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ON THE GEOMETRICAL OPTIMIZATION OF CMOS HALL
CELLS, RECTANGULAR AND SQUARE

Maria-Alexandra PAUN?, Vladimir-Alexandru PAUN?

This paper presents geometrical optimization approaches, in order to
improve the performances of the Hall cells. To this purpose, the geometrical
correction factor was maximized, with respect to several imposed technological
parameters, such as area and contacts size. The focus of this analysis is on both
square and rectangular Hall structures, with small sensing contacts. Three-
dimensional physical simulations for the square Hall cells are also included in this
study. To complete the overview, experimental results regarding the sensitivity and
offset of a certain square Hall cell, integrated in a CMOS technological process, are
offered.
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1. Introduction

The magnetic sensors based on Hall Effect have been used for decades
and continue to be successfully employed nowadays in various applications in the
industry, for current sensing, position measurement, in DC motors and in a myriad
of low-power applications in the automotive industry [1-3]. Also, they have
served various purposes in the biomedical engineering domains [4] and as
magnetic cameras [5].

Due to the cost-effectiveness, robustness and easy integration on the chip,
the CMOS technological process is preferred in the realization of the Hall Effect
sensors. Both regular bulk [6] and SOI technological processes [7] have been used
to fabricate these sensors.

The important parameters that govern the performance of such magnetic
sensors are the sensitivity, offset and their temperature drift. An extensive
investigation into the assessment of these parameters for CMOS Hall cells has
been made by the first author in [6, 8]. To evaluate the performances of Hall cells
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in various technological processes and with different structures, both three-
dimensional physical models [7] and circuit models have also been developed [9].

The approach of the geometrical correction maximization was initiated
and studied by the first author in a paper from 2010, published in the Scientific
Bulletin of UPB [10]. By staying in the same technological process, the
geometrical correction factor should be maximized in order to guarantee the
highest sensitivity. In the above-mentioned paper, this methodology has been
proposed and thoroughly analyzed for the first time in great details over an array
of eight different Hall shapes.

Essentially, the present paper continues the scientific research carried out
and presented there. Also, we mention that the article under discussion has been
very beneficial for the Hall designer communities and raised a lot of interest
translated in the high number of 20 citations. This paper presents geometrical
optimization procedures proposed for the Hall cells performance improvement,
with an emphasis on square and rectangular structures with small contacts
respectively.

The structure of the article, which is spanning over five chapters, is as
follows. The second chapter talks about the geometrical correction factor, by
introducing its definition for particular Hall structures. Still here, the geometrical
correction factor maximization under technological and design constraints is
performed, for rectangular Hall cells with small sensing contacts. Plots of the
maximum geometrical correction factor with respect to the area and contacts sizes
respectively are provided. The third chapter is devoted to the presentation of
three-dimensional physical models for the square Hall cells. In Chapter 4,
experimental results for the Square Hall cell integrated in a regular bulk 0.35 pm
CMOS technological process are included, with an emphasis on sensitivity and
offset. The paper finally concludes in Chapter 5.

2. Geometrical optimization

This section focuses on presenting the geometrical optimization
considerations for Hall cells, with an emphasis on rectangular structures with
small sensing contacts. More details about the present equations (theory,
definitions, etc.) can be found in first author’s PhD thesis [11] and paper [10], the
latter cited by Udo Ausserlechner in 2016 [12] in the Scientific Bulletin of UPB.

A. Geometrical correction factor general definition
The geometrical correction factor Gx or simply G (in extenso “geometrical

factor of Hall voltage™) can be introduced in various ways, but in this context we
prefer the classic formulation. According to the definition in Eqg. (1), the
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geometrical factor describes the diminution of the Hall voltage in a finite-size Hall
device compared to that of a corresponding infinitely long device.

This diminution comes due to a non-perfect current confinement in Hall
devices of finite dimensions. If the Hall voltage of an actual device is VH, and Ve
that of a corresponding infinitely long or point-contact device, the Hall
geometrical factor is defined by:

G-k (1)

Hoo

B. Square cells with contacts in the corners

We shall now consider a square structure with finite contacts of equal
length situated in the corners of each side, and four axes of symmetry. This
geometry is depicted in Figure 1.
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Fig. 1. The Square Hall cell with contacts in the corners

For this particular structure, the geometrical correction factor G is defined
as it follows:
G =1-1.094mcotan(d,)A*, 2 —0 2)
where 64 is the Hall angle, while A and m are defined below.
The parameter A denotes the ratio between the sum of the lengths of the
contacts ¢ and the length of the boundary b:
c
A=t ®)
Further on, m is defined through the Hall angle 61 with the aid of the
formula:

6, = % = arctan(uB) (4)

By consequence, m is introduced as follows:
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For the square structure in Figure 1, the three-dimensional representation
of the inverse of the geometrical correction factor G versus m and 4 is illustrated
in Figure 2.
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Fig. 2. The inverse of the geometrical correction factor 1/G, versus m and 4, for square Hall cells
with contacts in the corners

C. Geometrical correction factor G maximization under technological
and design constraints

If we include the length of the sensing contacts, we obtain the following
simplified expression for the geometrical correction factor:

i, 28
G:[l—e (1 HWJJ (6)

which is valid if the length to width ratio L/W >1.5 and its sensing contacts are
relatively small, namely s/W < 0.18.

