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CHARACTERIZATION OF THE BOUNDEDNESS OF τ-WIGNER

TRANSFORM ON HARDY AND BMO SPACES

Ayşe Sandikçi1

 One of the most popular families of time-frequency representations is the τ -Wigner 
transform. This paper is concerned with the boundedness of the τ -Wigner transform. 
Boundedness results for the τ -Wigner transform are obtained in both Hardy and BMO 
spaces. The Hardy and BMO-distance between two τ -Wigner transforms associated with 
different windows and different argument functions are then studied.
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1. Introduction

The Wigner distribution which was introduced by the 1963 Nobel Prize Winner in
Physics E. Wigner in 1932, [12], has a unique origin in quantum mechanics. Later it has
been investigated by several authors as a tool for time-frequency signal analysis, and several
applications have been recommended in different domains. Since the non-stationary signals
cannot be analyzed completely by the Fourier analysis which is an effective tool for studying
stationary signals, a complete analysis of non-stationary signals requires both time and
frequency representations of signals. As the Wigner distribution provides a high-resolution
representation in both time and frequency for non-stationary signals, it is the most popular
time-frequency representation.

As a natural generalization of the Wigner distribution, depending on a parameter
τ ∈ [0, 1], another family of time-frequency representations was first introduced in [3]. This
is called the τ -Wigner distribution. The basic structures and properties of the τ -Wigner
distribution were discussed in some detail in [2, 3, 8], and the multilinear case of the τ -
Wigner distribution is defined and studied in detail in [9].

The present investigation is inspired by the papers of Chuong & Duong and Verma
& Gupta, [4, 11]. The boundedness property of the wavelet integral operator on the Besov,
BMO, and H1 spaces was obtained in [4]. Verma and Gupta thereafter introduced in [11]
a new class of continuous fractional wavelet transform and studied its properties in Hardy
space and Morrey space.

This paper is also organized as follows. After this paragraph, we introduce the termi-
nology used throughout this paper. In Section 2.1, we shall establish the H1-boundedness
of the τ -Wigner transform for all τ ∈ [0, 1]. In Section 2.2, we obtained the boundedness
property of the τ -Wigner transform for all τ ∈ [0, 1] on the space BMO as well. Further,
the Hardy and BMO-distance between two τ -Wigner transforms are studied.

We have compiled some basic facts as in follows:
We denote S(Rd) as the space of complex-valued continuous functions on Rd rapidly

decreasing at infinity. Let f be a complex valued measurable function on Rd. The oper-
ators Txf (t) = f (t− x) and Mwf (t) = e2πiwtf (t) are called translation and modulation
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operators for x,w ∈ Rd, respectively. The compositions TxMwf(t) = e2πiw·(t−x)f(t− x) or
MwTxf(t) = e2πiw·tf(t − x) are called time-frequency shifts (see [5, 6]) . We consider next
the dilation operator f → fδ which is given by fδ (x) = δ−df

(
x
δ

)
, δ > 0.

We write (Lp(Rd), ‖ . ‖p) as the Lebesgue spaces for 1 ≤ p ≤ ∞. For f ∈ L1(Rd) the

Fourier transform f̂ (or Ff) is defined as

f̂(t) =

∫
Rd
f(x)e−2πix·tdx,

where x · t =
∑d
i=1 xiti is the usual scalar product on Rd.

Fix a function g 6= 0 (called the window function). The short-time Fourier transform
(STFT) of a function f with respect to g is given by

Vgf(x,w) =

∫
Rd
f(t)g(t− x)e−2πit·wdt,

for all x,w ∈ Rd. It is known that if f, g ∈ L2(Rd), then Vgf ∈ L2(Rd × Rd) and Vgf is
uniformly continuous (see [5, 6]).

Let define V τg f as the function

V τg f (x,w) = Vgf

(
1

1− τ
x,

1

τ
w

)
for τ ∈ (0, 1) and x,w ∈ Rd.

