using them. Moreover, we introduce a class of linear

operators of orders (m1,m2) ∈ R2 in connection with the X-Sobolev spaces. This class

of linear operators remembers us of the class of hybrid pseudo-differential operators in [2].

Some notations and facts concerning the minimal and maximal operators associated to an

operator A are also recalled (see [16]). In Section 3, we state and prove an analogue of the
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Agmon-Douglis-Nirenberg (A-D-N) inequality for pseudo-differential operators in the case

of an operator A : D(A) ⊂ X → X, with dense domain D(A), under suitable hypotheses.

Using the A-D-N inequality, we prove that the minimal and maximal operators are equal

under resonable hypotheses on the complex Banach space X and the operator A. As an

application of this fact, we get the existence and regularity of weak solutions of the linear

equations Au = f on the Banach space X. Two perturbation results, one regarding the

A-D-N inequality and the other result concerning the strongly continuous semigroup of

contractions, are given in Section 4. More precisely, we prove a type of the A-D-N inequality

in the case when the operator A is perturbed by a potential with some suitable properties.

If A is the infinitesimal generator of a semigroup of contractions, then A0 + V is also the

infinitesimal generator of an one parameter strongly semigroup of contractions, where A0

is the minimal operator associated to the operator A and V is a maximally dissipative

operator with some suitable properties. In Section 5, the last one, we prove that under

resonable hypotheses on the operator A, its minimal operator A0 is Fredholm.

2. Preliminaries

Let X be a complex Banach space whose norm is denoted by ∥∥X and let S be a

dense subspace of X. We consider that S is a topological vector space of which topology is

defined by a countable family of semi-norms {| |j : j = 1, 2, . . .}.
We say that a sequence {φk} in S converges to an element φ in S if and only if

|φk − φ|j → 0 as k → ∞ for all j = 1, 2, . . .. We denote by S′ the space of all continuous

linear functionals on the space S and by (u, φ) the value of a functional u in S′ at an element

φ in S.

A functional u is continuous if and only if (u, φk) → 0 as k → ∞ for all sequences

{φk} converging to zero in S as k → ∞.

A sequence {uk} in S′ is said to converge to an element u in S′ if and only if (uk, φ) →
(u, φ) as k → ∞ for all φ in S. We assume that the spaces X and X ′ are continuously

embedded in S′.

The definitions and notations used above are similar to the ones used in the theory

of distributions and are also used by Wong in [16].

Now, we present the abstract framework in which we will work, framework that is

similar to the one in the paper [16] and can concretely be encountered in the theory of

distributions.

Let us suppose that there exists a family of reflexive complex Banach spaces XΛ
s1,s2

with norms denoted by ∥∥s1,s2,Λ,X ,−∞ < s1, s2 < ∞, where Λ : Rn → R+ is a weight

positive function and a two-parameter group of continuous linear mappings JΛ
s1,s2 : S′ →

S′,−∞ < s1, s2 <∞, satisfying the following conditions:

(i) JΛ
s1,s2 maps S into S, −∞ < s1, s2 < ∞ and JΛ

ε,ε : X → X is a compact operator

for every positive number ε.

(ii) XΛ
s1,s2 =

{
u ∈ S′ : JΛ

−s1,−s2u ∈ X
}
,−∞ < s1, s2 <∞.

(iii)

∥u∥s1,s2,Λ,X =
∥∥JΛ

−s1,−s2u
∥∥
X
, u ∈ XΛ

s1,s2 ,−∞ < s1, s2 <∞. (2.1)

(iv)

Let sj ≤ tj , j = 1, 2. Then, XΛ
t1,t2 ⊆ XΛ

s1,s2 and

∥u∥s1,s2,Λ,X ≤ ∥u∥t1,t2,Λ,X , u ∈ XΛ
t1,t2 . (2.2)

(v) XΛ
s1,s2 can be continuously embedded in S′,−∞ < s1, s2 <∞.
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(vi) S can be continuously embedded in (XΛ
s1,s2)

′ and (XΛ
s1,s2)

′ can be continuously

embedded in S′,−∞ < s1, s2 <∞.

(vii)

(u, φ) = (φ, u), u ∈ XΛ
s1,s2 , φ ∈ S,−∞ < s1, s2 <∞. (2.3)

We call JΛ
s1,s2 the weighted Bessel potentials of orders (s1, s2) ∈ R2 and XΛ

s1,s2 the

X-Sobolev spaces of orders (s1, s2) ∈ R2.

