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EXISTENCE OF SOLUTIONS FOR RANDOM FUNCTIONAL-
DIFFERENTIAL INCLUSIONS 

Carmina GEORGESCU1 

În această lucrare studiem existenţa soluţiilor pentru incluziuni diferenţiale 
funcţionale aleatoare definite de multifuncţii cu valori convexe în spaţii Banach 
separabile. Utilizăm  teoreme de existenţă a soluţiilor în cazul determinist precum şi 
rezultate din analiza multivocă  privind  existenţa selecţiilor măsurabile.  

 
This paper is devoted to the study of functional-differential inclusions with 

memory defined on a separable Banach space and depending in a measurable way 
on a random parameter. Two existence theorems are obtained through the use of 
analogous deterministic results and techniques from the theory of measurable 
multifunctions.  
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1. Introduction 

There are two typical methods in proving the existence of random 
solutions of differential inclusions; in the first one, the measurability of solutions 
with respect to a random parameter is proved step by step ([7], [8]), in the second 
one, random fixed point theorems are used ([10]). For other results on random 
differential inclusions we refer to [3].  

In the case of random functional-differential inclusions, conditions for the 
existence of random viable solutions were obtained by Rybinski in [12]. The 
method proposed in this paper is based on a random fixed point principle for 
multivalued mappings which has appeared in the proofs of main theorems in 
Engl’s paper ([4]).  In [12] it is shown how the problem of the existence of a 
random solution may be reduced to the related deterministic problem; it is an 
indirect approach in which measurable selections are chosen “beyond” the 
differential problem. 
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The aim of the present paper is to establish the existence of solutions for 
random functional-differential inclusions with memory governed by convex 
valued orientor fields which take values in a separable Banach space. In 
distinction to Rybinski’s approach, our work is based on a direct “measurable 
selections approach” which seems to be most natural and powerful in every 
concrete situation. In this way our result may be interpreted, on one hand, as an 
extension of the results in [7], [8] and [10] to the case of functional-differential 
inclusions and, on the other hand, as an extension to the random case of the 
corresponding  deterministic result in [5]  and [11]. 

The paper is organized as follows: definitions, notations and basic results 
are given in the next section and the main results are presented in Section 3. 

2. Notations and preliminary results  

Throughout this paper X  is a separable Banach space whose norm is 
denoted by .  and P )(X  will stand for the set of all subsets of X . If XA ⊂ , by 

)(Acl  and Aco  we mean the closure and the closed convex hull of A , 
respectively. If  Xx∈ , the distance from the point x  to the set A  will be denoted 
by ),( Axd . For any ∈BA, P )(X , the Hausdorff distance between A  and B  is 
defined as  

)},(sup),,(supmax{:),( AbdBadBAd
BbAa

H
∈∈

= .  

For a A X∈ ⊆ , the contingent cone (or Bouligand cone) to A  at a is 
defined by 

0

( , ): lim 0a
d a x AK A x X

λ

λ
λ

+

→ +

+⎧ ⎫= ∈ =⎨ ⎬
⎩ ⎭

 

It is easy to see that this cone is closed, but in general it is not convex. However 
when A is convex, aK A+  is convex too and coincides with another very useful 
cone introduced by Clarke ([1]). 
If ∗X  is the topological dual of X  and XA ⊂ , by (.)Aσ  we denote the support 
function of A , i.e. 〉〈= ∗

∈
∗ axx AaA ,sup)(σ . If I  is a real interval, let ),( XIC  be 

the Banach space consisting of all continuous functions XIx →:(.)  with the 
norm }:)(sup{(.) Ittxx ∈=

∞
. Similarly, ),( XIAC  will denote the space of 

absolutely continuous functions from I  to X . By ),(1 XIL  we mean the Banach 
space of  measurable functions XIy →:(.)  which are Lebesgue integrable, 
endowed with norm ∫= I

dttyy )((.)
1

.  
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Let ),,( μΣΩ  be a σ -finite measure space (not necessarily complete) and 
),(1 XL Ω  be the space of integrable functions Xf →Ω:(.)  equipped with the 

norm ∫Ω= )(((.)
1

ωμω dff . For any topological space S , the script ( )B S  will 

stand for the σ -field of Borel subsets of  S . 
 