The cross-Wigner distribution of f, g ∈ L2(Rd) is defined to be

W (f, g)(x,w) =

∫
Rd
f(x+

t

2
)g(x− t

2
)e−2πit·wdt.

If f = g, then W (f, f) = Wf is called the Wigner distribution of f ∈ L2(Rd). For τ ∈ [0, 1]
and f, g ∈ S(Rd), the τ -Wigner transform is defined as

Wτ (f, g)(x,w) =

∫
Rd
f(x+ τt)g(x− (1− τ)t)e−2πit·wdt.

If τ = 1
2 , then the τ -Wigner transform is the cross-Wigner distribution. For τ = 0, W0

is the Rihaczek transform, W0(f, g)(x,w) = e−2πix·wf(x)ĝ(w), and the conjugate Rihaczek

transform is W1 (f, g) (x,w) = e2πix·wg (x)f̂ (w), if τ = 1, (see [2, 3]).
The theory of Hardy spaces has close connections to many branches of mathematics,

including Fourier analysis, harmonic analysis, signal and image processing, control theory,
singular integrals and operator theory. It is known that the Hardy space is much more
suitable than the Lebesgue space for many questions in harmonic analysis. Recall that
an equivalent definition of H1(Rd) is given in terms of maximal functions Mφ defined as
follows: We fix an integrable smooth function φ on Rd supported in the unit ball such that∫
Rd φ = 1 and set φt (x) = t−dφ

(
x
t

)
for t > 0. The maximal operator Mφ is defined by

Mφf (x) = sup
t>0
|f ∗ φt (x)| for an integrable function f . The Hardy space H1(Rd) is defined

as the set of all f ∈ L1(Rd) if, for some φ ∈ S(Rd) with
∫
Rd φ = 1, the maximal function Mφf

is in L1(Rd). It is also a Banach space. Whenever f ∈ H1(Rd), then both the translation
operator Txf and the dilation operator fδ are in H1(Rd) with

‖Txf‖H1 = ‖f‖H1 , ‖fδ‖H1 = ‖f‖H1 . (1)

The space of functions of bounded mean oscillation, or BMO (it is also known as the John-
Nirenberg space), arises as the class of functions whose deviation from their means over cubes
is bounded. The space BMO(Rd) of functions of bounded mean oscillation was devised by
John-Nirenberg in [7]. BMO(Rd) is the Banach space of all locally integrable functions f
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on Rd for which ‖f‖BMO = sup
Q⊂Rd

Q (|f −Q (f)|) < ∞, where the supremum is taken over

all cubes Q with sides parallel to the coordinate axes, |Q| is the Lebesgue measure of Q and
Q (f) points out the mean of f over the ball Q, that is

Q (f) = |Q|−1
∫
Q

f (x) dx ≤ |Q|−1
∫
Q

|f (x)| dx ≤ C <∞. (2)

The space BMO(Rd) is the dual of the Hardy space H1(Rd). The Hardy space H1(Rd) is a
substitute for L1(Rd) and the space BMO(Rd) is the corresponding natural substitute for
the space L∞(Rd) of bounded functions on Rd. An excellent references for these spaces are
[1, 10].

2. τ-Wigner transform on Hardy and BMO spaces

2.1. Boundedness of τ-Wigner transform on Hardy Space

In this section, we present H1(Rd)-boundedness of τ -Wigner transform for all τ ∈
[0, 1]. Before stating our first theorem on boundedness, we need the following Lemma.

Lemma 2.1. If τ ∈ [0, 1], f ∈ L1(Rd) and g ∈ L1(Rd) ∩ L2(Rd), then Wτ (f, g) (·, w) ∈
L1(Rd).

