
U.P.B. Sci. Bull., Series A, Vol. 76, Iss. 2, 2014 ISSN 1223-7027

EXTENDED TRIAL EQUATION METHOD AND APPLICATIONS TO
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In this paper, we introduce the extended trial equation method for solving non-

integrable partial differential equations in mathematical physics. Some exact solutions

including soliton solutions, rational, elliptic integral function, Jacobi elliptic function

solutions to the (N+1)-dimensional sine-cosine-Gordon equation and the KdV equation

with dual power law nonlinearity are obtained by this method. Also, a more general

version of the extended trial equation method is proposed.
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1. Introduction

Constructing exact solutions to partial differential equations is an important problem

in nonlinear science. In order to obtain the exact solutions of nonlinear partial differen-

tial equations, various methods have been presented, such as Hirota method [1], tanh-coth

method [2, 3], the solitary wave ansatz method [4], (G′/G)-expansion method [5, 6, 7], the

trial equation method [8]-[16], Riccati equation method [17, 18], and so on. There are a

lot of nonlinear evolution equations that are integrated using these and other mathematical

methods. Soliton solutions, compactons, peakons, cuspons, stumpons, cnoidal waves, singu-

lar solitons and other solutions have been found [19, 20]. These types of solutions are very

important and appear in various areas of physics, applied mathematics.

In Section 2, we give a new version of the trial equation method for nonlinear differ-

ential equations with generalized evolution. In Section 3, as applications, we obtain some

exact solutions to two nonlinear problems with higher nonlinear terms such as the (N + 1)-

dimensional sine-cosine-Gordon equation [21]

N∑
j=1

uxjxj − utt − α cos(u)− β sin(2u) = 0, (1.1)

the KdV equation with dual power law nonlinearity [13]

ut + αupux + βu2pux + γuxxx = 0, (1.2)

In Discussion, we propose a more general trial equation method.
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2. The extended trial equation method

Step 1. We consider the most general form of the nonlinear partial differential

equations

P (u, ut, ux, uxx, . . . ) = 0, (2.1)

and use the wave transformation

u(x1, x1, . . . , xN , t) = u(η), η = λ

 N∑
j=1

xj − ct

 , (2.2)

where λ ̸= 0 and c ̸= 0. Substituting Eq. (2.2) into Eq. (2.1) yields the following nonlinear

ordinary differential equation

N(u, u′, u′′, ...) = 0. (2.3)

Step 2. We assume that the exact solutions to Eq. (2.3) can be obtained by

u =

δ∑
i=0

τiΓ
i, (2.4)

where

(Γ′)2 = Λ(Γ) =
Φ(Γ)

Ψ(Γ)
=
ξθΓ

θ + ...+ ξ1Γ + ξ0
ζϵΓϵ + ...+ ζ1Γ + ζ0

. (2.5)

Using the relations (2.4) and (2.5), we can derive the terms (u′)2 and u′′ as

(u′)2 =
Φ(Γ)

Ψ(Γ)

(
δ∑

i=0

iτiΓ
i−1

)2

, (2.6)

u′′ =
Φ′(Γ)Ψ(Γ)− Φ(Γ)Ψ′(Γ)

2Ψ2(Γ)

(
δ∑

i=0

iτiΓ
i−1

)
+

Φ(Γ)

Ψ(Γ)

(
δ∑

i=0

i(i− 1)τiΓ
i−2

)
, (2.7)

where Φ(Γ) and Ψ(Γ) are polynomials of Γ. Substituting Eqs. (2.6) and (2.7) into Eq. (2.3)

yields an algebraic equation of polynomial Ω(Γ) of Γ :

Ω(Γ) = ϱsΓ
s + ...+ ϱ1Γ + ϱ0 = 0. (2.8)

According to the balance principle of this method, we can find a relation in determining the

values of θ, ϵ, and δ. From here, we choose the appropriate values of θ, ϵ, and δ.

Step 3. Equating all coefficients of Ω(Γ) to zero yields a system of algebraic equations

containing free parameters as follows:

ϱi = 0, i = 0, ..., s. (2.9)

Solving the system (2.9) with the aid of Mathematica, we determine the values of ξ0, ..., ξθ;

ζ0, ..., ζϵ and τ0, ..., τδ.