Definition 2.1. Let T : S′ −→ S′ be a continuous linear mapping.

We assume that there exists a pair of real numbers (m1,m2) such that T : XΛ
s1,s2 →

XΛ
s1−m1,s2−m2

is a bounded linear operator for all (s1, s2) ∈ R2. We say that T is an operator

of order (m1,m2) if m1 and m2 are the least numbers for which T : XΛ
s1,s2 → XΛ

s1−m1,s2−m2

is a bounded linear operator.

If m1 = m2 = −∞, then we call T an infinitely smoothing operator.

Definition 2.2. Let A : S ⊂ X → X be a linear operator such that A maps S into S and

its formal adjoint A∗ maps S into S continuously. We say that A is an operator of order

(m1,m2) if the extended operator A : S′ → S′ is of order (m1,m2) (see the relation (2.5)

for the definition of the extended operator A : S′ → S′).

Remark 2.1. The two-parameter family of X-Sobolev spaces XΛ
s1,s2 , s1, s2 ∈ R, considered

previously, define a two-parameter abstract framework which enable us to fit the theory of

SG-pseudo-differential operators (see [4], [5], [8]) or the theory of a hybrid class of pseudo-

differential operators (see [2]).

A one-parameter abstract framework in which the theory of minimal and maximal

operators was studied for the first time was introduced by Wong in [16]. This abstract

framework was used later in the joint paper [10] of Wong and Iancu in order to establish

some results related to the semi-linear heat equations in Hilbert spaces. In his PhD Thesis

(see [11]), Iancu used extensively this abstract framework.

Remark 2.2. It should be mentioned that, in various works, particular cases of the previ-

ously considered abstract framework can be found. For example, if we takeX = Lp(Rn), S is

a Schwartz space of the rapidly decreasing functions, 1 < p <∞, JΛ
s1,s2 = Tσs1,s2

, where σs1,s2(x, ξ) =

Λ(x)−s2Λ(ξ)−s1 , ∞ < s1, s2 <∞ and Λ ∈ C∞ (Rn) is a weight function with some suitable

properties, then we obtain a concrete two-parameter framework in the paper [2], in which

the authors present their results.

In this case, for a fixed p ∈ (1,∞), the family of spaces Hs1,s2
Λ,p corresponds to spaces

XΛ
s1,s2 , ∞ < s1, s2 <∞ and satisfies the conditions (i)-(vii).

Proposition 2.1. Let s1, s2, t1, t2 ∈ (−∞,∞). Then,

i) JΛ
t1,t2 : XΛ

s1,s2 → XΛ
s1+t1,s2+t2 is an unitary operator;

ii) S is dense in XΛ
s1,s2 .

Proof. i) Let u ∈ XΛ
s1,s2 . From (2.1), we obtain that∥∥JΛ

t1,t2u
∥∥
s1+t1,s2+t2

=
∥∥JΛ

−s1−t1,−s2−t2J
Λ
t1,t2u

∥∥
X

=
∥∥JΛ

−s1,−s2u
∥∥
X

= ∥u∥s1,s2,Λ.

Hence, JΛ
t1,t2 : XΛ

s1,s2 → XΛ
s1+t1,s2+t2 is an isometry. It remains only to prove that JΛ

t1,t2 :

XΛ
s1,s2 → XΛ

s1+t1,s2+t2 is a surjection. For this, let y be in XΛ
s1+t1,s2+t2 . Thus, JΛ

−t1,−t2y ∈
XΛ

s1,s2 and JΛ
t1,t2

(
JΛ
−t1,−t2y

)
= y.

ii) Let u ∈ XΛ
s1,s2 . Then J

Λ
−s1,−s2u ∈ X. Since S is dense in X, there exists a sequence

{φk} of elements in S such that φk → JΛ
−s1,−s2u in X as k → ∞. Let ψk = JΛ

s1,s2φk, k =

1, 2, . . .. Since JΛ
s1,s2 maps S into S, it follows that ψk ∈ S, k = 1, 2, . . ..
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By the definition of XΛ
s1,s2 , we obtain that

∥ψk − u∥s1,s2,Λ =
∥∥JΛ

−s1,−s2ψk − JΛ
−s1,−s2u

∥∥
X

=
∥∥φk − JΛ

−s1,−s2u
∥∥
X

for all k = 1, 2, . . ..Therefore, ψk → u in XΛ
s1,s2 as k → ∞. This proves that S is dense in

XΛ
s1,s2 .