Proof. Let τ ∈ (0, 1). For a fixed w ∈ Rd, Wτ (f, g) (x,w) is a function of x. Then we write
by Lemma 6.2 in [3]

|Wτ (f, g) (x,w)| =

∣∣∣∣∣ 1

|τ |d
e2πi 1τ x·wVAτgf

(
1

1− τ
x,

1

τ
w

)∣∣∣∣∣
≤ 1

|τ |d

∫
Rd
|f (u)|

∣∣∣∣Aτg(u− 1

1− τ
x

)∣∣∣∣ du
=

1

|τ |d

∫
Rd

∣∣∣∣f (v +
1

1− τ
x

)∣∣∣∣ |Aτg (v)| dv

by changing variable u− 1
1−τ x = v. Hence we have

‖Wτ (f, g) (·, w)‖1 ≤
1

|τ |d

∫
Rd
|Aτg (v)|

(∫
Rd

∣∣∣(1− τ)
d

(T−vf)(1−τ) (x)
∣∣∣ dx) dv

=
|1− τ |d

|τ |d
‖Aτg‖1 ‖T−vf‖1

by the dilation invariance of T−vf in L1(Rd). Also since the space L1(Rd) is strongly
translation invariant and by the equality (6.3) in [3], we obtain

‖Wτ (f, g) (·, w)‖1 =
|1− τ |d

|τ |d
|τ |d

|1− τ |d
‖g‖1 ‖f‖1 = ‖g‖1 ‖f‖1 .

Hence, Wτ (f, g) (·, w) ∈ L1(Rd) for τ ∈ (0, 1). If τ = 0, we have

‖W0 (f, g) (·, w)‖1 ≤
∫
Rd
|f (x)|

(∫
Rd
|g (x− t)| dt

)
dx = ‖g‖1 ‖f‖1

and so W0 (f, g) (·, w) ∈ L1(Rd). Similarly, it is proved that W1 (f, g) (·, w) ∈ L1(Rd). �

Theorem 2.1. (i) Let τ ∈ [0, 1) and g ∈ L1(Rd) ∩ L2(Rd). Then the operator Wτ (·, g) :
H1(Rd)→ H1(Rd) defined by f →Wτ (f, g)(·, w) is bounded. In particular,

‖Wτ (f, g) (·, w)‖H1 ≤ ‖g‖1 ‖f‖H1 .
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(ii) Let τ = 1 and f ∈ L1(Rd) ∩ L2(Rd). Then the operator W1(f, ·) : H1(Rd)→ H1(Rd)
defined by g →W1(f, g)(·, w) is bounded. In particular,

‖W1 (f, g) (·, w)‖H1 ≤ ‖f‖1 ‖g‖H1 .

Proof. (i) Let τ ∈ (0, 1). Making the substitution u− 1
1−τ x = v in Lemma 6.2 in [3], we

write

Wτ (f, g) (x,w) =
1

|τ |d
e2πi 1τ x·w

∫
Rd
f (u)Aτg

(
u− 1

1− τ
x

)
e−2πiu·wτ du (3)

=
1

|τ |d
e2πi 1τ x·w

∫
Rd
f

(
v +

1

1− τ
x

)
Aτg (v)e−2πi(v+ 1

1−τ x)·
w
τ dv.

Applying the Fubini’s Theorem, we have

(Wτ (f, g) (·, w) ∗ φt) (x) (4)

=

∫
Rd
Wτ (f, g) (x− y, w)φt (y) dy

=
1

|τ |d

∫
Rd
e2πi 1τ (x−y)·wAτg (v)

(∫
Rd

(1− τ)
d (
T−vM−wτ f

)
(1−τ)

(x− y)φt (y) dy

)
dv

=
|1− τ |d

|τ |d

∫
Rd
e2πi 1τ (x−y)·wAτg (v)

((
T−vM−wτ f

)
(1−τ)

∗ φt
)

(x) dv.

So, we obtain

‖Wτ (f, g) (·, w)‖H1

=

∫
Rd

sup
t>0
|(Wτ (f, g) (·, w) ∗ φt) (x)| dx

≤ |1− τ |
d

|τ |d

∫
Rd
|Aτg (v)|

(∫
Rd

sup
t>0

∣∣∣((T−vM−wτ f)(1−τ)
∗ φt

)
(x)
∣∣∣ dx) dv

=
|1− τ |d

|τ |d
‖Aτg‖1

∥∥∥(T−vM−wτ f)(1−τ)

∥∥∥
H1

.