Recall that a function XXf →×Ω:(.,.)  is said to be Caratheodory if 
),( xf ωω →  is measurable for any Xx∈  and ),( xfx ω→  is continuous for any 

Ω∈ω . In what follows we will need the following result. 
 
Theorem 2.1. ([6])  Let ),,( μΣΩ  be a σ -finite measure space, Y a locally 
compact separable metric space and Z  a metric space. Then ZYf →×Ω:  is a 
Caratheodory function if and only if  ,.)(:)(.)( ωωω fg =→  is measurable as a 
mapping from Ω  to the space ),( ZYC  endowed with the compact-open topology. 
 
By a Kamke function we mean a function ×],[:(.,.) 0 Ttw R + →R +  satisfying the 

Caratheodory conditions (i.e. ,.)(twt →  measurable and )(., xwx →  continuous),  

)(),( txtw ϕ≤  a.e. ],[ 0 Tt  with ,((.) 1 IL∈ϕ R )+ , 0)0,( =tw  a.e. ],[ 0 Tt  and 

0)( ≡tu is the only solution of the problem  

∫≤
t

t

dssuswtu
0

,))(,()(  0)( 0 =tu . 

 
Definition 2.2. Let →Ω:(.)F P )(X  with nonempty, closed values. (.)F  is said 
to be (weakly) measurable if any of the following equivalent conditions holds:   

i) for any open subset XU ⊆ ,  ≠∩Ω∈ UF )(:{ ωω ∅ Σ∈} ; 
ii) for all Xx∈ , ))(,( ωω Fxd→  is measurable. 

If, in addition, μ  is complete, then the statements i) and ii) above are equivalent 
to any of the following ones 

iii) Graph )()}(:),{(:(.))( XBFxXxF ⊗Σ∈∈×Ω∈= ωω  (graph measurabi-
lity); 

iv) for any closed subset XC ⊆ , ≠∩Ω∈ CF )(:{ ωω ∅} (strong measurabi-
lity). 
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For a measurable multifunction →Ω:(.)F P )(X  we denote by FS  the set of 
Bochner integrable selections of (.)F , 

)()(:),((.){ 1 ωω FfXLfSF ∈Ω∈=  a.e. on  }.Ω  
As one can easily see, the above set is nonempty and closed if and only if 

,(inf 1
)( Ω∈→ ∈ LzFz ωω R )+ . Obviously, if (.)F  is integrably bounded in the 

sense that there exists ,((.) 1 Ω∈ Lr R )+  such that 

),(ωrz ≤  ,),( Ω∈∀∈∀ ωωFz  

then  ≠FS ∅. For other properties of measurable multifunctions we refer to [2] 
 

Definition 2.3. Let Y  be a topological space, Z  a metric space and 
→YF :(.) P )(Z  be a multifunction with nonempty, closed values. (.)F  is said to 

be Hausdorff continuous at Yy ∈0  if for any 0>ε  there exists XU ⊂  open, 
Uy ∈  such that 

,))(),(( 0 ε<yFyFd H  Uy∈∀ . 
We say that (.)F  is Hausdorff continuous on Y  if it is so at every Yy ∈0 . 

 
Definition 2.4. Let P )(Xb  be the family of bounded subsets of X . The 

Kuratowski measure of noncompactness :α P →)(Xb R +  is defined by  

BrB :0inf{)( >=α admits a finite cover by sets of diameter }r≤ , 

while the Hausdorff (ball) measure of noncompactness :β P →)(Xb R +  is 

defined by 
BrB :0inf{)( >=β admits a finite cover by balls of radius }r . 

It is easy to see that these measures are related by 
)(2)()( BBB βαβ ≤≤  ∈∀B P )(Xb , 

hence they are equivalent. 
 

 Let ],[ 0 TtI =  be a real interval and 00 tT −<Δ< . Consider the 
following functional-differential inclusion with nonconvex valued orientor field 

(.,.)F  
 (.)),()(' txtFtx ∈  a.e. )(I ,  (1) 
 ,(.)