Step 4. Reduce Eq. (2.5) to the elementary integral form,

±(η − η0) =

∫
dΓ√
Λ(Γ)

=

∫ √
Ψ(Γ)

Φ(Γ)
dΓ. (2.10)

Using a complete discrimination system for polynomial to classify the roots of Φ(Γ), we solve

the indefinite integral (2.10) and obtain the exact solutions to Eq. (2.3). Furthermore, we

can write the exact traveling wave solutions to Eq. (2.1) respectively.
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3. Applications

Now, we apply the extended trial equation method to the problems (1.1) and (1.2).

Then, we compare the solutions with the exact solutions obtained in literature.

3.1. Application to the (N + 1)-dimensional sine-cosine-Gordon equation

We consider the traveling wave transformation (2.2), and apply this to Eq. (1.1).

Thus, we can write the following nonlinear ordinary differential equation

λ2(N − c2)u′′ − α cos(u)− β sin(2u) = 0, (3.1)

where the prime denotes derivative with respect to η. Take the transformation of trigono-

metric function

u = 2 tan−1 v, (3.2)

then we obtain the following relations, respectively:

u′′ =
2(v′′ + v′′v2 − 2(v′)2v)

(1 + v2)2
, (3.3)

cos(u) =
1− v2

1 + v2
, (3.4)

sin(2u) =
4v(1− v2)

(1 + v2)2
. (3.5)

Substituting Eqs. (3.3)-(3.5) in Eq. (3.1), we can get the nonlinear ordinary differential

equation

2λ2(N − c2)(1 + v2)v′′ − 4λ2(N − c2)v(v′)2 + (v2 − 1)(αv2 + 4βv + α) = 0. (3.6)

Substituting Eqs. (2.6) and (2.7) into Eq. (3.6) and using the balance principle yield

θ = ϵ+ δ + 2.

If we take θ = 3, ϵ = 0 and δ = 1, then

(v′)2 =
τ21 (ξ3Γ

3 + ξ2Γ
2 + ξ1Γ + ξ0)

ζ0
, (3.7)

v′′ =
τ1(3ξ3Γ

2 + 2ξ2Γ + ξ1)

2ζ0
, (3.8)

where ξ3 ̸= 0, ζ0 ̸= 0. The system of algebraic equations, which is obtained by substituting

Eqs. (3.7)-(3.8) into Eq. (3.6), is solved by the Mathematica. Therefore, we respectively

compute the following variables.

ξ0 =
ξ2τ0(α+ ατ20 + 2βτ0)

τ21 (3ατ0 + 2β)
, ξ1 =

ξ2(α+ 3ατ20 + 4βτ0)

τ1(3ατ0 + 2β)
, (3.9)

ξ3 =
αξ2τ1

3ατ0 + 2β
, c = ± 1

λ

√
λ2ξ2N − 3αζ0τ0 − 2βζ0

ξ2
, (3.10)

where ξ2, τ0, τ1 and ζ0 are free parameters. Substituting these results into Eqs. (2.5) and

(2.10), we have

±(η − η0) =

√
ζ0(3ατ0 + 2β)

αξ2τ1

∫
dΓ√

Γ3 + 3ατ0+2β
ατ1

Γ2 +
α+3ατ2

0+4βτ0
ατ2

1
Γ +

τ0(α+ατ2
0+2βτ0)

ατ3
1

(3.11)
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Integrating Eq. (3.11), we obtain the solutions to the Eq. (1.1) as follows:

±(η − η0) = −2
√
A

1√
Γ− α1

, (3.12)

±(η − η0) = 2

√
A

α2 − α1
arctan

√
Γ− α2

α2 − α1
, α2 > α1, (3.13)

±(η − η0) =

√
A

α1 − α2
ln

∣∣∣∣√Γ− α2 −
√
α1 − α2√

Γ− α2 +
√
α1 − α2

∣∣∣∣ , α1 > α2, (3.14)

±(η − η0) = 2

√
A

α1 − α3
F (φ, l), α1 > α2 > α3, (3.15)

where

A =
ζ0(3ατ0 + 2β)

αξ2τ1
, F (φ, l) =

∫ φ

0

dψ√
1− l2 sin2 ψ

, (3.16)

and

φ = arcsin

√
Γ− α3

α2 − α3
, l2 =

α2 − α3

α1 − α3
. (3.17)