In order to achieve maximum sensitivity, a geometrical correction factor G
maximization was performed for rectangular Hall structures with small sensing
contacts s. G was maximized when design specifications act as constraints, such
as imposed sensing contacts length s and area A=LW.

To maximize the sensitivity for long Hall plates (L/W>1.5) with small
sensing contacts, the cells dimensions can be chosen in such a way to guarantee a
maximum G. The following graphs in Figures 3 and 4 represent the variation of W
and L respectively with respect to the imposed area A, for different sensing
contacts s. In this analysis, according to pertinent values related to the
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technological process and optimized geometrical dimensions, we have considered
the area A between 400 and 2500 um? and the sensing contacts size s between
0.35and 2 pm.

29
|
)
24 — ¥
— ' ) ot
=
ERE ¥
E / s —4—s5=0_35 um
;,/ —8—:=05pum
14 . ! s=1 pm
*":,:5:1 —8—s5=1.5 pm
if —#—s5=2 um
9 t t t t t |
0 500 1000 1500 2000 2500 3000

Area(pum?)
Fig. 3. Variation of W with respect to the imposed area, for different small sensing
contact sizes, s
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Fig. 4. Variation of L with respect to the imposed area, for different small sensing contact
sizes, s

Figure 5 displays the variation of the maximum correction factor with
respect to the imposed area A, for different small sensing contacts s. Hence, we
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can infer that the geometrical correction factor G is maximum for the smallest
contacts size s and the maximum area A.
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Fig. 5. Variation of maximum geometrical correction factor Gmax With respect to the imposed areas
A, for different small sensing contact sizes s

1
.
L
0.98 e
LY
0.96 N A
. o s =
v, M .
N -
=0.94 T m
E . .
O .92 . Sy
A
* —— A= 400 pum?
0.9
9 —— A=900 pm®
Y
— 2
0.88 F A=1600 pm
—8— A=2500 pm?
0.86 ; : |
0 1 2 3
s (um)

Fig. 6. Variation of maximum geometrical correction factor Gmax With respect to the imposed
sensing contact sizes s, for different imposed areas A

In Figure 6, the variation of the maximum correction factor G with respect
to small sensing contacts s, for different imposed areas A, is represented. Again,
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we can see that the maximum geometrical correction factor G is obtained for
maximum area A and minimum contacts size s.

3. Three-dimensional physical simulations

An important tool in the verification of Hall cells performance and
extraction of valuable information regarding the parameters of interest are the
three-dimensional physical simulations.

Physical models of Hall cells in three-dimensions were developed using
the Synopsys Sentaurus® TCAD software [13]. This solves the Poisson equation,
electrons and holes continuity equations. In this way, for the semiconductor
magnetic sensor, a numerical model in three-dimensions of the carrier transport
process under the magnetic field influence is proposed, providing an insight into
the current distribution and electrostatic potential. In order to model the carrier
transport in magnetic field and to furthermore properly investigate the Hall
voltage generation, the magnetic field acting on the semiconductor is provided
through the galvanic transport model. The numerical simulations presented in this
paper have been obtained using the Sentaurus tool.

A. Square Hall cell physical model

The Square Hall cell was modeled after a real CMOS 0.35 pm
technological process, on a Silicon p-substrate (blue color) with an n-well active
region (red color). The four electrical contacts, denoted from “a” to “d” and
situated in the corners of the structure, are depicted in pink color.
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Fig. 7. Three-dimensional physical model of the Square Hall cell, depicting the donor
concentration
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In Figure 7, one could see the three-dimensional meshed structure of the
Square Hall cell. The number of around 100°000 points in the meshed structure
was optimized in order to allow for optimum accuracy and simulation run time.

Therefore, a p-substrate with a Boron concentration of 10™° cm™ and an
active n-well region doped with Arsenic (peak concentration of 1.5-10"" c¢m,
Gaussian profile implantation) were used. This doping profile allows an average
mobility of 630 cm?V1s?! at the surface of the devices. Additional n+ regions
were used for the contacts with n+ =10"'° cm. The donor concentrations in the
Square Hall cell can also be seen in Figure 7.