Thus, the proof is complete.

□

Remark 2.3. j) From (i), (ii) and Proposition 2.1, we have that

S ⊂ X ⊂ XΛ
0,0

and S is dense in XΛ
0,0. Since S in dense in X, it implies that X = XΛ

0,0.

jj) From Proposition 2.1 i), it follows that JΛ
t1,t2 is an operator of orders (−t1,−t2).

Now we recall some namings, notations and well-known results concerning the theory

of minimal and maximal operators (see [2], [5]-[7], [15], [16]).

Let X be a complex Banach space, S a dense subspace of X and let A be a linear

operator from X into X with domain S. We denote by X ′ the space of all bounded linear

functionals on X and by (x′, x) the value of a functional x′ in X ′ at an element x in X.

Definition 2.3. Let D (At) be the set of all functionals y′ in X ′ for which there is a

functional x′ in X ′ such that

(y′, Ax) = (x′, x) , x ∈ S. (2.4)

We can prove that for any y′ in X ′, there exists at most one x′ in X ′ for which (2.4) holds.

Thus, we can define Aty′ = x′, for all y′ in D (At). We call At the true adjoint of A.

We can prove easily that At is a closed linear operator from X ′ into X ′ with domain

D (At).

Let us observe that if B is a linear extension of A, then At is a linear extension of Bt.

Definition 2.4. Let A be a linear operator from X into X with domain S. The operator

A is closable if and only if

φk ∈ S, φk → 0 in X,Aφk → x in X ⇒ x = 0.

In the following, we define the minimal operator of the operator A.

Suppose that A is a closable operator. We can construct a closed linear extension A0

of A.

Definition 2.5. Let D (A0) be the set of all x in X for which there exists a sequence

{φk}∞k=1 in S such that φk → x in X, Aφk → y for some y in X as k → ∞. We can define

A0x = y, for any x ∈ D (A0).

It can be proved that the definition of A0 does not depend on the particular choice

of the sequence {φk}∞k=1 and it can also be proved that A0 is the smallest closed linear

extension of A (i.e. if B is any closed linear extension of A, then B is also a linear extension

of A0). We call A0 the minimal operator of A.

We further assume in this work that X is a reflexive complex Banach space.

In order to define the maximal operator, we need to introduce the notion of formal

adjoint. We assume that the space X and its dual space X ′ can be continuously embedded

in some topological space Y . Thus, the spaces X and X ′ will be identified as subspaces of

Y . We also assume that there exists a subspace S of Y such that S is a dense subspace of

X and X ′.
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For the following definitions and results, we let A be a linear operator from X into
X with domain S.

Definition 2 .6. The f ormal adjoint A ∗ o f the operator A , i f i t exists, i s defined to  be  the 
restriction of the true adjoint At to the space S.

From Definition 2 .6, we observe that the f ormal adjoint A ∗ exists i f and only i f S  is 
contained in the domain of At.

Definition 2 .7. We define the linear operator A1  from X into X by  A1  = (A∗)
t
.

Let φ ∈ S. By Definition 2.7, we have

(φ,A1x) = (A∗φ, x)

for all x in D (A1).

By the definition of the true adjoint, φ ∈ D (At
1) and A

t
1φ = A∗φ.

Proposition 2.2. ([16]) A1 is a closed linear operator from X into X with domain D (A1)

containing the space S.

Proposition 2.3. ([16]) The domain D (At
1) of the adjoint of A1 contains the space S.

Proposition 2.4. ([16]) A1 is a linear extension of A0.

From Proposition 2.4 we see that (A0)
t
is a linear extension of (A1)

t
and by Propo-

sition 2.3, the domain of (A1)
t
contains the space S. It follows that the domain of (A0)

t

contains the space S.

Theorem 2.1. ([16]) A1 is the largest closed linear extension of A with the property that

the space S is contained in the domain of its adjoint (i.e. if B is any closed linear extension

of A such that S ⊆ D (Bt), then A1 is a linear extension of B).

Definition 2.8. The operator A1 from Theorem 2.1 is called the maximal operator of A.

