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AN ALTERNATIVE AND UNITED PROOF OF A DOUBLE
INEQUALITY FOR BOUNDING THE
ARITHMETIC-GEOMETRIC MEAN

Feng Qi1, Anthony Sofo2

In the paper, we provide an alternative and united proof of a double in-
equality for bounding the arithmetic-geometric mean. Moreover we prove that the
bounding constants of the double inequality are the best possible.
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1. Introduction

The complete elliptic integral of the first kind was defined as

K(t) =
∫ π/2

0

dθ√
1− t2 sin2 θ

(1)

for 0 < t < 1, see [2, p. 132, Definition 3.2.1]. It can also be defined in the following
way: For positive numbers a and b,

K(a, b) =
∫ π/2

0

1√
a2 cos2 θ + b2 sin2 θ

dθ. (2)

For positive numbers a = a0 and b = b0, let

ak+1 =
ak + bk

2
and bk+1 =

√
akbk . (3)

In [2][p. 134, Definition 3.2.2] and [4], the common limit M(a, b) of these two se-
quences {ak}∞k=0 and {bk}∞k=0 is called as the arithmetic-geometric mean. It was
proved in [2][Theorem 3.2.3] and [4, Theorem 1] that

1
M(a, b)

=
2
π

K(a, b). (4)

For more information on the arithmetic-geometric mean and the complete
elliptic integral of the first kind, please refer to [2, pp. 132–136], [4] and related
references therein.
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In [4, Theorem 4] and [6], it was proved that the inequality

M(a, b) ≥ L(a, b) (5)

holds true for positive numbers a and b and that the inequality (5) becomes equality
if and only if a = b, where

L(a, b) =
b− a

ln b− ln a
(6)

stands for the logarithmic mean for positive numbers a and b with a 6= b.
In [16, Theorem 1.3], it was proved that

M(a, b) < I(a, b) (7)

for positive numbers a and b with a 6= b, where

I(a, b) =
1
e

(
bb

aa

)1/(b−a)

(8)

represents the exponential mean for for positive numbers a and b with a 6= b.
It is known that a generalization of the logarithmic mean L(a, b) is the gener-

alized logarithmic mean L(p; a, b) of order p ∈ R, which may be defined [5, p. 385]
by

L(p; a, b) =





[
bp+1 − ap+1

(p + 1)(b− a)

]1/p

, p 6= −1, 0

L(a, b), p = −1
I(a, b), p = 0

(9)

for positive numbers a and b with a 6= b, and that L(p; a, b) is strictly increasing
with respect to p ∈ R. Therefore, one may naturally pose the following problem.

Problem 1. What are the best constants 0 ≥ β > α ≥ −1 such that the double
inequality

L(α; a, b) < M(a, b) < L(β; a, b) (10)
holds for all positive numbers a and b with a 6= b? In other words, are the constants
α = −1 and β = 0 the best possible in the inequality (10)?

It is easy to see that the complete elliptic integral K(a, b) of the first kind tends
to infinity as the ratio b

a for a > b > 0 tends to zero, equivalently, the arithmetic-
geometric mean M(a, b) tends to zero as b

a → 0+. As b
a → 0+, the logarithmic mean

L(a, b) also tends to 0. However, the exponential mean I(a, b) does not tend to zero
as b

a → 0+. These phenomena motivate us to put forward an alternative problem as
follows.

Problem 2. What are the best constants β > α ≥ 1 such that the double inequality

αL(a, b) < M(a, b) < βL(a, b) (11)

holds for all positive numbers a and b with a 6= b?

In [15] and [16, Theorem 1.3], among others, the right-hand side inequality
in 11 was verified to be valid for β = π

2 .
The aim of this paper is to confirm and sharpen the inequality 11 alternatively

and unitedly and to prove that the constants are the best possible.
Our main result may be recited as the following theorem.
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Theorem 1. The double inequality 11 is valid for all positive numbers a and b with
a 6= b if and only if α ≤ 1 and β ≥ π

2 .

Remark 1. Some inequalities were established in [3, 7, 8, 11, 12, 13, 14, 18] for
bounding the complete elliptic integrals.

2. Lemmas

For proving our theorem alternatively and unitedly, we will employ the follow-
ing lemmas.

