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NON-DOMINATED SORTING GENETIC OPTIMISATION
FOR CHARGING SCHEDULING OF ELECTRICAL
VEHICLES WITH TIME AND COST AWARENESS

Husam Mahdi AL-ALWASH !, Eugen BORCOCI ?

The usage of electric vehicles (EVs) is a growing trend, but limited charging
stations (CSs) and the fear of charge running out hinder confidence in relying on EVs.
Optimal scheduling algorithms are needed to optimise EVs charging objectives. This
paper proposes using a bi-non-dominated sorting genetic algorithm (NSGA-II) to
optimise charging cost and service time jointly. NSGA-1I outperforms traditional
genetic algorithms (GA) regarding diversity and domination, resolving extreme
solution issues. The proposed optimization algorithm based on NSGA-II, in principle,
could be applied to any charging system, no matter what electrical technologies (e.g.,
AC-DC, DC-DC, or both) are used.

Keywords: electric vehicles, charging scheduling, multi-objectives optimisation,
and genetic algorithms

1. Introduction

The emergence of electric vehicles (EVs) is a significant trend in the
automotive industry. EVs offer several advantages over traditional fuel vehicles,
including (reduce air pollution and gas emissions, lower operating costs, etc.) [1].
Today, many major automakers are investing heavily in EV technology to phase
out their traditional fuel vehicles entirely in the coming years [2]. With continued
investment in technology and infrastructure, the transition to EVs is only expected
to accelerate in the future [3]. EVs are seen as a sustainable transportation option
because they have the potential to use electricity generated from renewable sources
like solar or wind power. This reduces dependence on fossil fuels.

A main challenge of EVs is the range of autonomy. EVs typically have a
range of 100-300 miles on a single charge, which is considered too low for some
long-distance trips [4]. Conversely, charging stations (CSs) still need to be
improved in many areas, such as charging infrastructure coverage, charging speed
and accessibility, and range anxiety [5]. Intelligent algorithms can be a solution to
solve the charging problem for EV by optimising the charging schedule of EVs and
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minimising the waiting time at CSs [6]. Several types of scheduling algorithms are
described in [7]. For instance, a solution is to consider the real-time demand
(dynamic) for charging and the availability of CSs. This reduces EV drivers' waiting
time and ensures that the CSs are utilised efficiently. Another approach is to use
predictive scheduling that anticipates the charging demand based on historical data
and then a forecast is performed for future demand. This can help to allocate the
charging resources effectively and ensure that the CSs are available when needed.

An EV charging system can be evaluated based on several key metrics,
including charging efficiency, charging speed, availability, cost, and reliability [8].
High charging efficiency and speed can minimise the charging time and reduce
energy waste; the drivers expect high availability of CSs and low costs; high
reliability can ensure that EV drivers can rely on the charging infrastructure for
their daily needs. However, some objectives may conflict with each other, e.g.,
maximising charging speed while minimising cost [9]. Therefore, a multi-objective
optimisation problem must be solved, where the challenge is to balance the different
metrics. A multi-objective optimisation should find an optimal trade-off solution
that satisfies the problem’s constraints and objectives. However, this paper proposes
the usage of a bi-non-dominated sorting genetic algorithm (NSGA-II) for
optimising EV charging in terms of service time and charging cost. We mean by a
non-dominated set of solutions that no one is superior with respect to all objectives,
but it is superior to some and inferior to others. This study is clearly dedicated to
simulations. So, there is no hardware implementations in this paper.

The remainder of the article is organised as follows. Section 2 summarises
the state-of-the-art. Section 3 presents the methodology used in this study. The
experimental evaluation of the proposed method and results are described in Section
4. Section 5 presents the conclusion and future work.

2. Related works

The work in [10], developed the diversity-maximisation non-dominated
sorting genetic algorithm (DM-NSGA-II) to solve a multi-objectives function
(power load profile, EV charging cost, and battery charge degradation). It is based
on a flexible time scale to generate a real-time optimal schedule. It was shown that
the DM-NSGA-I11 is wider in solution space and offers various trade-off options to
decision-makers. This algorithm provides a set of solutions to the decision-maker
instead of a single one, which requires an additional selection algorithm.

The work in [11], a new model is presented that integrates multi-objective
optimisation and multi-criteria decision-making (MCDM) to determine the optimal
electric vehicle supply equipment (EVSE) configuration. This method combines
the benefits of multi-objective optimisation, which provides Pareto solutions, with
an improved MCDM model. The model evaluates the Pareto frontier and identifies
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the best solution by allowing CSs owners to use linguistic variables to weigh
decision-making factors. The proposed model enhances the conventional weighted
aggregated sum product assessment (WASPAS) method by incorporating Dombi
Bonferroni functions, making it more adaptable than other alternatives.