Let A be a linear operator from X into X with domain S. We suppose that A maps

S into S and its formal adjoint A∗ maps S into S continuously (i.e. if {φk} is any sequence

in S such that φk → 0 in S as k → ∞, then Aφk → 0 and A∗φk → 0 in S as k → ∞).

The linear operator A can be extended to the space S′.

For any u in S′, Au is an element in S′ given by the relation

(Au,φ) = (u,A∗φ) , φ ∈ S. (2.5)

It is easy to show that A : S′ → S′ is a continuous linear mapping.

3. Some properties of minimal and maximal operators

In this section, we prove an analogue of the A-D-N inequality for pseudo-differential

operators in the case of the operator A : S ⊂ X → X with domain S that satisfies some

hypotheses. Using this inequality, we will obtain the equality of minimal and maximal

operators associated to the operator A when certain suitable hypotheses are satisfied. As an

application, we study the existence and regularity of weak solutions of the linear equations

Au = f on X.

Theorem 3.1. (Agmon-Douglis-Nirenberg inequality [1]) Let A : S ⊂ X → X be

a linear operator such that A maps S into S and its formal adjoint A∗ maps S into S
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continuously. Suppose that A is of positive order (m1,m2) and there exists a linear operator

B of order (−m1,−m2) from X into X with domain S such that

BA = I +R, (3.1)

where I is the identity operator, and R is an infinitely smoothing operator. Then, there exist

two positive constants C1 and C2 such that

C1∥x∥m1,m2,Λ ≤ ∥Ax∥0,0,Λ + ∥x∥0,0,Λ ≤ C2∥x∥m1,m2,Λ, x ∈ XΛ
m1,m2

. (3.2)

Proof. First, we prove the right-hand side of inequality (3.2). Since A is of order (m1,m2),

by (2.2) and by boundedness of A it follows that there exist two positive constants K1 and

K2 such that
∥Ax∥0,0,Λ ≤ K1∥x∥m1,m2,Λ and

∥x∥0,0,Λ ≤ K2∥x∥m1,m2,Λ, x ∈ XΛ
m1,m2

.

Hence, there exists a positive constant C2 = max(K1,K2) such that

∥Ax∥0,0,Λ + ∥x∥0,0,Λ ≤ C2∥x∥m1,m2,Λ, x ∈ XΛ
m1,m2

.

Now, we have to prove the left-hand side of inequality (3.2).

By (3.1) it follows that

x = BAx−Rx, x ∈ XΛ
m1,m2

,

where B is an operator of order (−m1,−m2) and R is an infinitely smoothing operator.

Hence,

∥x∥m1,m2,Λ = ∥BAx−Rx∥m1,m2,Λ ≤ ∥BAx∥m1,m2,Λ + ∥Rx∥m1,m2,Λ.

Since x ∈ XΛ
m1,m2

and A is of order (m1,m2), it follows that Ax ∈ XΛ
0,0. The operator

B : XΛ
0,0 → XΛ

m1,m2
is bounded. Therefore, there exists a positive constant K ′

1 such that

∥BAx∥m1,m2,Λ ≤ K ′
1∥Ax∥0,0,Λ, x ∈ XΛ

m1,m2
.

Since x ∈ XΛ
m1,m2

⊂ XΛ
0,0, let x ∈ XΛ

0,0. The operator R is infinitely smoothing, so

there exists a positive constant K ′
2 such that

∥Rx∥m1,m2,Λ ≤ K ′
2∥x∥0,0,Λ, x ∈ XΛ

m1,m2
.

Using the last two inequalities above, it follows that

∥x∥m1,m2,Λ ≤ K ′
1∥Ax∥0,0,Λ +K ′

2∥x∥0,0,Λ
≤ max (K ′

1,K
′
2) (∥Ax∥0,0,Λ + ∥x∥0,0,Λ) , x ∈ XΛ

m1,m2
.

So, taking C1 = 1

max(K′
1,K

′
2)
, we get

C1∥x∥m1,m2,Λ ≤ ∥Ax∥0,0,Λ + ∥x∥0,0,Λ, x ∈ XΛ
m1,m2

.