B. Electrostatic potential of the Square Hall cell

Figure 8 presents the electrostatic potential distribution (color coded map)
of the Square Hall cell. The structure was biased with 1 V on the “a” contact (red
zone) and therefore a current was forced to flow between “a@” and “Cc” contacts. AS
we can see, the electrical carriers deviate under the action of the Lorentz Force,
through the influence of the magnetic field at specific strength B=0.5T.
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Fig. 8. Electrostatic potential for the Square Hall cell

As an observation, we have to mention that the three-dimensional physical
simulations, Figure 7 and Figure 8 respectively, belong to the authors, through the
improvement (geometrical structure definition, number of points, mesh refinement
windows definition and placement, code running time optimization) of
consecrated software.
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4. Experimental results for Square Hall cells

This section introduces experimental results regarding the Square Hall
cell, integrated in a CMOS 0.35 pum process, by providing an insight in the offset
and sensitivity numerical values. The study will now focus on the Square Hall
cell, of the type presented in Figure 1, and whose physical model was studied in
the previous section.

As demonstrated in Section Il, small contacts could increase the
sensitivity. In this way, a good sensitivity was targeted with a non-cross cell, in
the shape of the square cell with small contacts, which are located close to the
borders of the p-n junction.

A. Square Hall cell sensitivity measurements

One of the most important parameters of Hall cells is the sensitivity, which
is defined as the change in the output arising from a change in the input.
Analytically, the absolute sensitivity Sa of Hall cells is defined as follows:

V Gr
SA :| HéLL - nq';: Ibias (7)
where B is the magnetic field induction, G is the geometrical correction factor, Ipias
is the biasing current, ry is the Hall scattering factor, n is the carrier density and t is
the thickness of the active region [1]. In the case of silicon, the Hall scattering
factor is usually 1.15.
In Figure 9, the absolute sensitivity of the Square Hall cell, both measured
and simulated values, is depicted against a biasing current between 0 and 1 mA.

Square cell - Sensitivity
simulated measured
Linear (simulated) Linear (measured)

0.12

01
y =0.1085x-0.0002

0.08 R*=1

0.06

y =0.0956x - 0.0004
R?=0.9999

0.04

Sa (V/T)

0.02

0 0.2 0.4 0.6 0.8 1
-0.02

I:)‘as (mA)

Fig. 9. Simulated absolute sensitivity Sa vs. biasing current, for the Square Hall cell
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By looking at the results obtained in Figure 9, we can see that the absolute
sensitivity at 1 mA is 108.54 mV (measured value), while the simulated value is
95.2 mV. The small discrepancies between the simulated and measured values are
due to the fact that the real technological process parameters could not be exactly
entirely reproduced in the simulator, due to the undisclosed nature of these
parameters (implantation concentration, profile depth, etc.). However, further
refinements in the simulation models are envisaged for future publications.

B. Square Hall cell offset measurements

The performance of the Hall cells is greatly affected by the offset, which is
related to the technological fabrication process, packaging, operating conditions
and ageing [11]. Offset is also induced by any mismatch or imbalance in the Hall
plate. By definition, the offset is a parasitic voltage that adds to the Hall voltage:

Vout = VHALL +Voffset (8)

The current-spinning or connection-commutation technique [11] produces

a considerably lower residual offset by an averaging on several phases:
1 no.of phases

©9)

offset —

no. of phases “3

where ¥; is the individual phase offset, expressed in volts.
In Figure 10, the 4-phase residual offset is measured three times for three
different Square Hall cells, against the biasing current.
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Fig. 10. Measured residual offset vs. biasing current, for Square Hall cell

We can see, from Figure 10, that the low offset values for the Square cell
do not exceed 7 pV, for a maximum current of 0.5 mA.
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C. Summary of experimental results regarding Square Hall cell main
parameters

This table summarizes the experimental numerical values of the Square
Hall cell main parameters, obtained through the corresponding electrical and
magnetic measurements. It is worth mentioning that the value for the absolute
sensitivity has been obtained for a biasing current of 1 mA, while the offset drift
was obtained for 0.5 mA. Also, a permanent magnet with a magnetic field strength
B=0.5 T was used for the sensitivity measurements.

Table 1
Main parameters of the Square Hall cell
Numerical values
Width W Length L Contacts size Abs_ol_u_te Offset drift
R (kQ) (um) (um) s sensitivity (UT/°C)
Sa (MVIT)
4.9 20 20 2.3 95.2 0.082

5. Conclusions

The work in this paper was devoted to look into geometrical optimization
approaches for Hall cells, with an emphasis on both square and rectangular
shapes, with small sensing contacts.

To attain the stated objectives, maximization for the geometrical
correction factor was performed, with respect to various imposed technological
parameters such area and sensing contacts size. At this point, we have seen that
the maximum geometrical correction factor G is obtained for maximum area A
and minimum contacts size s.

We have inferred that in order to maximize the sensitivity of Hall cells,
within the same technological process, the geometrical correction factor needs to
be maximized.

Experimental results for the square Hall cells integrated in a 0.35 pm
CMOS technological process have been offered, for both the sensitivity and
offset. In order to have a complete overview on the performance of the Hall cells,
three-dimensional physical models have been developed for the square Hall cells.

As future work, the authors are planning to extend this analysis to CMOS
SOI (Silicon on Insulator) Hall cells, structures already integrated.
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