The work in [12], presented a multi-objective whale optimisation algorithm
(MWOA-PFLF) that incorporates particle filters and Levy Flights to minimise total
distribution costs and maximise average battery utilisation simultaneously. The use
of particle filters allows for the prediction of near-optimal solutions in each
iteration. At the same time, the combination of Levy Flights helps to escape local
optima and speed up convergence. The work in [13], proposed a solution to
minimising energy consumption and travel time for EVs based on intelligent
heuristic mechanisms, which is a multi-objective optimisation problem. A graph-
based multi-objective heuristic algorithm (MoHA) is proposed to obtain the desired
solutions quickly. MoHA ensures that EVs are always routed through a path that
minimises energy consumption and total travel time.

The work in [14], proposed a multi-objective optimisation model for the
design problem of urban electric transit networks. This model simultaneously
determines the transit routes, service frequency, and charging depot locations while
minimising costs for passengers and operators. Constraints regarding bus routes,
charging depots, vehicle operation, and charging schedules are considered to ensure
the feasibility of the electric transit network's design and operation. The solution
approach is based on a Pareto artificial fish swarm algorithm (PAFSA), which
utilises crossover and mutation operators.

The work in [15], the charging optimisation model considered various
charging options such as peak demand of depot charging, time-of-use (TOU) tariffs,
partial recharging, waiting times, and characteristics of public stations. TOU tariffs
is a pricing mechanism used to charge customers with different rates for electricity
based on the time of day or day of the week. The authors break down the electric
vehicle routing problem with time window constraint (EVRP-TW) and optimal
charging problem into sub-problems. The overall optimal solution is achieved by
solving all the sub-problems hierarchically. The developed optimisation algorithm
(DOA) utilises ant colony optimisation (ACO) and grey wolf optimisation (GWO)
algorithms in addition to the CPLEX solver, which is used for solving the
optimisation problem by the simplex algorithm.

The work in [16], examined the practical use of fast-charging and slow-
charging modes at CSs for EVs. A dynamic speed control for EVs is implemented
to alleviate CS congestion and reduce waiting times. The system scalability,
including various electric vehicle charging station (EVCS) solutions, is also
explored. To solve the EVCS problem, the authors proposed a hybrid approach that
combines particle swarm optimisation (PSO) and the firefly algorithm (FFA) with
a Levy Flights search strategy.
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The work in [17], the grey sail fish optimisation (GSFO) algorithm is
proposed for optimal charging scheduling. This algorithm integrates the GWO and
sail fish optimisation (SFO) techniques to determine the EV demand when charging
and compute the path decision factor for each EV's travel to the CS. Meanwhile,
the work in [18], solved an individual EV routing problem using a multi-objective
optimisation approach to minimise the total trip time and cumulative charging cost.
The problem formulation considered real-world elements such as traffic at CSs,
detour distances to reach the station, and variable electricity costs. A genetic
algorithm (GA) and PSO were employed to obtain the most optimal route.

Overall, it is found that the literature has used different formulations and
proposed various algorithms for solving the problem of charging electric vehicles
(CEVs) using meta-heuristic-based searching algorithms such as PAFSA, PSO,
FFA, GWO, ACO, and others. Some have included the travelling cost, waiting time,
charging cost and other criteria. Furthermore, multi-objective optimisation is
effective due to its capability of handling self-confliction caused by the multi-
objective nature of the problem. However, the issue of exploration and exploitation
balancing is still an open issue and should be studied. To handle it, we propose the
usage of the NSGA-II for solving this problem. This algorithm behaves with
exploration and exploitation balancing by integrating non-dominated sorting and
crowding distance, i.e., the distance between one solution and an adjacent one in
the Pareto front. The Pareto front is a set of non-dominated solutions generated by
multi-objective optimisation.

3. Methodology
This section presents our proposal for solving the CEVs problem.
3.1. System high-level architecture

In this study, the optimisation algorithm NSGA-II for EV charging schedule
is considered to act in a centralised scheme. The system architecture includes EVs,
CSs, and a central control unit (CCU), all interconnected through vehicle-to-
infrastructure (V21) communication (e.g., see Fig. 1).

1. EVs: communicate their charging requirements to the CCU, such as the
current state of the charge (SOC), EV battery capacity, charging mode, and
current location of the vehicle.