By using the equality (6.3) in [3] and the translation and the dilation invariant of
Hardy space (see equations (1)), we get for τ ∈ (0, 1)

‖Wτ (f, g) (·, w)‖H1 ≤
|1− τ |d

|τ |d
|τ |d

|1− τ |d
‖g‖1 ‖f‖H1 = ‖g‖1 ‖f‖H1 .

If τ = 0, we obtain

‖W0 (f, g) (·, w)‖H1 =

∫
Rd

sup
t>0

∣∣∣∣∫
Rd
W0 (f, g) (x− y, w)φt (y) dy

∣∣∣∣ dx
=

∫
Rd

sup
t>0

∣∣∣∣∫
Rd
e−2πi(x−y)·wf (x− y) ĝ (w)φt (y) dy

∣∣∣∣ dx
≤ |ĝ (w)|

∫
Rd

sup
t>0

(|f | ∗ |φt|) (x) dx ≤ ‖g‖1 ‖f‖H1 .
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(ii) Let τ = 1. Recalling that W1 (f, g) (x,w) = e2πix·wg (x)f̂ (w), we have

‖W1 (f, g) (·, w)‖H1 =

∫
Rd

sup
t>0

∣∣∣∣∫
Rd
e2πi(x−y)·wf̂ (w) g (x− y)φt (y) dy

∣∣∣∣ dx
≤
∣∣∣f̂ (w)

∣∣∣ ∫
Rd

sup
t>0

(|g| ∗ |φt|) (x) dx ≤ ‖f‖1 ‖g‖H1 .

This completes the proof.
�

Now, we will give the H1(Rd)-distance of two τ−Wigner transforms associated with
different window functions and different argument functions.

Theorem 2.2. (i) Let τ ∈ [0, 1) and g1, g2 ∈ L1(Rd) ∩ L2(Rd). If f, h ∈ H1(Rd), then
we have

‖Wτ (f, g1) (·, w)−Wτ (h, g2) (·, w)‖H1 ≤ ‖g1 − g2‖1 ‖f‖H1 + ‖g2‖1 ‖f − h‖H1 .

(ii) Let τ = 1 and f, h ∈ L1(Rd) ∩ L2(Rd). If g1, g2 ∈ H1(Rd), then

‖W1 (f, g1) (·, w)−W1 (h, g2) (·, w)‖H1 ≤ ‖g1 − g2‖H1 ‖f‖1 + ‖g2‖H1 ‖f − h‖1 .

Proof. (i) Let τ ∈ (0, 1). By Lemma 6.2 in [3], (3) and (4), we write

((Wτ (f, g1) (·, w)−Wτ (f, g2) (·, w)) ∗ φt) (x)

=
|1− τ |d

|τ |d

∫
Rd
e2πi 1τ (x−y)·wAτ (g1 − g2) (v)

((
T−vM−wτ f

)
(1−τ)

∗ φt
)

(x) dv.

Then by Theorem 2.1 i), we have

‖Wτ (f, g1) (·, w)−Wτ (f, g2) (·, w)‖H1 ≤ ‖g1 − g2‖1 ‖f‖H1 . (5)

Also since

((Wτ (f, g2) (·, w)−Wτ (h, g2) (·, w)) ∗ φt) (x)

=
|1− τ |d

|τ |d

∫
Rd
e2πi 1τ (x−y)·wAτg2 (v)

((
T−vM−wτ (f − h)

)
(1−τ)

∗ φt
)

(x) dv,

by Theorem 2.1 i), we write

‖Wτ (f, g2) (·, w)−Wτ (h, g2) (·, w)‖H1 ≤ ‖g2‖1 ‖f − h‖H1 . (6)

Then by (5) and (6), we obtain

‖Wτ (f, g1) (·, w)−Wτ (h, g2) (·, w)‖H1

≤ ‖Wτ (f, g1) (·, w)−Wτ (f, g2) (·, w)‖H1

+ ‖Wτ (f, g2) (·, w)−Wτ (h, g2) (·, w)‖H1

≤ ‖g1 − g2‖1 ‖f‖H1 + ‖g2‖1 ‖f − h‖H1 .

