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ON THE GEOMETRICAL OPTIMIZATION OF CMOS HALL 

CELLS, RECTANGULAR AND SQUARE 

Maria-Alexandra PAUN1, Vladimir-Alexandru PAUN2 

This paper presents geometrical optimization approaches, in order to 

improve the performances of the Hall cells. To this purpose, the geometrical 

correction factor was maximized, with respect to several imposed technological 

parameters, such as area and contacts size. The focus of this analysis is on both 

square and rectangular Hall structures, with small sensing contacts. Three-

dimensional physical simulations for the square Hall cells are also included in this 

study. To complete the overview, experimental results regarding the sensitivity and 

offset of a certain square Hall cell, integrated in a CMOS technological process, are 

offered. 
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1. Introduction  

 The magnetic sensors based on Hall Effect have been used for decades 

and continue to be successfully employed nowadays in various applications in the 

industry, for current sensing, position measurement, in DC motors and in a myriad 

of low-power applications in the automotive industry [1-3]. Also, they have 

served various purposes in the biomedical engineering domains [4] and as 

magnetic cameras [5].  

Due to the cost-effectiveness, robustness and easy integration on the chip, 

the CMOS technological process is preferred in the realization of the Hall Effect 

sensors. Both regular bulk [6] and SOI technological processes [7] have been used 

to fabricate these sensors. 

The important parameters that govern the performance of such magnetic 

sensors are the sensitivity, offset and their temperature drift. An extensive 

investigation into the assessment of these parameters for CMOS Hall cells has 

been made by the first author in [6, 8]. To evaluate the performances of Hall cells 
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in various technological processes and with different structures, both three-

dimensional physical models [7] and circuit models have also been developed [9]. 

The approach of the geometrical correction maximization was initiated 

and studied by the first author in a paper from 2010, published in the Scientific 

Bulletin of UPB [10]. By staying in the same technological process, the 

geometrical correction factor should be maximized in order to guarantee the 

highest sensitivity. In the above-mentioned paper, this methodology has been 

proposed and thoroughly analyzed for the first time in great details over an array 

of eight different Hall shapes.  

Essentially, the present paper continues the scientific research carried out 

and presented there. Also, we mention that the article under discussion has been 

very beneficial for the Hall designer communities and raised a lot of interest 

translated in the high number of 20 citations. This paper presents geometrical 

optimization procedures proposed for the Hall cells performance improvement, 

with an emphasis on square and rectangular structures with small contacts 

respectively.  

The structure of the article, which is spanning over five chapters, is as 

follows. The second chapter talks about the geometrical correction factor, by 

introducing its definition for particular Hall structures. Still here, the geometrical 

correction factor maximization under technological and design constraints is 

performed, for rectangular Hall cells with small sensing contacts. Plots of the 

maximum geometrical correction factor with respect to the area and contacts sizes 

respectively are provided. The third chapter is devoted to the presentation of 

three-dimensional physical models for the square Hall cells. In Chapter 4, 

experimental results for the Square Hall cell integrated in a regular bulk 0.35 µm 

CMOS technological process are included, with an emphasis on sensitivity and 

offset. The paper finally concludes in Chapter 5. 

2. Geometrical optimization 

This section focuses on presenting the geometrical optimization 

considerations for Hall cells, with an emphasis on rectangular structures with 

small sensing contacts. More details about the present equations (theory, 

definitions, etc.) can be found in first author’s PhD thesis [11] and paper [10], the 

latter cited by Udo Ausserlechner in 2016 [12] in the Scientific Bulletin of UPB. 

 

A. Geometrical correction factor general definition 

 

The geometrical correction factor GH or simply G (in extenso “geometrical 

factor of Hall voltage”) can be introduced in various ways, but in this context we 

prefer the classic formulation. According to the definition in Eq. (1), the 
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geometrical factor describes the diminution of the Hall voltage in a finite-size Hall 

device compared to that of a corresponding infinitely long device.  

This diminution comes due to a non-perfect current confinement in Hall 

devices of finite dimensions. If the Hall voltage of an actual device is VH, and VH∞ 

that of a corresponding infinitely long or point-contact device, the Hall 

geometrical factor is defined by:  




H

H

V

V
G  (1) 

 

B. Square cells with contacts in the corners 

 

We shall now consider a square structure with finite contacts of equal 

length situated in the corners of each side, and four axes of symmetry. This 

geometry is depicted in Figure 1. 

 
Fig. 1. The Square Hall cell with contacts in the corners 

 

For this particular structure, the geometrical correction factor G is defined 

as it follows: 

0,)(cotan094.11 2  HmG  (2) 

where θH is the Hall angle, while λ and m are defined below.  