2. CSs: they inform the CCU about their locations, capacities (number of
charging points), availability status, and pricing structure. They also
continuously update any changes in their current data and pricing structure.
Additionally, the peak and off-peak pricing rates and the time frames for
each should be provided.
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3. Travel Information: travel times or distances between EVs and CSs. In this
study, we considered this information available and fed the optimisation
algorithm NSGA-II. This information can be delivered by an external
complex navigation system that accounts for different factors such as road
lengths, traffic jam, speed limits on the road, and other factors which is out
of the scope of this research.

4. CCU: it processes the information from EVs and CSs in a centralised way.
It runs the NSGA-II algorithm to optimise the scheduling of EV charging
while trying to minimise the charging cost and service time. After the
optimisation algorithm runs, the CCU communicates the charging schedule
to the involved EVs and CSs (when and where each EV should be charged).

5. V2I: it supports the EVs, CSs, and CCU communication based on different
wireless  technologies (cellular networks, dedicated short-range
communications (DSRC), or other internet of things (IoT) communication
protocols), ensuring reliable and secure message exchange.
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Fig. 1. The system architecture of charging scheduling in the centralised scheme
3.2. Problem statement

The optimisation in this system minimises the total cost (in terms of time
and price) of EVs charging while ensuring adequate service levels. The CEVs
problem has two major objectives:

Service Time: consists of three components, travelling time, waiting time,
and charging time. The service time can be reduced by minimising the waiting time
for charging, maximising the utilisation of CSs, and ensuring that the charging
process is completed within a certain time frame. It can be written as follows:

service __ mtravelling waiting charging
Tv,c - Tv,c + Tv,c + Tv,c (1)

The value of T,;*"*""™ denotes the time required for EV to travel to the
station. The EV indexed by v and CS by c. T,.**""9 = Zi%, where D; denotes

the distance of particular road segment i (the way from the current position of the
EV to the CS) and S; denotes the average speed in the i. Note that, in this study, we
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supposed the charging system operator knows all road segments followed by the
vehicle and its speed on each segment.

However, the speed values could depend highly on the traffic. Also, the EV
could stop for a while at some points of the route for whatever reasons, which will
modify the time spent travelling. Knowing all these parameters is very difficult in
a dynamic vehicular traffic context. Therefore, some simplifying assumptions are
necessary in this study. For instance, we assume the average speed for EVS is 60k/h.
The system could determine a minimal travelling time for an EV by proposing an
available and closer CS considering the current position of that vehicle.

waiting

The value of T, denotes the waiting time , required for an EV to wait

in the queue. The T/2"9 = % , where L, . denotes the queue length and A,
: > , :

denotes the arrival rates of EVs to the station. The queue length depends on A, and
the average time a vehicle spends to charge its battery. The formulas are derived
from basic queue theory for a M/M/c model [19], where the equivalent formulas:

Lq = p%/(1-p), and traffic intensity p= A/ p. The value of Tvc_ ?arg ™9 denotes the

charging time which is required for EV to complete the charging. The Ty "9 =
BSiZE(O-_BSOC(t))

02
denotes the battery SOC. 9 is the charging rate followed by charging mode o (o =
slow or fast). o denotes the expected full percentage level of the battery.

Charging Cost: refers to the expense of electricity consumed when
recharging an EV battery. The charging cost of an EV can vary based on factors
such as the energy prices, and the total amount of energy required to charge the
battery. In order to reduce the charging cost, this work uses the TOU tariffs. This
means EV owners are charged differently, depending on the time of day they charge
their vehicle. Here, the electricity price varies over time, with higher prices during
peak hours and lower prices during off-peak hours. This encourages EV owners to
charge their vehicles during off-peak hours and reduce the strain on the grid during
peak hours. The charging cost with applying TOU can be expressed as follows:

, where Bs?¢ denotes the battery full size capacity and BS°¢(t)

Porf-peak,class(i) Ev,c

Coe=| v

ppeak,class(i) Ev,c

Where C, . denotes the charging cost. E,, . is the amount of energy of the EV
requires to be charged. peiass(iy,of f-peak aNd Ppeak,ciass(i) » Fespectively, denote the
pricing rates of charging in off-peak period and peak period for CS with a class(i).
Where class(i) is the charging power rate for CS (e.g., fast, slow, regular).

In this study, the proposed algorithm operates in collective optimisation
mode. In this mode, the CCU collects charging requests from EVs over a certain
period or until a certain number of requests are received, and then it processes all
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the requests in a single run of the optimisation algorithm. This approach may lead
to more efficient use of computational resources, but it might result in slightly
outdated solutions if the system's state changes significantly during the collection
period. Hence, the collection period should be tuned. Depending on the vehicular
traffic conditions, it may change during the days of the week, during the day, etc.
Optimising the collection period value could be another topic for future study.