Now, let τ = 0. Because of the definition of W0 (f, g), we write

W0 (f, g1) (x,w)−W0 (f, g2) (x,w) = e−2πix·wf (x)

∫
Rd

(g1 − g2) (u) e−2πiu·wdu

= e−2πix·wf (x) (g1 − g2)
∧

(w)
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and hence, we obtain

‖W0 (f, g1) (·, w)−W0 (f, g2) (·, w)‖H1 (7)

=

∫
Rd

sup
t>0

∣∣∣∣∫
Rd

(W0 (f, g1)−W0 (f, g2)) (x− y, w)φt (y) dy

∣∣∣∣ dx
=

∫
Rd

sup
t>0

∣∣∣∣∫
Rd
e−2πi(x−y)·wf (x− y) (g1 − g2)

∧
(w)φt (y) dy

∣∣∣∣ dx
≤
∣∣(g1 − g2)

∧
(w)
∣∣ ∫

Rd
sup
t>0

(|f | ∗ |φt|) (x) dx ≤ ‖g1 − g2‖1 ‖f‖H1 .

Moreover, we have

W0 (f, g2) (x,w)−W0 (h, g2) (x,w) = e−2πix·w (f − h) (x) ĝ2 (w)

and similarly to (7), we write

‖W0 (f, g2) (·, w)−W0 (h, g2) (·, w)‖H1 ≤ ‖g2‖1 ‖f − h‖H1 . (8)

From the inequalities (7) and (8), we get

‖W0 (f, g1) (·, w)−W0 (h, g2) (·, w)‖H1

≤ ‖W0 (f, g1) (·, w)−W0 (f, g2) (·, w)‖H1

+ ‖W0 (f, g2) (·, w)−W0 (h, g2) (·, w)‖H1

≤ ‖g1 − g2‖1 ‖f‖H1 + ‖g2‖1 ‖f − h‖H1 .

So, the first part of the Theorem is proved.
(ii) The same reasoning for τ = 1 in Theorem 2.1 and for τ = 0 in Theorem 2.2 i) applies

to the case τ = 1.
�

2.2. Boundedness of τ-Wigner transform on BMO space

In this part, we will discuss the BMO-boundedness of τ -Wigner transform. To fa-
cilitate the proof of the boundedness of τ -Wigner transform on BMO(Rd), we need the
following Lemma related to the space BMO(Rd).

Lemma 2.2. The space BMO(Rd) is invariant under time-frequency shifts.

Proof. Let f ∈ BMO(Rd), Q be an arbitrary ball in Rd and x,w ∈ Rd. Then we write

‖MwTxf‖BMO

= sup
Q⊂Rd

|Q|−1
∫
Q

∣∣∣∣MwTxf (t)− |Q|−1
∫
Q

MwTxf (z) dz

∣∣∣∣ dt
≤ sup
Q⊂Rd

|Q|−1
∫
Q

∣∣∣∣e2πiw·tf (t− x)− |Q|−1
e2πiw·t

∫
Q

f (z − x) dz

∣∣∣∣ dt
+ sup
Q⊂Rd

|Q|−1
∫
Q

∣∣∣∣|Q|−1
e2πiw·t

∫
Q

f (z − x) dz

∣∣∣∣ dt
+ sup
Q⊂Rd

|Q|−1
∫
Q

∣∣∣∣|Q|−1
∫
Q

e2πiw·zf (z − x) dz

∣∣∣∣ dt,
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and so, we have

‖MwTxf‖BMO ≤ sup
Q⊂Rd

|Q|−1
∫
Q

∣∣∣∣f (t− x)− |Q|−1
∫
Q

f (z − x) dz

∣∣∣∣ dt
+ 2 sup

Q⊂Rd
|Q|−1

∫
Q

(
|Q|−1

∫
Q

|f (z − x)| dz
)
dt.

