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ON SOME STATISTICAL INDICATORS OF THE TRAFFIC
IN WIRELESS LOCAL AREA NETWORKS

Serban Alex. STANASILA'

In ultimul timp, capacitatea de protocol ale retelelor fira fir, de exemplu
pragul permis intr-un canal de comunicatie, joaca un rol important in aplicatiile
Internet. Exista mai multe modele teoretice §i variante pentru a estima intdrzierile in
transmisie datorate coliziunilor sau congestiei. In acest articol, se studiazd un
model bazat pe schema programarii cadrelor, pozitionat intre stratul legdturii
logice si cel al controlului mediului de acces. Se dau cdteva estimari privind mediile
si dispersiile unor variabile aleatoare, care descriu utilizarea curentd a retelelor

farda fir.

In the last time, the protocol capacity of the wireless networks, for instance
the throughput as allowed in a given wireless channel, plays an important role in
the Internet applications. There are many theoretical models and variants to take
into account the transmission delay due to collisions or to subsequent transmission.
In this paper, one studies a model — based frame scheduling scheme, positioned
between the layers of the logical link and medium access control (MAC) and give
some statistical estimations regarding the expected values and the variations of
some random variables, which describe the collisions

Keywords: transmission control protocol (TCP), medium access control,
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1. The description of the Frame Service Time

By a fluid unity we mean any sequence of collision periods followed by a
successfully transmission frame, where a collision period is composed of idle slots
and a collided frame. In the figure 1, one indicates such a unit. In practice, one
meets sequences of
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such fluid unities (SIFS = “short interframes space” ; ACK = “acknoledgment”;
DIFS = “distributed interframe space”; EIFS = “extended interface space”). Each
fluid unity consists of zero or more collision periods, followed by a successful
frame transmission. One can add some mechanisms like “request to send” or
“clear to send”, but here we avoid them.

Let us fix a fluid unity. A fundamental indicator is the frame service time
denoted , in what follows, by T, as being the time necessary for a successful
transmission of a frame. In a sense, T can be identified with the length of the
considered fluid unity. T is a random variable and can be expressed by some
simpler components. Define the following random variables (relatively to the
same probability field (€2, K, P), which is understood) :

N = the number of collision periods;

Cx = the k-th collision period, 1 <k <N;

C = the total length of collision periods;

S = the time taken by a successful transmission of a frame;

F = the size of a frame;

CF = the size of a collided frame;

Sk = the number of idles slots before the k-th collision or the successful
transmission, 1 <k<N.

Directly, with these, one can formulate:

PROPOSITION 1.
The following relations take place:

T=C+S; (1)
C=C+Cy+...+Cx; 2
Ck=Sx+CF+EIFS , forany 1 <k <N 3)
S =Snx+1+F+SIFS + DIFS + ACK . 4)

One can mention that the random variables F and are identically
distributed; EIFS, SIFS, DIFS and ACK are system parameters, with their values
known (e.g. in IEEE 802.11 — operated WLAN, SIFS = 10 psec, ACK = 112 bits/
1 (Mb/s); EIFS = SIFS + DIFS + ACK);[1], [3]. On the other hand, the following
hypothesis are legitimate : C and S are independent random variables; C;, C,, ...,
Cn are independent of each other, with the same distribution; Sk, CF and F are
independent of each other. One also remark that the number of idle periods in a
frame service time is N + 1 and put CS = Sy + 1.
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We will below give some statistical estimations regarding the means
(expected values ) and variations of the above random variables.

2. Some statistical indicators for a fluid unity

Recall that for any random variable X (relatively to the considered
probability field), one can define its cumulative distribution function Fx : R —
[0, 1], Fx(t) = P(X <'t) . Suppose that this function is derivable and its derivative
px : R > R, called the probability density function, belongs to the class L' of
the absolutely integrable functions. Denote by X(w ) = F {px(t)} , the Fourier

transform of px , that is X(w ) = J.px(t).e’j’”l dt= E(e ' ", called also the

characteristic function of the random variable X. Obviously:
XO)=1,|X(w)|<1,X%0)= j(—jt)k.px(t) dt =(=j)vi ,
where v = E(X") is the moment of order k of X. Particularly, for the mean and

the variance of X, it will follow that :
2

. d d
EX=V1=].£ X(@) |, s Var X =vy — (vi)’ = -3 X(@) |, — (EX)*. (5)

2
w
We will also apply the following fact: if X and Y are independent random
variables, then px +y = px * py (convolution) and thus:

X+Y)w)=X(®). Y(®)and Var(X + Y) = Var(X) + Var(Y). (6)

PROPOSITION 2. With transparent notations, the following relations

hold
a) T(w)=C(w). S(w), for any real w; @)

b) S(w)=CS(®). F(w).e 1%, (8)

where o= SIFS + DIFS + ACK;

0

¢) C(w)= Y I'(®)"P(N=n), )

n=0

where I'(w ) is the characteristic function of the randon_l variables Cy’s ;
d) N(w)=Tyw). CF(w).e 7, (10)
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where = EIFS and I'i/(® ) is the characteristic function of the random variables
Sk’s;

Proof. a) By (1) and (6), T(w)=(C+S) (w) = C(s).S(w) , since C and S
are independent.

b) By (4), one has S=Y + a, where Y =CS + F. But Y(@)=CS(w)
F(w ), according to (6). On the other hand, for the cumulative distribution
functions:

Fs(t) =Fy(t— ),

hence ps(t) = py(t— a),
whence .
S(@)=F {ps()} =F {pv(t—a)} = e ' ““ Y(w) and one gets (8).