Lemma 1 ([10]). Let ak and bk for k ∈ N be real numbers and the power series

A(x) =
∞∑

k=1

akx
k and B(x) =

∞∑

k=1

bkx
k (12)

be convergent on (−R,R) for some R > 0. If bk > 0 and the ratio ak
bk

is strictly

increasing for k ∈ N, then the function A(x)
B(x) is also strictly increasing on (0, R).

Lemma 2 ([17]). For n ∈ N,

∫ π/2

0
sinn xdx =

√
π Γ((n + 1)/2)

nΓ(n/2)
=





π

2
· (n− 1)!!

n!!
for n even,

(n− 1)!!
n!!

for n odd,

(13)

where n!! denotes a double factorial and Γ(x) stands for the classical Euler’s gamma
function defined by

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0. (14)

Lemma 3. For k ∈ N,
k∑

i=1

(
2i− 2
i− 1

)
1
i4i

=
1
2
− 2

4k+1

(
2k

k

)
, (15)

k∑

i=1

(
2i− 2
i− 1

)
1

(k − i + 1)4i
=

[
2 ln 2 + γ + ψ

(
k +

1
2

)]
Γ(k + 1/2)

4
√

π Γ(k + 1)
, (16)

where γ = 0.57721566 · · · is Euler-Mascheroni’s constant and ψ(x) represents the
logarithmic derivative Γ′(x)

Γ(x) of Γ(x).

Proof. For our own convenience, let us denote the two sequences in left-hand sides
of (15) and (16) by h(k) and g(k) for k ∈ N respectively.

When k = 1, the identity (15) is valid clearly. Suppose the identity (15) holds
for some k > 1, then it follows that

h(k + 1) = h(k) +
(

2k

k

)
1

(k + 1)4k+1

=
1
2
− 2

4k+1

(
2k

k

)
+

(
2k

k

)
1

(k + 1)4k+1
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=
1
2
− 2

4k+2

(
2k + 2
k + 1

)
.

Therefore, by induction, the identity (15) is valid for all k ∈ N.
Applying the Zeilberger algorithm (see [9, Chapter 6]) and (13) yields

2(k + 1)g(k + 1)− (2k + 1)g(k) =
Γ(k + 1/2)

2
√

π Γ(k + 1)
=

1
2

(
2k

k

)
1
4k

(17)

for k ∈ N, from which the identity (16) follows. ¤

Remark 2. The identities (15) and (16) can also be verified easily by the famous
software packages Maple or Mathematica.

3. An alternative and united proof of Theorem 1

Now we are in a position to alternatively and unitedly verify Theorem 1.
Making use of the power series expansion

1√
1− s

=
∞∑

i=0

(2i)!
4i(i!)2

si, 0 < s < 1,

it is obtained that

1√
1− s2 sin2 θ

=
∞∑

i=0

(2i)!
4i(i!)2

s2i sin2i θ, 0 < s < 1. (18)

From the celebrated Wallis sine formula (13) in Lemma 2, it is obtained that
∫ π/2

0
sin2i θ dθ =

1
4i

(
2i

i

)
π

2
=
√

π

2
· Γ(i + 1/2)

Γ(i + 1)
, i ∈ N. (19)

Integrating on both sides of (18) with respect to θ from 0 to π
2 and using the

identity (19) yield

2
π

∫ π/2

0

dθ√
1− s2 sin2 θ

=
∞∑

i=0

1
24i

(
2i

i

)2

s2i =
1
π

∞∑

i=0

[
Γ(i + 1/2)
Γ(i + 1)

]2

s2i (20)

for 0 < s < 1. Letting s2 = 1− t2 in (20) yields

2
π

∫ π/2

0

dθ√
1− (1− t2) sin2 θ

=
∞∑

i=0

1
24i

(
2i

i

)2(
1− t2

)i ,
∞∑

k=0

bk

(
1− t2

)k (21)

for 0 < t < 1.
It is easy to see that

(
1
t

)(k)

=
(−1)kk!

tk+1
and

(√
t
)(k) =

(−1)k+1(2k − 1)!!
2k(2k − 1)tk−1/2

(22)

for k ∈ N. Then, by Leibniz’s Theorem [1, p. 12, 3.38] for differentiation of a
product, we gain that