The parameter λ denotes the ratio between the sum of the lengths of the 

contacts c and the length of the boundary b:  

b

c
  (3) 

Further on, m is defined through the Hall angle θH with the aid of the 

formula: 
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By consequence, m is introduced as follows: 
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For the square structure in Figure 1, the three-dimensional representation 

of the inverse of the geometrical correction factor G versus m and λ is illustrated 

in Figure 2. 

 
Fig. 2. The inverse of the geometrical correction factor 1/G, versus m and λ, for square Hall cells 

with contacts in the corners 

 

C. Geometrical correction factor G maximization under technological 

and design constraints 

 

If we include the length of the sensing contacts, we obtain the following 

simplified expression for the geometrical correction factor: 
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which is valid if the length to width ratio L/W >1.5 and its sensing contacts are 

relatively small, namely s/W < 0.18.  

In order to achieve maximum sensitivity, a geometrical correction factor G 

maximization was performed for rectangular Hall structures with small sensing 

contacts s. G was maximized when design specifications act as constraints, such 

as imposed sensing contacts length s and area A=LW. 

To maximize the sensitivity for long Hall plates (L/W>1.5) with small 

sensing contacts, the cells dimensions can be chosen in such a way to guarantee a 

maximum G. The following graphs in Figures 3 and 4 represent the variation of W 

and L respectively with respect to the imposed area A, for different sensing 

contacts s. In this analysis, according to pertinent values related to the 
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technological process and optimized geometrical dimensions, we have considered 

the area A between 400 and 2500 µm2 and the sensing contacts size s between 

0.35 and 2 µm. 

 
Fig. 3. Variation of W with respect to the imposed area, for different small sensing 

contact sizes, s 

 
Fig. 4. Variation of L with respect to the imposed area, for different small sensing contact 

sizes, s 

 

Figure 5 displays the variation of the maximum correction factor with 

respect to the imposed area A, for different small sensing contacts s. Hence, we 



334                                  Maria-Alexandra Paun, Vladimir-Alexandru Paun 

can infer that the geometrical correction factor G is maximum for the smallest 

contacts size s and the maximum area A. 

 
Fig. 5. Variation of maximum geometrical correction factor Gmax with respect to the imposed areas 

A, for different small sensing contact sizes s 
 

 
Fig. 6. Variation of maximum geometrical correction factor Gmax with respect to the imposed 

sensing contact sizes s, for different imposed areas A 

 

In Figure 6, the variation of the maximum correction factor G with respect 

to small sensing contacts s, for different imposed areas A, is represented. Again, 
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we can see that the maximum geometrical correction factor G is obtained for 

maximum area A and minimum contacts size s. 

3. Three-dimensional physical simulations 

An important tool in the verification of Hall cells performance and 

extraction of valuable information regarding the parameters of interest are the 

three-dimensional physical simulations. 

Physical models of Hall cells in three-dimensions were developed using 

the Synopsys Sentaurus® TCAD software [13]. This solves the Poisson equation, 

electrons and holes continuity equations. In this way, for the semiconductor 

magnetic sensor, a numerical model in three-dimensions of the carrier transport 

process under the magnetic field influence is proposed, providing an insight into 

the current distribution and electrostatic potential. In order to model the carrier 

transport in magnetic field and to furthermore properly investigate the Hall 

voltage generation, the magnetic field acting on the semiconductor is provided 

through the galvanic transport model. The numerical simulations presented in this 

paper have been obtained using the Sentaurus tool.  

 

A. Square Hall cell physical model 

 

The Square Hall cell was modeled after a real CMOS 0.35 µm 

technological process, on a Silicon p-substrate (blue color) with an n-well active 

region (red color). The four electrical contacts, denoted from “a” to “d” and 

situated in the corners of the structure, are depicted in pink color.  

 

Fig. 7. Three-dimensional physical model of the Square Hall cell, depicting the donor 

concentration 
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In Figure 7, one could see the three-dimensional meshed structure of the 

Square Hall cell. The number of around 100’000 points in the meshed structure 

was optimized in order to allow for optimum accuracy and simulation run time.  

Therefore, a p-substrate with a Boron concentration of 10+15 cm-3 and an 

active n-well region doped with Arsenic (peak concentration of 1.5∙10+17 cm-3, 

Gaussian profile implantation) were used. This doping profile allows an average 

mobility of 630 cm2V-1s-1 at the surface of the devices. Additional n+ regions 

were used for the contacts with n+ =10+19 cm-3. The donor concentrations in the 

Square Hall cell can also be seen in Figure 7. 

 

B. Electrostatic potential of the Square Hall cell  

 

Figure 8 presents the electrostatic potential distribution (color coded map) 

of the Square Hall cell. The structure was biased with 1 V on the “a” contact (red 

zone) and therefore a current was forced to flow between “a” and “c” contacts. As 

we can see, the electrical carriers deviate under the action of the Lorentz Force, 

through the influence of the magnetic field at specific strength B=0.5 T. 