¢) By (2), C(@) =E(e ') =E(e 7 ..e ") =E(e7”)..E(e ")
not
Since Cj,... , Cy are identically distributed, Ci{(@w )= ... =Cx(®w) = I'(®w), hence

0

C(w)= D I'(w)"P(N=n).

n=0
d) From (3), it follows that C(® ) = Sk(@ ).(CF) (@ ). ).¢ 77 ; but all
random variables Cy (respectively Si) have the same probability density function,
namely the same I'(@ ) and I'i(@ ), whence (10).

Recall that for any random variable X, one put X instead of EX = mean .
Directly from the propositions 1 and 2, one then gets:
COROLLARY.
T=C+S;C=NI"’0)jand S =N.I'/(0)j+F +«.
In the following, we deduce some explicit formulas for means and for

variances. For means, the results are similar to some of those given in [1], in terms
of Laplace transformations, but for variances the results are new. By a local

convention, for the characteristic function U(® ), of a random variable U, put U

d’ —
P U(w) |w=0 .Thus, vi=U =

j.iU(a))Lo=0 and 62 -
do

I'J , Vo= U and Var U = I.j— I.Jz,
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PROPOSITION 3.

For any 1 <k <N, the following relations hold :

a)6k=§k+ﬁ+ﬂ; (11)
b) Var Cy = Var Sy + Var CF—44(S + CF). (12)
Proof. a) From (11), i1“(60)= i1“1(60). CF(w).e 17° +
do do

+T(@). di CF(w).e 17? —jBT(@).CF (®w) .e *#” ; multiplying by j and
w
making w =0, one gets:

[=I.1.141.CF.1+ 8 hence (11).

2
dw?

FTy(o). %CF(CO) e ip % F\(@). CF(@) e 17 +

2 .
b) On the other hand, % INw)= I'(®).CF(w).e 72+
@

. 2 ‘
+irl(a))-iCF(Ce)).e_]ﬂw-FFl(a)). d 2CF(Q))_e_Jﬁ[‘)_
do do do
-1 (@) . iCF(a)) e iBo —]ﬂi I'(w). CF(w). c 1o _
do dw

- pTi(w) . diCF(a)) ce 1P? _B? ¢77* and making @ =0, r= El +2
®

I,.CF - BT+ CF —28CF + 2

Therefore, by (11):

VarT'=T - F2=VarF1+VarCF—4,BF1—4ﬂCF,whence(12).

The distribution of the random variable CF is practically known (being the
same with that of the size of a frame). It remains the problem to estimate the
repartition of Sy. An admissible hypothesis is the following: any Sy is a random
variable exponentially distributed, with a parameter 4 > 0 which can be
established by experiments. In this case, if the maximum contention window size
of S¢’s is M, then by putting

J=Tpgom
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M M
it follows that S =% [ tp,(®dt and VarS, = % [=80)p, 0 dt .
0 0

Recall that the probability density function of an exponentially distributed
random variable is p; (X) = A.e X for x > 0 and pi (x) = 0 for x < 0. After a
simple computation, it follows that, for any

1<k<N,
§ =& —AM-I M _AM 3
Mo 2 12 (1)

if the product A M is small ; a similar result gives Var Sy.
In this way, the formulas (11), (12) allow to estimate the main statistical

indicators of Cy, Sk, whence one can estimate the behaviour of the mean T of the
frame service time.

§ 3. Statistical indicators for a full MAC — unity

As we have said, a fluid unity is made up of zero or more collision periods
followed by a successful frame transmission. Consider now the more general case,
that if a chain of p successive fluid unities; such a chain can be called a MAC —
unity (fig. 2) and denoted by {T, ..., T}.
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& ... <& < |[IDLE PERIOD D IR = T
T, T

P

Fig.2.

We have denoted by Sk the number of idle slots before the k-th collision or
the successful transmision, 1 <k <N, in a fluid unity.

Denote by L = Ty + ... + T, the length of the above considered MAC —
unity. By a similar reasoning, by considering T; like independent random
variables which have the same distribution, one can show that the characteristic
function L (w) of L satisfies the functional relation

L(w) = S -1 L()).T(), (14)

where S; is the total number of idle slots in that MAC — unity, under the
hypothesis that the number of transmission attempts is Poisson distributed with a
parameter 4 >0 .

Putu= 4 -1L(w), hence L(w) = S(u(w )).T(® ); by derivating two
times with respect to @ , one obtain:
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a _ L ar
E = E St(u(a)))( A do )Tz(a)) + St(u(a))) do and
eL_du (SE) wy -1 2 L
T g S04 ) T(@) ~ 4= Su(@)). T T(w)
d dL dT d dL . dT
- A a St(U(CO )) aa + a St(u(a) )) (—7\. g)g +
Si(w(w)). ja)]; .

2

PutZ = di Si(u(w)) |w:0 and W = d
u

v Si(u(w)) |m:0 . By making @ =
0 in the above relations and keeping into account that for any random variable X,
one has X(w ) |w:0 =1, vi(X) = j.%X(a)) |w=0 and v (X) = -
X
dew’

woo »ONC gets :
vilLy=Z(-Avi(4)).1+1. v{(T)and
vaL) == W.AL(vi(L) =1 .Z. vo(L)+ 1 Z. 1 vi(L). 1 vi(T)+Z+
J j
2.2t v+ v,
j J

whence (1 +A4Z). vi(L)= v (T)and
(1+22Z). vy(L)==W.A2(vi(L))* =21 .Z. vi(L). v(T) + vo(T) .Thus, we have
proved :

PROPOSITION 4.

The mean and the variance of the length of a MAC — unity are given by :

T
1+4Z

L= ; (15)

—2

2
.VarT - L3
1+17Z 1+12)
These relations can be interpreted in terms of the physical reality.

Var L = (1+W+2%. (16)
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