],[ 0
Mx

tt
∈

Δ−
 (2) 
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where →Δ−× )],,([:(.,.) 00 XttCIF P )(X  is a given set-valued map, M  is a 
nonempty compact subset of )],,([ 00 XttC Δ−  and for all It∈ , 

Xttxt →Δ− ],[: 00  is a continuous function defined by 0( ) ( )tx s x t s t= + − . 
Hence (.)tx  describes the history of the state from time Δ−t  up to the present 
time t . 

A solution of the problem (1)-(2) is a continuous function 
XTtx →Δ− ],[:(.) 0  such that ),((.) XIACx

I
∈ ,  Mx

tt
∈

Δ− ],[ 00
(.)  and the 

inclusion (1) holds a.e. on I . 
 
Hypothesis 2.5. i) →Δ−× )],,([:(.,.) 00 XttCIF P )(X  has nonempty compact 
values and is graph measurable; 

ii) for every It∈ , ),( ytFy →  is lower semi-continuous (l.s.c.); 

iii) there exist ,((.)(.), 1 ILba ∈ R )+  such that for almost all It∈  and 

)],,([(.) 00 XttCx Δ−∈ , )((.))( tbxtaz +≤
∞

 for all ),( xtFz∈ ; 

iv) there exists a Kamke function ×Iw :(.,.) R →+ R +  such that for all 

0 0([ , ], )B C t t X⊂ −Δ  bounded and nonempty we have  
 ))(,()),((2 BtwBtF ββ ≤ a.e. )(I , 

where (.)β  is the Hausdorff measure of noncompactness from Defi-
nition 2.4. 

 
 
An important tool in proving our main results is the following existence 

theorem which is due to Papageorgiou.  
 
Theorem 2.6. ([10]) Let )],,([ 00 XttCM Δ−⊂  be a given compact family of 
continuous functions and assume that ( )0 0(.,.) : ([ , ], )F I C t t X X× −Δ → P�  
satisfies Hypothesis 2.5. Then the problem (1)-(2) admits a solution. 

 
 
The problem that we will consider in the next theorem is the following 
 '( ) ( , (.))tx t F t x∈  (3) 

( ) ( ),     x t U t t I∈ ∀ ∈  (4) 

0 0[ , ]
(.) (.)

t t
x y

−Δ
= , (5) 
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where →Δ−× )],,([:(.,.) 00 XttCIF P )(X , →IU :(.) P )(X  are two given set-
valued maps and )],,([(.) 00 XttCy Δ−∈  satisfies 0 0( ) ( )y t U t∈ .   
Set 0 0 0 0{( , (.)) ([ , ], ) : ( ) ( )}t I C t t X t U tφ φΛ = ∈ × −Δ ∈  and note that 0( , (.))t y ∈Λ . 
For any ( , ) Graph (.)t x U∈ , we define 

 ( , ) ( , )Graph( (.)) { : (1, ) Graph( (.))}.t x t xT U y X y K U+= ∈ ∈  

 

Hypothesis 2.7. i) →Δ−× )],,([:(.,.) 00 XttCIF P )(X  has nonempty compact 
convex values and is jointly measurable; 

ii) for every It∈ , ),( ytFy →  is upper semi-continuous (u.s.c.) from 

0 0([ , ], )C t t X−Δ  endowed with the norm .
∞

 to the space X  with the 
weak topology; 

iii) there exist ,((.) 1 ILa ∈ R )+  and a subset J I⊂  with ( \ ) 0I Jμ =  such 

that for all 0 0( , (.)) ( ([ , ], ))t J C t t Xφ ∈Λ∩ × −Δ  one has   
 0( )(1 ( ) ),    ( , (.))z a t t z F tφ φ≤ + ∀ ∈  

 
0( , ( ))( , (.)) Graph (.)t tF t T Uφφ ∩ ≠ ∅ . 

iv) (.) : ( )U I X→ P  is upper semi continuous (u.s.c), with nonempty 
compact values. 

 
 
In proving the existence of random viable solutions in the next section, we 

need to have the analogous deterministic result obtained by Gavioli and Malaguti 
in [5].  

 
Theorem 2.8. ([5])  Assume that (.,.) : ( )F XΛ→ P  and (.) : ( )U I X→ P  satisfy 
Hypothesis 2.6. Then the problem (3)-(5) admits a solution. 