Thus, the proof is complete. □

Remark 3.1. The estimate (3.2) can be seen as an analogue of the Agmon-Douglis-

Nirenberg estimate for pseudo-differential operators in the case of an operator A from X

into X with dense domain (see [1]). We must specify that some versions of this estimate

can be found, for example, in [5], [7] and [8] for the class of pseudo-differential operators

with global symbols introduced by Camperi in [4] or for a class of hybrid pseudo-differential

operators introduced by Alimohammady and Kalleji in [2].

Theorem 3.2. Let A be as in Theorem 3.1. Then, D (A0) = XΛ
m1,m2

.
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Proof. ” ⊇ ” Let x ∈ XΛ
m1,m2 

. By Proposition 2.1, S is dense in XΛ
m1,m2 

. Hence, there exists a 
sequence {φk} of elements in S such that φk → x in XΛ

m1,m2 
as k → ∞. By the right-hand side 

of inequality (3.2), {Aφk} and {φk} are Cauchy sequences in X. Therefore, φk → x and Aφk 
→ f in X for some x and f in X as k → ∞. Thus, by the definition of A0, x ∈ D (A0) and A0x

= f .
” ⊆ ” Let x ∈ D (A0). By the definition o f A 0, t here e xists a  s equence { φk} of

elements in S for which φk → x in X and Aφk → f in X for some f in X as k → ∞. Hence,

{φk} and {Aφk} are Cauchy sequences in X. Using (3.2), {φk} is a Cauchy sequence in
XΛ

m1,m2 
. Since XΛ

m1,m2 
is complete, it follows that φk → u in XΛ

m1,m2 
for some u in XΛ

m1,m2

as k → ∞. By (2.2), φk → u in X as k → ∞, so x = u. Thus, x ∈ XΛ
m1,m2

.

The proof of the Theorem 3.2 is complete. □

Now we came to the main result of this section.

Theorem 3.3. Let A be as in Theorem 3.1. Then, A0 = A1.

Proof. Since A1 is an extension of A0 and D (A0) = XΛ
m1,m2

, it remains to prove that

D (A1) ⊆ XΛ
m1,m2

.

Let x ∈ D(A1).

Using the hypotheses from Theorem 3.1, it follows that there exists an operator B of

order (−m1,−m2) such that x = BAx−Rx, where R is an infinitely smoothing operator.

Let u ∈ D(A1). By Definition 2.7,

(φ,A1u) = (A∗φ, u) , φ ∈ S. (3.3)

By (2.5), we have

(Au,φ) = (u,A∗φ) , φ ∈ S. (3.4)

Using (2.3) and (3.4),

(φ,Au) = (A∗φ, u) , φ ∈ S. (3.5)

Therefore, by (2.3), (3.3) and (3.5),

(A1u, φ) = (Au,φ), φ ∈ S.

Hence, A1u = Au for all u ∈ D (A1).

Since Ax = A1x ∈ X = XΛ
0,0, we have that BAx ∈ XΛ

m1,m2
. Since x ∈ X and R is an

infinitely smoothing operator, we obtain that Rx ∈ XΛ
m1,m2

.

Thus, x ∈ XΛ
m1,m2

.

The proof of this theorem is complete. □

For more details concerning the minimal and maximal operators corresponding to

different types of pseudo-differential operators, see, for example, [2], [5]-[8], [12].

Now, we give an application regarding the existence and regularity of weak solutions

of the linear equations on the reflexive complex Banach space X.

Definition 3.1. Let f ∈ X. Then, an element u in X is called a weak solution of the linear

equation Au = f if (A∗φ, u) = (φ, f), for all φ ∈ S.

Proposition 3.1. Let A : S ⊂ X → X be a linear operator and let f ∈ X. Then u ∈ X is

a weak solution of the linear equation Au = f iff u ∈ D (A1) and A1u = f .

Proof. The ”only if” part follows from the definitions of the maximal operator A1 and of

the weak solutions. Indeed, u ∈ D (A1) and A1u = f implies that (φ,A1u) = (A∗φ, u), for

all φ ∈ S or equivalently (φ, f) = (A∗φ, u), for all φ ∈ S. Therefore, u is a weak solution of

the linear equation Au = f .
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The ”if” part follows from the definition of the weak solutions. Let u ∈ X be a weak

solution of the linear equation. Then, (A∗φ, u) = (φ,Au), for all φ ∈ S. From the definition

of the maximal operator A1, we obtain that (φ,A1u) = (A∗φ, u), for all φ ∈ S. Hence,

u ∈ D (A1) and A1u = f . □

Now, we can state and prove the following theorem.