3.3. The propose of multi-objective optimisation

Typically, the user desires a low charging cost and a low service time, which
are conflicts. A higher cost will be associated with shorter service time, and low
cost will lead to longer service time. Hence, optimising them requires adopting one
of the meta-heuristic multi-objective optimisation algorithms. Therefore, this
research proposes the usage of NSGA-II for optimising charging scheduling [20].
As a multi-objective optimisation algorithm, NSGA-I1 identifies trade-offs between
minimising charging cost and service time by providing a set of Pareto-optimal
solutions that cater to different decision-maker preferences. The algorithm's Pareto-
based ranking converges towards the true Pareto front, ensuring optimal solutions
for the given problem. NSGA-II maintains diversity among solutions through the
crowding distance metric, ensuring a wide spread of solutions representing various
trade-offs between conflicting objectives. Its scalability, adaptability, and proven
performance across various domains make it a suitable choice for tackling the
complexities and self-conflicting nature of the CEV optimisation problem.

In this propose, NSGA-II begins by initialising a population of random
solutions P(0) to find a solution for the CEV problem. Each solution represents the
assignment of EVs at a specific CS and is determined by a set of decision variables
(e.g., travelling time, waiting time, charging time, and pricing rate) based on
formulas (1) and (2). The fitness of a solution is evaluated based on the objectives
of charging cost and service time. The objective values are calculated for each
solution to determine its fitness. This propose aims to find solutions that offer a
superior trade-off between charging cost and service time, identifying a set of non-
dominated solutions known as the Pareto front.

To generate the offspring population Q(t), the algorithm selects parent
solutions from P(t) based on their dominance rank and crowding distance.
Crossover and mutation operators are applied to the decision variables of the parent
solutions to create offspring solutions, which inherit characteristics from their
parents while also introducing diversity. The objective values of the offspring
solutions are evaluated and added to Q(t) until the desired population size (N) is
reached. At the end of each generation, the current population P(t) is replaced by
the offspring population Q(t), and the process continues until the maximum number
of generations (G) is reached. The final population P(G) contains a set of Pareto-
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optimal solutions representing various trade-offs between the conflicting cost and
service time objectives.

Algorithm — Pseudocode of optimisation CEV problem using NSGA-I1

Input: N, G, P., By,

Output: Pareto-optimal solutions

1: Initialise population P(0) of size N with random solutions

2: Evaluate the objective values of each solution in P(0)

3it<—0

4: Whilet< G do

5: Perform non-dominated sorting on P(t) to rank solutions based on dominance
6: Calculate the crowding distance for each solution in P(t)

7: Create an empty offspring population Q(t)

8: While

10: Apply crossover with probability P, to generate two offspring solutions
11: Apply mutation with probability P,,to each offspring solution

12: Evaluate the objective values of the offspring solutions

13: Add offspring solutions to Q(t)

14: End while

15: P(t+1) «— QO(¥)

16:t—t+ 1

17: End while

18: Return Pareto-optimal solutions from the final population P(G)

The NSGA-II algorithm is well-suited for the CEV optimisation problem
due to its ability to efficiently handle multiple conflicting objectives and provide
high-quality Pareto-optimal solutions. Its diversity preservation and convergence
towards the true Pareto front make it a suitable choice for tackling the complexities
of the problem, ultimately offering decision-makers a range of solutions that cater
to different preferences and requirements.

4. Experimental results and analysis

This study's experimental evaluation was conducted using MATLAB
2020b, a widely used numerical computing software known for its built-in
optimisation and algorithm development tools. The setup encompassed a grid size
of 10, with 100 EVs having battery capacities ranging from 40 to 100. We placed
20 CSs at random locations, each varying in their charging rates, namely, slow (3.7
kW), regular (22 kW), and fast (50 kW). The number of EVs waiting in the queue
was set at 10. We devised a scenario wherein EVs were allocated during two distinct
periods: off-peak and peak. Pricing was determined by the charging rate preference,
setting rates at [0.10, 0.15, 0.20] for off-peak and [0.30, 0.35, 0.40] for peak periods.