[(
1 +

√
t
)
ln t

](k) =
(
1 +

√
t
)(1

t

)(k−1)

+
(
1 +

√
t
)(k) ln t
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+
k−1∑

i=1

(
k

i

)(
1 +

√
t
)(i)

(
1
t

)(k−i−1)

=
(
1 +

√
t
)(−1)k−1(k − 1)!

tk

+
(√

t
)(k) ln t +

(−1)kk!
tk−1/2

k−1∑

i=1

(2i− 1)!!
(2i)!!(2i− 1)(k − i)

,

where, and elsewhere in this paper, an empty sum is understood to be nil. Thus,

[(
1 +

√
t
)
ln t

](k)
∣∣∣
t=1

= (−1)kk!

[
k−1∑

i=1

(2i− 1)!!
(2i)!!(2i− 1)(k − i)

− 2
k

]
(23)

for k ∈ N. Hence,

(
1 +

√
t
)
ln t =

∞∑

k=1

[
k−1∑

i=1

(2i− 1)!!
(2i)!!(2i− 1)(k − i)

− 2
k

]
(1− t)k (24)

which can be reduced by replacing
√

t by t to

(1 + t) ln t =
∞∑

k=1

[
1
2

k−1∑

i=1

(2i− 1)!!
(2i)!!(2i− 1)(k − i)

− 1
k

]
(
1− t2

)k
, (25)

and so

ln t

t− 1
=

(1 + t) ln t

t2 − 1
=

∞∑

k=1

[
1
k
− 1

2

k−1∑

i=1

(2i− 1)!!
(2i)!!(2i− 1)(k − i)

]
(
1− t2

)k−1

=
∞∑

k=0

[
1

k + 1
− 1

2

k∑

i=1

(2i− 1)!!
(2i)!!(2i− 1)(k − i + 1)

]
(
1− t2

)k ,
∞∑

k=0

ak

(
1− t2

)k

for 0 < t < 1.
The two identities in Lemma 3 and the equality in the right-hand side of the

inequality (19) give

1
k + 1

− ak =
1
2

k∑

i=1

(2i− 1)!
2i−1(i− 1)!2ii!(2i− 1)(k − i + 1)

=
k∑

i=1

(
2i− 2
i− 1

)
1

22ii(k − i + 1)

=
1

k + 1

k∑

i=1

(
2i− 2
i− 1

)
1
4i

(
1
i

+
1

k − i + 1

)

=
1

k + 1

k∑

i=1

(
2i− 2
i− 1

)
1
4ii

+
1

k + 1

k∑

i=1

(
2i− 2
i− 1

)
1

4i(k − i + 1)

=
1

k + 1

[
1
2
− 2

4k+1

(
2k

k

)]
+

1
k + 1

k∑

i=1

(
2i− 2
i− 1

)
1

4i(k − i + 1)

=
1

k + 1

{
1
2
− 2

4k+1

(
2k

k

)
+

[2 ln 2 + γ + ψ(k + 1/2)]Γ(k + 1/2)
4
√

π Γ(k + 1)

}
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=
1

k + 1

[
1
2
− 2− 2 ln 2− γ − ψ(k + 1/2)

4
√

π
· Γ(k + 1/2)

Γ(k + 1)

]
,

that is,

ak =
1

k + 1

[
1
2

+
2− 2 ln 2− γ − ψ(k + 1/2)

4
√

π
· Γ(k + 1/2)

Γ(k + 1)

]
, k ∈ N.

It is listed in [1, p. 258, 6.3.4] that

ψ

(
n +

1
2

)
= −γ − 2 ln 2 + 2

(
1 +

1
3

+ · · ·+ 1
2n− 1

)
, n ≥ 1. (26)

Hence,

ak =
1

2(k + 1)

[
1− Γ(k + 1/2)√

π Γ(k + 1)

(
k∑

i=1

1
2i− 1

− 1

)]
, k ∈ N. (27)

Now let us discuss the increasingly monotonic property of the ratio ak
bk

for
k ∈ N. It is clear that

ak

bk
≤ ak+1

bk+1
⇐⇒ bk+1

bk
≤ ak+1

ak
⇐⇒

(
2k + 1
2k + 2

)2

≤ ak+1

ak
(28)

which is equivalent to
[

k+1∑

i=2

1
2i− 1

− (k + 1/2)(k + 2)
(k + 1)2

k∑

i=2

1
2i− 1

]
Γ(k + 3/2)√
π Γ(k + 2)