Theorem 3.4. Let A : D(A) ⊂ X → X be a linear operator as in Theorem 3.1 and let

f ∈ X. Then, every weak solution u of the linear equation Au = f is in XΛ
m1,m2

.

Proof. Let u be a weak solution of Au = f .

Using Proposition 3.1, we obtain that u ∈ D (A1). By Theorem 3.3, A1 = A0. Hence,

u ∈ D (A0). By Theorem 3.2, D (A0) = XΛ
m1,m2

.

Therefore, u ∈ XΛ
m1,m2

.

The proof of the theorem is complete. □

Remark 3.2. The previous theorem represents a regularity result because it tells us that

every weak solution u of the linear equation Au = f belongs to a more regular space XΛ
m1,m2

in the sense that XΛ
m1,m2

⊂ XΛ
0,0 = X by (2.2).

4. Two perturbation results

In this section, we give a perturbation result concerning the A-D-N inequality and

another result regarding the strongly continuous semigroup of contractions.

First, we assume that for 0 < s1 < t1 and for every positive number ε > 0, there

exists a positive constant Cε such that

∥u∥s1,0,Λ ≤ ε∥u∥t1,0,Λ + Cε∥u∥0,0,Λ, u ∈ XΛ
t1,0. (4.1)

Let us observe that when we take s = (s1, s2) , t = (t1, t2) in R2 such that 0 < s1 < t1, s2 ≤
0 < t2, we have the estimate

∥u∥s1,s2,Λ ≤ ε∥u∥t1,t2,Λ + Cε∥u∥0,0,Λ, u ∈ XΛ
t1,t2 , (4.2)

using (2.2) and (4.1).

Remark 4.1. The inequality (4.1) is an abstract version of the Erhling inequality related

to the pseudo-differential operators on Lp (Rn) spaces (see [17]) and the inequality (4.2) is

an almost analogue, in our abstract setting, of this inequality.

Theorem 4.1. Let A be an operator as in Theorem 3.1 and let V : D(V ) ⊂ X → X with

S ⊂ D(V ) be a closed operator such that there exists a positive constant C for which

∥V φ∥0,0,Λ ≤ C∥φ∥s1,s2,Λ, φ ∈ S, (4.3)

where 0 < s1 < m1, s2 ≤ 0 < m2. Then, there exist positive constants C̃1 and C̃2 such that

C̃1∥φ∥m1,m2,Λ ≤ ∥(A+ V )φ∥0,0,Λ + ∥φ∥0,0,Λ ≤ C̃2∥φ∥m1,m2,Λ, φ ∈ S. (4.4)

Proof. Let φ ∈ S. By (4.3) and the right-hand side of the inequality (3.2), we get

∥(A+ V )φ∥0,0,Λ + ∥φ∥0,0,Λ ≤ ∥Aφ∥0,0,Λ + ∥V φ∥0,0,Λ + ∥φ∥0,0,Λ
≤ ∥Aφ∥0,0,Λ + C∥φ∥s1,s2,Λ + ∥φ∥0,0,Λ
≤ (C + C2) ∥φ∥m1,m2,Λ = C̃2∥φ∥m1,m2,Λ, φ ∈ S.

By (4.3) and (4.2), for every positive number ε, there exists a positive constant Cε such

that
∥(A+ V )φ∥0,0,Λ ≥ ∥Aφ∥0,0,Λ − ∥V φ∥0,0,Λ ≥ ∥Aφ∥0,0,Λ − C∥φ∥s1,s2,Λ

≥ ∥Aφ∥0,0,Λ − ε∥φ∥m1,m2,Λ − Cε∥φ∥0,0,Λ, φ ∈ S.
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By the left-hand side of the inequality (3.2), we get

∥(A+ V )φ∥0,0,Λ ≥ (C1 − ε) ∥φ∥m1,m2,Λ − (Cε + 1) ∥φ∥0,0,Λ, φ ∈ S.

Choosing ε < C1, we obtain

∥φ∥0,0,Λ + ∥(A+ V )φ∥0,0,Λ ≥ ∥φ∥0,0,Λ +
1

Cε + 1
∥(A+ V )φ∥0,0,Λ

≥ C1 − ε

Cε + 1
∥φ∥m1,m2,Λ = C̃1∥φ∥m1,m2,Λ, φ ∈ S.