Now, let us say P = Q− x for x ∈ Rd. We then obtain by the inequality (2)

‖MwTxf‖BMO ≤ sup
P⊂Rd

|P |−1
∫
P

∣∣∣∣f (u)− |P |−1
∫
P

f (v) dv

∣∣∣∣ du
+ 2 sup

P⊂Rd
|P |−1

∫
P

(
|P |−1

∫
P

|f (v)| dv
)
du

= sup
P⊂Rd

|P |−1
∫
P

|f (u)− P (f)| du+ 2 sup
P⊂Rd

|P |−1
∫
P

P (|f |) du

= ‖f‖BMO + 2 |P |−1
C |P | = ‖f‖BMO + 2C.

Note that the space BMO is invariant under modulation if x = 0, and the space BMO is
invariant under translation if w = 0. �

We shall need the following Lemma for the next Theorems.

Lemma 2.3. (i) Let τ ∈ (0, 1) and g ∈ L1(Rd) be a compactly supported. If f ∈ L1
loc(Rd),

then Wτ (f, g) (·, w) is in L1
loc(Rd).

(ii) Let τ = 0. If g ∈ L1(Rd) and f ∈ L1
loc(Rd), then W0 (f, g) (·, w) is in L1

loc(Rd).
(iii) Let τ = 1. If f ∈ L1(Rd) and g ∈ L1

loc(Rd), then W1 (f, g) (·, w) is in L1
loc(Rd).

Proof. (i) Let τ ∈ (0, 1). Recall that Wτ (f, g) (x,w) is a function of x. Also we know
that

|Wτ (f, g) (x,w)| ≤ 1

|τ |d

∫
Rd

∣∣∣∣f (v +
1

1− τ
x

)∣∣∣∣ |Aτg (v)| dv

from the proof of Lemma 2.1. Then we write for any ball Q ⊂ Rd∫
Q

|Wτ (f, g) (x,w)| dx ≤ 1

|τ |d

∫
Rd
|Aτg (v)|

(∫
Q

∣∣∣∣f (v +
1

1− τ
x

)∣∣∣∣ dx) dv.
Let us say K = v + 1

1−τQ. Since K ⊂ sup pg + 1
1−τQ is a compact set in Rd and

f ∈ L1
loc(Rd), we have by the equality (6.3) in [3]∫
Q

|Wτ (f, g) (x,w)| dx ≤ |1− τ |
d

|τ |d

∫
Rd
|Aτg (v)|

(∫
K

|f (u)| du
)
dv

= M
|1− τ |d

|τ |d
‖Aτg‖1 = M ‖g‖1 <∞.

Hence Wτ (f, g) (·, w) ∈ L1
loc(Rd).

(ii) Let τ = 0, f ∈ L1
loc(Rd) and K ⊂ Rd be a compact set. By the definition of

W0(f, g)(·, w), we write∫
K

|W0 (f, g) (x,w)| dx = |ĝ (w)|
∫
K

|f (x)| dx ≤M ‖g‖1 <∞,

and so W0 (f, g) (·, w) ∈ L1
loc(Rd).
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(iii) Similarly, let τ = 1, g ∈ L1
loc(Rd) and K ⊂ Rd be a compact set. By the definition of

W1(f, g)(·, w), we get∫
K

|W1 (f, g) (x,w)| dx =
∣∣∣f̂ (w)

∣∣∣ ∫
K

|g (x)| dx ≤ L ‖f‖1 <∞,

which proves iii).
�

Now we will state the BMO-boundedness of the τ -Wigner transform.