 
 

The following result will be also useful. 
 

Theorem 2.9. ([9]) Let →Ω:(.)F P )(X  be an integrably bounded set-valued 
map with weakly compact (w-compact) and convex values. Then FS  is 
nonempty, convex, w-compact with respect to the norm 

1
.  of ),(1 XL Ω . 
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3. Main results  

Consider the following Cauchy problem concerning random functional-
differential inclusions of the form 

 ,.))(,,(),( ωωω txtFtx
dt
d

∈  a.e. )(I , (6) 

0 0[ , ]
( ,.) ( ),

t t
x Gω ω

−Δ
∈   (7) 

where 
 0 0(.,.,.) : ([ , ], ) ( )F I C t t X XΩ× × −Δ → P  and 0 0(.,.) : ( ([ , ], ))G C t t XΩ→ −ΔP  
are two given set-valued maps and for all It∈  and Ω∈ω , 

Xttxt →Δ− ],[:,.)( 00ω  is a continuous function defined by 
),(),( 0tstxsxt −+= ωω .  

Before stating and proving our main result we give the definition of a solution to 
the above problem.  
 
Definition 3.1. A solution to the random functional-differential inclusions (6)-(7) 
is a stochastic process XTtx →Δ−×Ω ],[:(.,.) 0  with continuous paths (i.e., for 
all ],[ 0 Ttt Δ−∈ , )(., tx  is measurable and for all Ω∈ω , 

))],,([,.)( 0 XTtCx Δ−∈ω  such that ),(,.)( XIACx
I
∈ω  for every Ω∈ω  and 

inclusions (6)-(7) are verified for almost all Ω∈ω . 
 
Hypothesis 3.2.  i) →Δ−××Ω )],,([:(.,.,.) 00 XttCIF P )(X  has nonempty, 
compact convex values and is jointly measurable; 

ii) for all It ×Ω∈),(ω , the set-valued map ,.),( tF ω  is Hausdorff 
continuous; 

iii) there exist (.,.),a  →×Ω Ib :(.,.) R +  such that for all Ω∈ω , ,.),(ωa  

,(,.)( 1 ILb ∈ω R )+  and for all (.)),,.( xtFz ω∈ , 
∞

≤ (.)),( xtaz ω  

),( tb ω+  a.e. )(I  and Ω∈∀ω , )],,([(.) 00 XttCx Δ−∈ ; 

iv) there exists a Kamke function ××Ω Iw :(.,.,.) R →+ R +  such that 

,.),(),( twt ωω →  is jointly measurable and for all 

0 0([ , ], )B C t t X⊂ −Δ  bounded one has 
 2 ( ( , , )) ( , , ( ))   a.e. ( ),    F t B w t B Iβ ω ω β ω≤ ∀ ∈Ω  

where (.)β   is the Hausdorff measure of noncompactness; 
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v) 0 0(.) : ( ([ , ], ))G C t t XΩ→ −ΔP  has nonempty, compact convex values 
and is measurable.  

 
Theorem 3.3. Assume that 0 0(.,.,.) : ([ , ], ) ( )F I C t t X XΩ× × −Δ → P  and 

)],,([:(.) 00 XttCG Δ−→Ω  fulfill the assumptions of Hypothesis 3.2. Then the 
Cauchy problem (6)-(7) admits a solution. 

 
Proof. Consider the set-valued map →Ω:(.)R P ))],,([ 0 XTt Δ−  defined 

by  
 (.)),,()(':)],,([(.){)( 00 txtFtxXttCxR ωω ∈Δ−∈=  a.e. )(I , 

)}((.)
],[ 00

ωGx
tt
∈

Δ−
. 