The proof is complete. □

Now, we can state and prove the main result of this section.

Theorem 4.2. Let A be an operator as in Theorem 3.1 and let V : D(V ) ⊂ X → X with

S ⊂ D(V ) be a closed operator that satisfies the estimate

∥V φ∥0,0,Λ ≤ C∥φ∥s1,s2,Λ, φ ∈ S, (4.5)

where 0 < s1 < m1, s2 ≤ 0 < m2. Then, there exist positive constants C1, C2 such that

C1∥u∥m1,m2,Λ ≤ ∥(A0 + V )u∥0,0,Λ + ∥u∥0,0,Λ ≤ C2∥u∥m1,m2,Λ, u ∈ XΛ
m1,m2

. (4.6)

Proof. Let u ∈ XΛ
m1,m2

. There exists a sequence {φ}∞j=1 of functions in S such that φj → u

in XΛ
m1,m2

as j → ∞.

By the right-hand side of the inequality (3.2), we obtain that

Aφj → A0u ∈ X as j → ∞.

By (4.5),

∥V φj − V φk∥0,0,Λ ≤ C ∥φj − φk∥s1,s2,Λ ≤ C ∥φj − φk∥m1,m2,Λ
→ 0 as j, k → ∞.

Thus, V φj → v for some v in X as j → ∞. Since V : D(V ) → X is closed, u ∈ D(V ) and

V u = v.

By Theorem 4.1,

C̃1 ∥φj∥m1,m2,Λ
≤ ∥(A0 + V )φj∥0,0,Λ + ∥φj∥0,0,Λ ≤ C̃2 ∥φj∥m1,m2,Λ

,

for j = 1, 2, . . ..

Now, if we let j → ∞, then the proof of the theorem is complete. □

In order to give an application to strongly continuous semigroups of contractions

generated by the operator A, we need to recall the following result (see Corollary 3.8 in [9]

or Corollary 3.3 in [14]).

Theorem 4.3. Let X be a complex Banach space and let ∥ · ∥ be its norm. Let A be the

infinitesimal generator of one-parameter strongly continuous semigroup of contractions on

the complex Banach space X. Let B be a dissipative operator which satisfies D(A) ⊂ D(B)

and ∥Bx∥ ≤ a∥Ax∥+ C∥x∥ for x ∈ D(A), where 0 < a < 1 and C ≥ 0.

Then A + B is the infinitesimal generator of a one-parameter strongly continuous

semigroup of contractions on X.

Now, we can state and prove the following theorem.
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Theorem 4.4. Let A be an operator as in Theorem 3.1 such that A is the infinitesimal

generator of a strongly continuous semigroup of contractions on X.

Let V : D(V ) ⊂ X → X be a maximally dissipative operator with S ⊂ D(V ) such that

∥V φ∥0,0,Λ ≤ C∥φ∥s1,s2,Λ, φ ∈ S,

where 0 < s1 < m1, s2 ≤ 0 < m2 and C is a positive constant.

Then A0 + V is the infinitesimal generator of an one-parameter strongly continuous

semigroup of contractions on X.

Proof. Let ε > 0 such that εC < 1.

By (2.2), the abstract case of the Erhling inequality (4.2) and the left-hand side of

the Agmon-Douglis-Nirenberg estimate (3.2), we can get a positive constant Cε such that

∥V φ∥0,0,Λ ≤ Cε∥φ∥m1,m2,Λ + CCε∥φ∥0,0,Λ ≤

Cε
(
∥Aφ∥0,0,Λ + ∥φ∥0,0,Λ

)
+ CCε∥φ∥0,0,Λ

= Cε ∥Aφ∥0,0,Λ + (Cε+ CCε)∥φ∥0,0,Λ, φ ∈ S.

(4.7)

Let u ∈ XΛ
m1,m2

and let {φk}k be a sequence in S such that

φk → u

in XΛ
m1,m2

as k → ∞.

Using (4.7), we have

∥V φk∥0,0,Λ ≤ Cε∥Aφk∥0,0,Λ + (Cε+ CCε) ∥φk∥0,0,Λ,
for k = 1, 2, ....