Theorem 2.3. (i) Let τ ∈ (0, 1) and g ∈ L1(Rd) be a compactly supported. Then the
operator Wτ (·, g) : BMO(Rd)→ BMO(Rd) defined by f →Wτ (f, g)(·, w) is bounded.
In particular,

‖Wτ (f, g) (·, w)‖BMO ≤ ‖g‖1 (‖f‖BMO + 4C).

(ii) Let τ = 0 and g ∈ L1(Rd). Then the operator W0(·, g) : BMO(Rd) → BMO(Rd)
defined by f →W0(f, g)(·, w) is bounded. Moreover, we have,

‖W0 (f, g) (·, w)‖BMO ≤ ‖g‖1 (‖f‖BMO + 2C).

(iii) Let τ = 1 and f ∈ L1(Rd). Then the operator W1(f, ·) : BMO(Rd) → BMO(Rd)
defined by g →W1(f, g)(·, w) is bounded. Moreover, we have,

‖W1 (f, g) (·, w)‖BMO ≤ ‖f‖1 (‖g‖BMO + 2C).

Proof. (i) Let τ ∈ (0, 1), Q be an arbitrary ball in Rd and f ∈ BMO(Rd). Then f ∈
L1
loc(Rd) and so Wτ (f, g) (·, w) ∈ L1

loc(Rd) by Lemma 2.3 i). By using Fubini Theorem,
we have

Q (Wτ (f, g)) = |Q|−1
∫
Q

Wτ (f, g) (z, w) dz

=
1

|τ |d

∫
Rd
Aτg (v)

(
|Q|−1

∫
Q

M−wτ f

(
v +

1

1− τ
z

)
e2πi 1τ z·wdz

)
dv

=
|1− τ |d

|τ |d

∫
Rd
Aτg (v)Q

(
M−wτ

(
T−vM−wτ f

)
(1−τ)

)
dv.

Thus we get

‖Wτ (f, g) (·, w)‖BMO

= sup
Q⊂Rd

|Q|−1
∫
Q

|Wτ (f, g) (x,w)−Q (Wτ (f, g))| dx

≤ |1− τ |
d

|τ |d

∫
Rd
|Aτg (v)|(

sup
Q⊂Rd

|Q|−1
∫
Q

∣∣∣M−wτ (T−vM−wτ f)(1−τ)
(x)−Q

(
M−wτ

(
T−vM−wτ f

)
(1−τ)

)∣∣∣ dx) dv
=
|1− τ |d

|τ |d

∫
Rd
|Aτg (v)|

∥∥∥M−wτ (T−vM−wτ f)(1−τ)

∥∥∥
BMO

dv,

also by using Lemma 2.2, the dilation invariant property of the space BMO and the
equality (6.3) in [3], we obtain

‖Wτ (f, g) (·, w)‖BMO ≤
|1− τ |d

|τ |d

∫
Rd
|Aτg (v)| (‖f‖BMO + 4C) dv

= ‖g‖1 (‖f‖BMO + 4C) .
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(ii) Let τ = 0, Q be an arbitrary ball in Rd and f ∈ BMO(Rd). Then f ∈ L1
loc(Rd) and

so W0 (f, g) (·, w) ∈ L1
loc(Rd) by Lemma 2.3 ii). Then we have

Q (W0 (f, g)) = |Q|−1
∫
Q

e−2πiz·wf (z) ĝ (w)dz = ĝ (w)Q (M−wf) .

Hence we obtain by Lemma 2.2

‖W0 (f, g) (·, w)‖BMO = sup
Q⊂Rd

|Q|−1
∫
Q

|W0 (f, g) (x,w)−Q (W0 (f, g))| dx

= sup
Q⊂Rd

|Q|−1
∫
Q

∣∣∣e−2πix·wf (x) ĝ (w)− ĝ (w)Q (M−wf)
∣∣∣ dx

= |ĝ (w)| sup
Q⊂Rd

|Q|−1
∫
Q

|(M−wf) (x)−Q (M−wf)| dx

= |ĝ (w)| ‖M−wf‖BMO ≤ ‖g‖1 (‖f‖BMO + 2C)

which proves ii).
(iii) The proof is omitted as it is similar to the proof of ii).