We are going to prove that (.)R  has measurable graph. By assumption, (.,.,.)F  
has nonempty, compact convex values, so letting 

∫+∈Δ−∈=
'

01 (.)),,()'()(:)],,([(.){)(
t

t r drxrFtxtxXTtCxR ωω  for all }', Itt ∈ , 

)},((.):)],,([(.){)(
],[02

0
ωω GxXTtCxR

tt
∈Δ−∈=

Δ−
 

we have )()()( 21 ωωω RRR ∩= . From Theorem 2.6 we obtain that for all Ω∈ω , 
≠)(ωR ∅ and with a same reasoning as in the proof of Theorem 3.1 in [9], we 

claim that it is closed. By Theorem 2.9, for all Ω∈ω , ∫
'

(.)),,(
t

t r drxrF ω  is a w-

compact and convex subset of X, hence ∫+
'

(.)),,()'(
t

t r drxrFtx ω  is closed and 

convex.. Thus we can write 
0)(.)),,()'(),((:)],,([(.){)(

'

01 =+Δ−∈= ∫
t

t r drxrFtxtxdXTtCxR ωω  

for all }', Itt ∈ . 

Set ⎟
⎠
⎞⎜

⎝
⎛ += ∫

'
(.)),,()'(),(:(.)),',,(

t

t r drxrFtxtxdxtt ωωφ . For all ∗∗ ∈ Xx  one has 

)()'(,)( ''
(.)),,((.)),,()'(

∗∗∗

+ ∫
+=

∫
xtxxx t

t r
t

t r drxrFdrxrFtx ωω
σσ  

∫ ∗∗ +=
'

(.)),,( )()'(,
t

t xrF drxtxx
rωσ . 

Notice that )(),( (.)),,(
∗→ xr

rxrF ωσω  is measurable and for all Ω∈ω , 

,()( 1
(.)),.,( .

ILxxF ∈∗
ωσ R ) . Hence we deduce that ∫ ∗→

'

(.)),,( )(
t

t xrF drx
rωσω  is 

measurable which in turn implies that )('
(.)),,()'(

∗

+∫
→ xt

t r drxrFtx ω
σω  is measurable.  
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Applying Theorem III.37 of Castaing & Valadier ([2]) we deduce that the 
set-valued map ∫+→ ' (.)),,()'( t

t r drxrFtx ωω  is Σ̂ -measurable for all Itt ∈', , 

where Σ̂  is the completion of Σ  with respect to (.)μ .  
Next we prove that for all Ω∈ω , (.)),',,((.)),',( xttxtt ωφ→  is continuous from 

)],,([ 0 XTtCII Δ−××  to R + . For this purpose, let (.)),',((.)),',( xttxtt
n

nnn

∞→
→ . 

We have  
(.)),',,((.)),',,( xttxtt nnn ωφωφ −  

⎟
⎠
⎞⎜

⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ += ∫∫

''
(.)),,()'(),((.)),,()'(),(

t

t r

t

t

n
r

nnn drxrFtxtxddrxrFtxtxd
n

n
ωω

⎟
⎠
⎞

⎜
⎝
⎛ +++−≤ ∫∫

''
(.)),,()'(,(.)),,()'()()(

t

t r

t

t

n
r

nn
H

n drxrFtxdrxrFtxdtxtx
n

n
ωω  

)'()'()()( txtxtxtx nnn −+−≤  

( )∫ ∫+
I I rtt

n
rttH drxrFrdrxrFrd nn (.)),,()(,(.)),,()( ]',[]',[ ωχωχ  

)'()'()()( txtxtxtx nnn −+−≤  

( )[ , '][ , ' ]
( ) ( , , (.)), ( ) ( , , (.))n n

n n
H r t t rt tI

d r F r x r F r xχ ω χ ω⎡+ ⎣∫  

( )[ , '] [ , ']( ) ( , , (.)), ( ) ( , , (.))n
H t t r t t rd r F r x r F r x drχ ω χ ω ⎤+ ⎦  

( )[ , '][ , ' ]
( ) ( ) ( ' ) ( ') ( ) ( ) {0}, ( , , (.))n n

n n n n
t t H rt tI

x t x t x t x t r r d F r xχ χ ω⎡= − + − + −⎣∫  

( )[ , '] ( ) ( , , (.)), ( , , (.))n
t t H r rr d F r x F r x drχ ω ω ⎤+ ⎦ . 

But ( )XTtCx n ],,[(.) 0 Δ−⊂ , hence for all Ir ∈  there exists 
∞≥

= (.)sup:)(
1

n
r

n
xrM .  