Since V is maximally dissipative, if we let k → ∞, we get

∥V u∥0,0,Λ ≤ Cε ∥A0u∥0,0,Λ + (Cε+ CCε) ∥u∥0,0,Λ
for u ∈ XΛ

m1,m2
⊂ D(V ) (because by (iv) XΛ

m1,m2
⊂ XΛ

s1,s2 ⊂ XΛ
0,0 = X).

Now, using Theorem 4.3 the proof is complete. □

5. Fredholmness of minimal operator A0

In this section, we prove that the minimal operator A0 of the operator A is Fredholm

when suitable hypotheses are satisfied.

Let us recall that a closed linear operator A : X → X from a complex Banach space

X into a complex Banach space Y with dense domain D(A) is said to be Fredholm if

i) R(A) is a closed subspace of Y ;

ii) N(A) and N (At) are finite dimensional,

where R(A) is the range of A, N(A) is the null space of A and N (At) is the null

space of the adjoint At.

Now, we recall a result in which we find the necessary and sufficient conditions for an

operator to be Fredholm.

Theorem 5.1. (see [3]) Suppose that A is a closed linear operator from a complex Banach

space X into a complex Banach space Y with dense domain D(A). Then, A is Fredholm if

and only if one can find a closed linear operator B : Y → X, compact operators K1 : X → X

and K2 : Y → Y such that BA = I +K1 on D(A) and AB = I +K2 on Y.

In order to prove the main result of this section, we need the following theorem.

Theorem 5.2. Let s1, s2, t1, t2 ∈ R such that s1 < t1 and s2 < t2. Then, the inclusion

i : XΛ
t1,t2 ↪→ XΛ

s1,s2 is a compact operator.
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Proof. Since t1 − s1 > 0 , t2 − s2 > 0 by the hypothesis, then, by a corollary of the 
Archimedean property, there exists a positive number ε such that 0 < ε < t1 − s1, 0 < ε < 
t2 − s2.

Let us consider the following mappings(
JΛ
ε,ε

)−1
JΛ
−s1,−s2 : XΛ

t1,t2 → XΛ
t1−s1−ε,t2−s2−ε,

i : XΛ
t1−s1−ε,t2−s2−ε ↪→ XΛ

0,0 and JΛ
ε,ε : X

Λ
0,0 → XΛ

0,0.

By the composition of these three mappings, we get

JΛ
ε,εi

(
JΛ
ε,ε

)−1
JΛ
−s1,−s2 : XΛ

t1,t2 → XΛ
0,0.

But
(
JΛ
ε,ε

)−1
JΛ
−s1,−s2 and i are bounded linear operators, by Proposition 2.1 and

the property (iv) in the definition of the two-parameter abstract framework in Section 2,

and JΛ
ε,ε is a compact operator by property (i) in the definition of the same two-parameter

abstract framework.

Therefore, JΛ
ε,εi

(
JΛ
ε,ε

)−1
JΛ
−s1,−s2 : XΛ

t1,t2 → XΛ
0,0 is a compact operator.

Let us remark that for u inXΛ
t1,t2 , it follows that J

Λ
ε,εi

(
JΛ
ε,ε

)−1
JΛ
−s1,−s2u = JΛ

−s1,−s2u ∈
XΛ

0,0. Hence, u ∈ XΛ
s1,s2 and the inclusion i : XΛ

t1,t2 ↪→ XΛ
s1,s2 is a compact operator.

□

The main result in this section reads as follows.

Theorem 5.3. Let A : S ⊂ X → X be an operator as in Theorem 3.1 such that it satisfies

the equality AB = I + L, where B is the operator in Theorem 3.1 and L is an infinitely

smoothing operator. Then, the bounded linear operator A0 : XΛ
m1,m2

⊂ X → X is Fredholm.

Proof. Since A satisfies the hypothesis of Theorem 3.1, there exists a linear operator B of

order (−m1,−m2) from X to X with domain S such that BA = I + R and AB = I + L,

where I is the identity operator and R,L are infinitely smoothing operators.

For all positive numbers t1, t2, the linear operator R : X → XΛ
t1,t2 is bounded by the

definition of the smoothing operator and i : XΛ
t1,t2 ↪→ X is compact by Theorem 5.2. Thus,

R : X → X is a compact operator.

Similarly, L : X → X is also a compact operator.

By Theorem 5.1, we obtain that A0 : XΛ
m1,m2

⊂ X → X is Fredholm.

Thus, the proof is complete. □
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