≤ 1− (k + 1/2)2(k + 2)
(k + 1)3

(29)
for k ≥ 2. Furthermore, easy calculation gives

k+1∑

i=2

1
2i− 1

− (k + 1/2)(k + 2)
(k + 1)2

k∑

i=2

1
2i− 1

=
1

2k + 1
+

[
1− (k + 1/2)(k + 2)

(k + 1)2

] k∑

i=2

1
2i− 1

=
1

2k + 1
− k

2(k + 1)2

k∑

i=2

1
2i− 1

=
k

2(k + 1)2

[
2(k + 1)2

k(2k + 1)
−

k∑

i=2

1
2i− 1

]
.

Since the sequence 2(k+1)2

k(2k+1) for k ≥ 2 is strictly decreasing and tends to 1 as k →∞
and the sequence

∑k
i=2

1
2i−1 for k ≥ 2 is strictly increasing and diverges to ∞, the

sequence

Sk , 2(k + 1)2

k(2k + 1)
−

k∑

i=2

1
2i− 1

(30)

for k ≥ 2 is strictly decreasing and diverges to −∞. As a result, there exists an
integer k0 ≥ 2 such that the sequence Sk is negative for all k ≥ k0. From the
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fact that S9 = 0.01 · · · and S10 = −0.04 · · · , it follows that k0 = 10. Therefore,
considering the facts that

(k + 1/2)2(k + 2)
(k + 1)3

≤ 1

and
Γ(k + 3/2)√
π Γ(k + 2)

> 0

for k ≥ 2, it readily follows that the inequality (29) holds for all k ≥ 10.
Straightforward computations reveal that

k 1 2 3 4 5 6 7 8 9 10
ak

1
4

7
48

5
48

313
3840

43
640

12317
215040

10751
215040

183349
4128768

206329
5160960

66087019
1816657920

and that
k 1 2 3

ak+1

ak

7
12 = 0.583 · · · 5

7 = 0.714 · · · 313
400 = 0.782 · · ·(

2k+1
2k+2

)2 9
16 = 0.562 · · · 25

36 = 0.694 · · · 49
64 = 0.765 · · ·

k 4 5 6
ak+1

ak

258
313 = 0.824 · · · 12317

14448 = 0.852 · · · 10751
12317 = 0.872 · · ·(

2k+1
2k+2

)2 81
100 = 0.810 · · · 121

144 = 0.840 · · · 169
196 = 0.862 · · ·

k 7 8 9
ak+1

ak

916745
1032096 = 0.888 · · · 825316

916745 = 0.900 · · · 66087019
72627808 = 0.909 · · ·(

2k+1
2k+2

)2 225
256 = 0.878 · · · 289

324 = 0.892 · · · 361
400 = 0.902 · · ·

Consequently, the inequality (29) holds for all k ∈ N. This demonstrates that
the ratio ak

bk
for k ∈ N is strictly increasing. By virtue of Lemma 1, it is obtained

that the function
(ln t)/(t− 1)

(2/π)
∫ π/2
0 1

/√
1− (1− t2) sin2 θ dθ

(31)

is strictly decreasing in t ∈ (0, 1). The well-known L’Hôpital’s rule yields that the
limits of the function (31) are π

2 and 1 as t tends to 0+ and 1− respectively. Hence,
the double inequality

2
π
· ln t

t− 1
<

2
π

∫ π/2

0

dθ√
1− (1− t2) sin2 θ

<
ln t

t− 1
(32)

for t ∈ (0, 1) is valid and sharp. Letting t = a
b for b > a > 0 in (32) leads to

2
π
· ln a− ln b

a− b
<

2
π

∫ π/2

0

dθ√
a2 sin2 θ + b2 cos2 θ

<
ln a− ln b

a− b
. (33)

It is easy to see that the inequality (33) is valid for all positive numbers a and b with
a 6= b. This implies that the double inequality (11) is valid for all positive numbers
a and b with a 6= b if and only if α ≤ 2

π and β ≥ 1. The proof of Theorem 1 is
complete.
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