Let us define ),()(),(:),( rbrMrar ωωωψ += . From condition iii) in the 
Hypo-thesis 3.2 we obtain for all (.)),,( n

rxrFz ω∈ : 
),( rz ωψ≤  a.e. on I×Ω . 

This leads us to the following  
(.)),',,((.)),',,( xttxtt nnn ωφωφ −  

∫ −+−+−≤
I tttt

nnn drrrrtxtxtxtx nn ),()()()'()'()()( ]',[]',[ ωψχχ  

( )drxrFxrFdr
I r

n
rHtt∫+ (.)),,((.)),,,()(]',[ ωωχ .  

Passing to the limit as ∞→n  we get  

∫ →−
I tttt drrrrnn 0),()()( ]',[]',[ ωψχχ  



Carmina Georgescu 36

and, because ,.),( tF ω  is Hausdorff continuous, 
( ) 0(.)),,((.)),,,()(]',[ →∫ drxrFxrFdr

I r
n
rHtt ωωχ . 

Finally, we obtain  
0(.)),',,((.)),',,(lim =−

∞→
xttxtt nnn

n
ωφωφ  

hence (.)),',,((.)),',( xttxtt ωφ→  is continuous. Thus we deduce that (.,.,.,.)φ  is 
))],,([()()(ˆ

0 XTtCBIBIB Δ−×××Σ - measurable. Let ID ⊂  be a dense subset 
of I  and let us define )],,([:(.,.) 0 XTtCf Δ−×Ω , 
 (.)),',,(sup(.)),( ', xttxf Dtt ωφω ∈= . 

Then (.)),((.)),( xfx ωω →  is ))],,([(ˆ
0 XTtCB Δ−×Σ -measurable. Note that  

}0(.)),(:)],,([(.){)( 01 =Δ−∈= xfXTtCxR ωω , 

which implies that ))(( 1 ωRGraph  is ))],,([(ˆ
0 XTtCB Δ−×Σ -measurable. On the 

other hand, it is clear that the function 
)],,([)],,([:(.,.) 000 XttCXTtCg Δ−→Δ−×Ω , 

],[ 00
(.)(.)),(

tt
xxg

Δ−
=ω  is conti-

nuous with respect to the topology induced by sup-norm 
∞

. . From Lemma 6 in 

[4], it follows that ))((.)),,(((.)),( ωωω Gxgdx →  is ))],,([(ˆ
0 XTtCB Δ−×Σ -

measurable and thus (.)2R  has also measurable graph. Finally, (.)R  has 
measurable graph. Apply Aumann’s selection theorem ([6, Theorem 5.2]) to find 
a Σ̂ - measurable selection )],,([:(.)ˆ 0 XTtCr Δ−→Ω  such that for all Ω∈ω , 

)()(ˆ ωω Rr ∈ . Let )],,([:(.) 0 XTtCr Δ−→Ω  be Σ -measurable such that 
)(.)(ˆ)(.)( ωω rr =  for almost all Ω∈ω . Set  

),)((),( trtx ωω =  ],[),( 0 Ttt Δ−×Ω∈∀ ω . 
By Theorem 2.1 and from the definition of  (.)R , we conclude  that (.,.)x  is a 
stochastic process which solves the Cauchy problem (6)-(7). 


 
Remark 3.4. Several remarks are in order. 

i) When there is no memory, i.e. 0=Δ  and 
)),(,,(,.))(,,( 1 txtFxtF t ωωωω =   Theorem 3.3 above yields Theorem 

3.1. in [7] (see also [3] and [10, Theorem 4.1]). 
ii) If  (.,.,.)F  and (.)G  are constant with respect to the random parameter 

Ω∈ω  in the sense that 1( , , ( ,.)) ( , (.))t tF t x F t xω ω =  and 
)],,([)( 00 XttCMG Δ−⊂=ω , then Theorem 3.3 yields Theorem 2.6 

proved by Papageorgiou in [11]. 