 

Fig. 8. Electrostatic potential for the Square Hall cell 

  

 As an observation, we have to mention that the three-dimensional physical 

simulations, Figure 7 and Figure 8 respectively, belong to the authors, through the 

improvement (geometrical structure definition, number of points, mesh refinement 

windows definition and placement, code running time optimization) of 

consecrated software.   
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4. Experimental results for Square Hall cells 

This section introduces experimental results regarding the Square Hall 

cell, integrated in a CMOS 0.35 µm process, by providing an insight in the offset 

and sensitivity numerical values. The study will now focus on the Square Hall 

cell, of the type presented in Figure 1, and whose physical model was studied in 

the previous section. 

As demonstrated in Section II, small contacts could increase the 

sensitivity. In this way, a good sensitivity was targeted with a non-cross cell, in 

the shape of the square cell with small contacts, which are located close to the 

borders of the p-n junction. 

 

A. Square Hall cell sensitivity measurements 

 

One of the most important parameters of Hall cells is the sensitivity, which 

is defined as the change in the output arising from a change in the input. 

Analytically, the absolute sensitivity SA of Hall cells is defined as follows: 

bias
HHALL
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B
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where B is the magnetic field induction, G is the geometrical correction factor, Ibias 

is the biasing current, rH is the Hall scattering factor, n is the carrier density and t is 

the thickness of the active region [1]. In the case of silicon, the Hall scattering 

factor is usually 1.15. 

In Figure 9, the absolute sensitivity of the Square Hall cell, both measured 

and simulated values, is depicted against a biasing current between 0 and 1 mA. 

 
Fig. 9. Simulated absolute sensitivity SA vs. biasing current, for the Square Hall cell 
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By looking at the results obtained in Figure 9, we can see that the absolute 

sensitivity at 1 mA is 108.54 mV (measured value), while the simulated value is 

95.2 mV. The small discrepancies between the simulated and measured values are 

due to the fact that the real technological process parameters could not be exactly 

entirely reproduced in the simulator, due to the undisclosed nature of these 

parameters (implantation concentration, profile depth, etc.). However, further 

refinements in the simulation models are envisaged for future publications. 

 

B. Square Hall cell offset measurements 

 

The performance of the Hall cells is greatly affected by the offset, which is 

related to the technological fabrication process, packaging, operating conditions 

and ageing [11]. Offset is also induced by any mismatch or imbalance in the Hall 

plate. By definition, the offset is a parasitic voltage that adds to the Hall voltage: 

offsetHALLout VVV   (8) 

The current-spinning or connection-commutation technique [11] produces 

a considerably lower residual offset by an averaging on several phases:  
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where  is the individual phase offset, expressed in volts. 

In Figure 10, the 4-phase residual offset is measured three times for three 

different Square Hall cells, against the biasing current. 

 
Fig. 10.  Measured residual offset vs. biasing current, for Square Hall cell 

 

We can see, from Figure 10, that the low offset values for the Square cell 

do not exceed 7 µV, for a maximum current of 0.5 mA. 
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C. Summary of experimental results regarding Square Hall cell main 

parameters 

 

This table summarizes the experimental numerical values of the Square 

Hall cell main parameters, obtained through the corresponding electrical and 

magnetic measurements. It is worth mentioning that the value for the absolute 

sensitivity has been obtained for a biasing current of 1 mA, while the offset drift 

was obtained for 0.5 mA. Also, a permanent magnet with a magnetic field strength 

B=0.5 T was used for the sensitivity measurements. 

 
Table 1  

Main parameters of the Square Hall cell 

Numerical values 

R (kΩ) 
Width W 

(µm) 

Length L 

(µm) 

Contacts size 

s 

Absolute 

sensitivity 

SA (mV/T) 

Offset drift 

(µT/°C) 

4.9 20 20 2.3 95.2 0.082 
 

5. Conclusions 

  The work in this paper was devoted to look into geometrical optimization 

approaches for Hall cells, with an emphasis on both square and rectangular 

shapes, with small sensing contacts.  

To attain the stated objectives, maximization for the geometrical 

correction factor was performed, with respect to various imposed technological 

parameters such area and sensing contacts size. At this point, we have seen that 

the maximum geometrical correction factor G is obtained for maximum area A 

and minimum contacts size s. 

We have inferred that in order to maximize the sensitivity of Hall cells, 

within the same technological process, the geometrical correction factor needs to 

be maximized.  

Experimental results for the square Hall cells integrated in a 0.35 µm 

CMOS technological process have been offered, for both the sensitivity and 

offset. In order to have a complete overview on the performance of the Hall cells, 

three-dimensional physical models have been developed for the square Hall cells. 

As future work, the authors are planning to extend this analysis to CMOS 

SOI (Silicon on Insulator) Hall cells, structures already integrated. 
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