Here, α1, α2 and α3 are the roots of the polynomial equation

Γ3 +
ξ2
ξ3

Γ2 +
ξ1
ξ3

Γ +
ξ0
ξ3

= 0. (3.18)

Substituting the solutions (3.12-3.15) into (2.4) and (3.2), we have

u(x1, x2, . . . , xN , t) = 2 arctan


τ0 + τ1α1 +

4τ1A

λ2

 N∑
j=1

xj − vt− η0
λ

2


, (3.19)

u(x1, x2, . . . , xN , t) = 2 arctan

τ0 + τ1α2 −A1 tanh
2

±B1

 N∑
j=1

xj − vt− η0
λ

 ,

(3.20)

u(x1, x2, . . . , xN , t) = 2 arctan

τ0 + τ1α1 +A2cosech
2

B1

 N∑
j=1

xj − vt

 , (3.21)

u(x1, x2, . . . , xN , t) = 2 arctan

τ0 + τ1α1 +A3sn
2

∓B2

 N∑
j=1

xj − vt− η0
λ

 , l2

 ,

(3.22)

where A1 = τ1(α2 − α1), A2 = τ1(α1 − α2), A3 = τ1(α2 − α3), B1 = λ
2

√
α1−α2

A , B2 =

λ
2

√
α1−α3

A and v = ± 1
λ

√
λ2ξ2N−3αζ0τ0−2βζ0

ξ2
. If we choose τ0 = −τ1α1 and η0 = 0, then the

solutions (3.19)-(3.21) can be reduced to rational function solution

u(x1, x2, . . . , xN , t) = 2 arctan


4τ1A

λ2

 N∑
j=1

xj − vt

2


, (3.23)
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1-soliton solution

u(x1, x2, . . . , xN , t) = 2 arctan


A1

cosh2

∓B1

 N∑
j=1

xj − vt




, (3.24)

and singular soliton solution

u(x1, x2, . . . , xN , t) = 2 arctan


A2

sinh2

B1

 N∑
j=1

xj − vt




. (3.25)

Here, A1 and A2 are respectively the amplitudes of 1-soliton and singular soliton, while v is

the velocity of these solitons and B1 is the inverse width of the solitons. Thus, we can say

that the solitons exist for τ1 > 0.

Furthermore, when τ0 = −τ1α3 and η0 = 0, then the Jacobi elliptic function solution(3.22)

can be simplified as

u(x1, x2, . . . , xN , t) = 2 arctan

A3sn
2

∓B2

 N∑
j=1

xj − vt

 , l2

 . (3.26)

Remark 3.1. The traveling wave solutions (3.23)-(3.26) found by the extended trial equa-

tion method for Eq. (1.1) have been checked by Mathematica. To our knowledge, the

rational function solution and the Jacobi elliptic function solutions obtained in this paper

are not given in the previous literature. These are new traveling wave solutions of Eq. (1.1).

Remark 3.2. If the modulus l → 1, the solution (3.26) can be reduced to the following

exact solutions of the (N + 1)-dimensional sine-cosine-Gordon equation

u(x1, x2, . . . , xN , t) = 2 arctan

A3 tanh
2

∓B2

 N∑
j=1

xj − vt

 , (3.27)

where α1 = α2.

3.2. The KdV equation with dual power law nonlinearity

To find the wave solutions to Eq. (1.2), we use the traveling wave transformation

u(x, t) = u(η), η = x − ct, where c is an arbitrary constant. Integrating this nonlinear

ordinary differential equation once and equating the integration constant to zero, we obtain

−cu+
α

p+ 1
up+1 +

β

2p+ 1
u2p+1 + γu′′ = 0, (3.28)

where p is a positive integer and α, β, γ are free parameters.

Eq. (3.28), with the transformation

u = v
1
p , (3.29)

reduces to

Mvv′′ +N(v′)2 − cPv2 +Rv3 + Tv4 = 0, (3.30)
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where M = γp(p+1)(2p+1), N = γ(1− p2)(2p+1), P = p2(p+1)(2p+1), R = αp2(2p+1)

and T = βp2(p+1). Substituting Eqs. (2.6) and (2.7) into Eq. (3.30) and using the balance

procedure yields

θ = ϵ+ 2δ + 2.