Existence of solutions for random functional-differential inclusions 37

Next we pass to the study of random functional-differential inclusions with 
state constraints of the form  

( , ) ( , , ( ,.))  a.e. ( ),t
d x t F t x I
dt

ω ω ω∈  (8) 

( , ) ,   ( , ) ,x t U t Iω ω∈ ∀ ∈Ω×  (9) 

0 0[ , ]
( ,.) ( ,.)  a.e. ( ),

t t
x yω ω

−Δ
= Ω  (10) 

where 0 0(.,.,.) : ([ , ], ) ( )F I C t t X XΩ× × −Δ → P , U X⊂ is a nonempty set and 
(.,.) :y I XΩ× →  is measurable such that 0 0( ,.) ([ , ], )y C t t Xω ∈ −Δ  and 

0( , ) ,y t Uω ∈  Ω∈∀ω . 
 The existence of solutions to the above problem  leads us to what is known in 
applied mathematics as “viability theory”. More precisely, we are trying to select 
trajectories which are “viable”, in the sense that they always satisfy the constraints 
in (9).  

We define the sets 0 0 0 0 0 0([ , ], ) : { (.) ([ , ], ) :  ( ) }C t t X C t t X t Uφ φ− Δ = ∈ −Δ ∈  and 

0 0 0 0 0([ , ], ) : { (.) ([ , ], ) :  (.) ([ , ], ), }U tC t T X C t T X C t t X t Iφ φ−Δ = ∈ −Δ ∈ −Δ ∀ ∈ . 

Hypothesis 3.5.   i) →Δ−××Ω )],,([:(.,.,.) 00 XttCIF P )(X  has nonempty, 
compact convex values and is jointly measurable; 

ii) for all It ×Ω∈),(ω , the set-valued map ,.),( tF ω  is Hausdorff 
continuous; 

iii) there exists (.,.) :a I XΩ× →  measurable with ,(,.)( 1 ILa ∈ω R )+  for 

all ω∈Ω  and a subset J I⊂  with ( \ ) 0I Jμ =  such that for all 

0 0 0( , , (.)) ([ , ], )t J C t t Xω φ ∈Λ× × −Δ  one has   
 0( , )(1 ( ) ),    ( , , (.))z a t t z F tω φ ω φ≤ + ∀ ∈  

0

+
( )( , , (.))   a.e.( )tF t K Uφω φ ∩ ≠ ∅ Ω . 

 
Theorem 3.6. Assume that 0 0 0(.,.,.) : ([ , ], ) ( )F I C t t X XΩ× × −Δ → P  fulfills  the 
assumptions in Hypothesis 3.5. Then the Cauchy problem (8)-(10) admits a viable 
trajectory. 
 

Proof.  As in the proof of Theorem 3.3 we consider the set-valued map 
→Ω:(.)R P ))],,[( 0 XTtCU Δ−  defined by  
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 (.)),,()(':)],,([(.){)( 0 tU xtFtxXTtCxR ωω ∈Δ−∈=  a.e. )(I , 
,.)}((.)

],[ 00
ωyx

tt
=

Δ−
. 

We prove that (.)R  has measurable graph. Letting  

∫+∈Δ−∈=
'

01 (.)),,()'()(:)],,([(.){)(
t

t rU drxrFtxtxXTtCxR ωω  for all }', Itt ∈ , 

,.)},((.):)],,([(.){)(
],[02

0
ωω yxXTtCxR

tt
=Δ−∈=

Δ−
 

we have )()()( 21 ωωω RRR ∩= . From Theorem 2.8 we obtain that for all Ω∈ω , 
≠)(ωR ∅ and with a same reasoning as in the proof of Theorem 3.1 in [9], we 

claim that it is closed. As before we can write 

0)(.)),,()'(),((:)],,([(.){)(
'

01 =+Δ−∈= ∫
t

t rU drxrFtxtxdXTtCxR ωω  

for all }', Itt ∈ . 