�

Now, we will give the BMO(Rd)-distance of two τ -Wigner transforms.

Theorem 2.4. (i) Let τ ∈ (0, 1) and g1, g2 ∈ L1(Rd) be a compactly supported. If f, h ∈
BMO(Rd), then

‖Wτ (f, g1) (·, w)−Wτ (h, g2) (·, w)‖BMO

≤ ‖g1 − g2‖1 (‖f‖BMO + 4C) + ‖g2‖1 (‖f − h‖BMO + 4C) .

(ii) Let τ = 0 and g1, g2 ∈ L1(Rd). If f, h ∈ BMO(Rd), then

‖W0 (f, g1) (·, w)−W0 (h, g2) (·, w)‖BMO

≤ ‖g1 − g2‖1 (‖f‖BMO + 2C) + ‖g2‖1 (‖f − h‖BMO + 2C) .

(iii) Let τ = 1 and f, h ∈ L1(Rd). If g1, g2 ∈ BMO(Rd), then

‖W1 (f, g1) (·, w)−W1 (h, g2) (·, w)‖BMO

≤ ‖f‖1 (‖g1 − g2‖BMO + 2C) + ‖f − h‖1 (‖g2‖BMO + 2C) .

Proof. (i) Let τ ∈ (0, 1), g1, g2 ∈ L1(Rd) be a compactly supported and f, h ∈ BMO(Rd).
Then f, h ∈ L1

loc(Rd) and so, Wτ (f, g1) (·, w) , Wτ (f, g2) (·, w) and Wτ (h, g2) (·, w) ∈
L1
loc(Rd) by Lemma 2.3 i). Then we obtain by Theorem 2.3 i)

‖Wτ (f, g1) (·, w)−Wτ (h, g2) (·, w)‖BMO

≤ ‖Wτ (f, g1) (·, w)−Wτ (f, g2) (·, w)‖BMO

+ ‖Wτ (f, g2) (·, w)−Wτ (h, g2) (·, w)‖BMO

= ‖Wτ (f, g1 − g2) (·, w)‖BMO + ‖Wτ (f − h, g2) (·, w)‖BMO

≤ ‖g1 − g2‖1 (‖f‖BMO + 4C) + ‖g2‖1 (‖f − h‖BMO + 4C)

which proves i).
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(ii) Let τ = 0, g1, g2 ∈ L1(Rd) and f, h ∈ BMO(Rd). ThenW0 (f, g1) (·, w), W0 (f, g2) (·, w)
and W0 (h, g2) (·, w) ∈ L1

loc(Rd) by Lemma 2.3 ii). Thus we have by Theorem 2.3 ii)

‖W0 (f, g1) (·, w)−W0 (h, g2) (·, w)‖BMO

≤ ‖W0 (f, g1) (·, w)−W0 (f, g2) (·, w)‖BMO

+ ‖W0 (f, g2) (·, w)−W0 (h, g2) (·, w)‖BMO

= ‖W0 (f, g1 − g2) (·, w)‖BMO + ‖W0 (f − h, g2) (·, w)‖BMO

≤ ‖g1 − g2‖1 (‖f‖BMO + 2C) + ‖g2‖1 (‖f − h‖BMO + 2C) .

This is the desired result.
(iii) The proof is similar in spirit to ii).

�
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[7] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. on Pure and Appl. Math.,

XIV (1961), 415-426 (DOI 10.1002/cpa.3160140317).

[8] A. Sandıkçı , Continuity of Wigner-type operators on Lorentz spaces and Lorentz mixed normed mod-

ulation spaces, Turk. J. Math., 38 (2014), No. 4, 728-745 (DOI 10.3906/mat-1311-43).
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