We employed multiple genetic parameters from the MATLAB toolbox for
our case study. The study set varying mutation probabilities (0.08 and 0.1) and
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crossover fractions (0.7 and 0.9) combined with different population sizes (50, 100,
and 200). The aim was to analyse the sensitivity of both NSGA-Il and GA to these
parameters. The result was six distinct Pareto fronts corresponding to six individual
experiments, as illustrated in Fig 2. This evaluation was chiefly to compare the
efficiency of NSGA-II with the conventional GA, focusing primarily on charging
cost and service time. Our findings revealed that increasing the population size from
50 to 200, with other parameters constant, yielded no significant alterations in
average charging cost or service time. The NSGA-II presented diverse, non-
dominated solutions regarding the two optimisation goals: charging cost and service
time. Conversely, the conventional GA typically produced a singular solution with
reduced service time and charging cost. The NSGA-II consistently offered more
optimised solutions than GA, a limitation in the latter stemming from its
predisposed objective weighting.
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Fig. 2. The Pareto front for the six experiments generated from NSGA-II and traditional GA with
crossover fraction 0.7, mutation probability 0.08, and population size (a) 50 (b) 100 (c) 200 and
crossover fraction 0.9, mutation probability 0.1, and population size (d) 50 (e) 100 (f) 200.

Further clarity is provided through three histograms derived from our initial
experiment. Fig. 3 showcases the solution from the conventional GA, with the
majority of EVs allocated to stations 5 and 6 and the least (two EVs) spread across
other stations. This uneven distribution is symptomatic of GA's inherent
restrictions, revealing its inadequacy in optimising assignments evenly. The
significant imbalance highlights the inherent challenge of fairly distributing EVs
across CSs in a real-world scenario.
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No of Assigned EVs

2 4 6 8 10 2 14 16 18 20
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Fig. 3. The assignment of 100 EVs over 20 CSs generated by GA with crossover fraction 0.7,
mutation probability 0.08, and population size 50 in terms of service time and cost.

Fig. 4 represents the solution generated from NSGA-I1I. The assignments, in terms
of service time (a) and charging cost (b), show a more balanced EV distribution
across CSs. Multiple stations, for instance, stations 9, 17, and 19 in (a), received the
highest EV count. The minimal EV count at station 15 could be influenced by
factors like travel time or charging time, affecting service duration. In practical
scenarios, the system follows assignment (a) for EVs preferring to charge during
peak periods, typically EVs prioritising reduced service time. Conversely, for those
requesting off-peak charging to reduce the costs, the system follows assignment (b).
However, this equitable distribution of EVs and maintaining the charging system
stability, achieved by NSGA-I1, highlights its capability to consider various factors
when making assignments, including charging rate and price rate preferences.

NSGA-II, best service time NSGA-Il, best cost
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Fig. 4. The assignment of 100 EVs over 20 CSs generated by NSGA-II with crossover fraction 0.7,
mutation probability 0.08, and population size 50 in terms of (a) service time and (b) charging
cost.

Ultimately, we expanded the number of EVs to 200 to assess the efficacy of
our proposed solution with a larger vehicle count. Fig. 5 (a) showcases the solution
produced by GA, indicating noticeable improvements with the increased EV
assignments. In contrast, solutions from NSGA-I11 are represented in Fig. 5 (b) for
service time and in Fig. 5 (c) for charging cost. The NSGA-11 solutions demonstrate
a more even distribution than GA, ensuring a more efficient and sustainable
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charging infrastructure. This underscores the superiority of NSGA-II in handling
increased complexity and optimising multiple objectives simultaneously,
particularly when scaling to real-world scenarios with a larger number of vehicles.
This balance not only enhances the overall efficiency of the CSs but also aligns
with the EV user's preferences, whether prioritising service time or charging cost.

GA E NSGAI, best cost 1 NSGAI, best service time
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No of Assigned EVs
No of Assigned EVs
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Fig. 5. The assignment of 100 EVs distributed over 20 CSs during the off-peak period generated
from GA and NSGA-II.

2 4 8 8 W 12 14 16 8 20

5. Conclusions and future work

This paper has presented the problem of CEVs from the perspective of
multi-objective optimisation. It has formulated the problem as a bi-objective
optimisation problem with two objectives, namely, service time and charging cost.
We proposed the usage of NSGA-I1 as an optimisation algorithm. Unlike traditional
GA optimisation, which uses a weighted average for more than one objective
optimisation, NSGA-I11 brings several distinct advantages. Firstly, it offers decision-
makers a set of non-dominated solutions known as the Pareto front. It uses non-
dominated sorting and crowding distance for both exploitation and exploration.
Comparing NSGA-I1 with traditional GA has shown its superiority in diversity and
optimality. This leads to more flexibility for the decision-maker in assigning the
EVs to the CS. Future work is to explore the usage of reinforcement learning, which
is more capable of operating in a dynamic environment and being trained on the
variable conditions of the environment.
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