Consider the multifunction ∫+=Φ
'

(.)),,()'(:(.)),',,(
t

t r drxrFtxxtt ωω . Working  

with the support function and using similar arguments as in the proof of Theorem 
3.3 we can state that ( , , ', (.))t t xω ω→Φ  is Σ̂ -measurable. Now we show that 

,.,.,.)(ωΦ  is Hausdorff continuous. Let (.)),',((.)),',( xttxtt
n

nnn

∞→
→  and  

: ([ , ' ] \ [ , ']) ([ , '] \ [ , ' ])n n n n
nI t t t t t t t t= ∪ ; Using Hörmander’s formula we have the 

following estimations 
 

( ( , , ' , (.)), ( , , ', (.)))n n n
Hd t t x t t xω ωΦ Φ  

 
' '

( , , (.))( , , (.))
* 1

sup ( *) ( *) ( ' ) ( ')
n

nn rr

t t n n
F r xF r xt tx

x dr x dr x t x tωω
σ σ

≤
≤ − + −∫ ∫  

' '

( , , (.)) ( , , (.))
* 1

sup ( *) ( *)
n

n nn r r

t t

F r x F r xt tx
x dr x dr

ω ω
σ σ

≤

⎡≤ −⎢⎣ ∫ ∫  

 
' '

( , , (.))( , , (.))
( *) ( *) ( ' ) ( ')n rr

t t n n
F r xF r xt t

x dr x dr x t x tωω
σ σ ⎤+ − + −⎥⎦∫ ∫  

( , , (.))
* 1

sup | ( *) |n
rn

F r xIx
x dr

ω
σ

≤
≤ ∫  

 
'

( , , (.))( , , (.))
* 1

sup | ( *) ( *) | ( ' ) ( ') .n rr

t n n
F r xF r xtx

x x dr x t x tωω
σ σ

≤
+ − + −∫  

Set 1( , ) sup ({0}, ( , , (.)))n
n H rh r d F r xω ω≥= . We note that (.,.)h  is measurable and 

for  all 1,  ( ,.) ( , )h L Iω ω +∈Ω ∈ R . Hence we get that  
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( ( , , ' , (.)), ( , , ', (.)))n n n
Hd t t x t t xω ωΦ Φ  

 
'

( , ) ( ( , , (.)), ( , , (.))) ( ' ) ( ') .
n

t n n n
H r rI t

h r dr d F r x F r x dr x t x tω ω ω≤ + + −∫ ∫  

Passing to the limit as n →∞  we get that ,.,.,.)(ωΦ  is Hausdorff continuous, 
ω∀ ∈Ω . We put ( , , ', (.)) ( ( ), ( , , ', (.)))t t x d x t t t xφ ω ω= Φ  and we note that the 

function ( , ', (.)) ( , , ', (.))t t x t t xφ ω→  is continuous. Note that 1(.)R  may be written 
in the form 

 { }1 0
1

( ) (.) ([ , ], ) :  ( , , ' , (.)) 0 ,n n
U

n
R x C t T X t t xω φ ω

≥
= ∈ −Δ =∩  

which  implies that 1(.)R has measurable graph. We note also that 2 (.)R  has 

measurable graph. We conclude that Graph( (.))R  is 0
ˆ ( ([ , ], ))UB C t T XΣ⊗ −Δ −  

measurable. Now the existence of the desired random viable trajectory can be 
obtained in a same manner as in the proceding theorem. 

 
 
Remark 3.7.   Several remarks are in order. 

i) If U X= , the existence of random viable solutions reduces to the 
problem of existence of solutions to (6)-(7), hence the above theorem 
yields Theorem 3.3.   

ii) When there is no memory, i.e. 0=Δ  and 
)),(,,(,.))(,,( 1 txtFxtF t ωωωω = , Theorem 3.6 yields Theorem 3.3. in 

[7]. 
iii) If  (.,.,.)F  and (,..)y  are constant with respect to the random 

parameter Ω∈ω  in the sense that 1( , , ( ,.)) ( , (.))t tF t x F t xω ω =  and 
)],,([(.),.)( 001 XttCyy Δ−∈=ω , then Theorem 3.6 yields Theorem 

4.1 proved by Gavioli and Malaguti in [5]. 
 

 3. Conclusions 

In this paper we extended the works of Kandilakis and Papageorgiou ([7], 
[10]) concerning random differential inclusions. Namely, it is about two existence 
theorems obtained for random functional-differential inclusions with memory on 
infinite separable Banach space. Within the family of functional-differential 
inclusions, our results may be interpreted as extensions to the random case, of the 
deterministic existence theorems of Gavioli, Malaguti ([5]) and Papageorgiou 
([11]). 
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