If we get θ = 4, ϵ = 0 and δ = 1, then

(v′)2 =
τ21 (ξ4Γ

4 + ξ3Γ
3 + ξ2Γ

2 + ξ1Γ + ξ0)

ζ0
, (3.31)

v′′ =
τ1(4ξ4Γ

3 + 3ξ3Γ
2 + 2ξ2Γ + ξ1)

2ζ0
, (3.32)

where ξ4 ̸= 0, ζ0 ̸= 0. Substituting Eqs. (3.31) and (3.32) into Eq. (3.30), we have a

system of algebraic equations. Then, we solve this system by using of the Mathematica and

compute the following results:

ξ0 =
τ20
τ41

[
ξ2τ

2
1 − ξ4τ0

(
5τ0 +

4R(2M +N)

T (3M + 2N)

)]
, ξ1 =

2τ0
τ31

[
ξ2τ

2
1 − ξ4τ0

(
4τ0 +

3R(2M +N)

T (3M + 2N)

)]
,

ξ3 =
2ξ4(2MR+NR+ 6τ0MT + 4τ0NT )

τ1T (3M + 2N)
, ζ0 = −ξ4(2M +N)

τ21T
,

c =
M +N

P

(
6τ0R

3M + 2N
+
T (6ξ4τ

2
0 − ξ2τ

2
1 )

ξ4(2M +N)

)
,

where ξ2, ξ4, τ0 and τ1 are free parameters. Substituting these results into Eq. (2.5) and

Eq. (2.10), we have

±(η − η0) =

√
−2M +N

τ21T

∫
dΓ√

Γ4 + ξ3
ξ4
Γ3 + ξ2

ξ4
Γ2 + ξ1

ξ4
Γ + ξ0

ξ4

(3.33)

Integrating Eq. (3.33), we obtain the solutions to Eq. (1.2), respectively:

When Λ(Γ) = (Γ− α1)
4, then

±(η − η0) = − B

Γ− α1
, (3.34)

If we take Λ(Γ) = (Γ− α1)
3(Γ− α2) and α2 > α1, then

±(η − η0) =
2B

α1 − α2

√
Γ− α2

Γ− α1
, (3.35)

If we choose Λ(Γ) = (Γ− α1)
2(Γ− α2)

2 and α1 > α2, then

±(η − η0) =
B

α1 − α2
ln

∣∣∣∣Γ− α1

Γ− α2

∣∣∣∣ , (3.36)

When Λ(Γ) = (Γ− α1)
2(Γ− α2)(Γ− α3) and α1 > α2 > α3, then

±(η−η0) =
B√

(α1 − α2)(α1 − α3)
ln

∣∣∣∣∣
√
(Γ− α2)(α1 − α3)−

√
(Γ− α3)(α1 − α2)√

(Γ− α2)(α1 − α3) +
√
(Γ− α3)(α1 − α2)

∣∣∣∣∣ , (3.37)
When Λ(Γ) = (Γ− α1)(Γ− α2)(Γ− α3)(Γ− α4) and α1 > α2 > α3 > α4, then

±(η − η0) = 2

√
B

(α1 − α3)(α2 − α4)
F (φ, l), (3.38)



Extended trial equation method and applications to some nonlinear problems 9

where

B =

√
−2M +N

τ21T
, F (φ, l) =

∫ φ

0

dψ√
1− l2 sin2 ψ

, (3.39)

and

φ = arcsin

√
(Γ− α1)(α2 − α4)

(Γ− α2)(α1 − α4)
, l2 =

(α2 − α3)(α1 − α4)

(α1 − α3)(α2 − α4)
. (3.40)

Also α1, α2, α3 and α4 are the roots of the polynomial equation

Γ4 +
ξ3
ξ4

Γ3 +
ξ2
ξ4

Γ2 +
ξ1
ξ4

Γ +
ξ0
ξ4

= 0. (3.41)

Substituting the solutions (3.34-3.38) into (2.4) and (3.29), we have

u(x, t) =

{
τ0 + τ1α1 +

τ1B
2

(x− ct− η0)
2

} 1
p

, (3.42)

u(x, t) =

{
τ0 + τ1α1 +

4B2(α2 − α1)τ1

4B2 − [(α1 − α2) (x− ct− η0)]
2

} 1
p

, (3.43)

u(x, t) =

{
τ0 + τ1α2 +

(α2 − α1)τ1
exp [B1 (x− ct− η0)]− 1

} 1
p

, (3.44)

u(x, t) =

{
τ0 + τ1α1 +

(α1 − α2)τ1
exp [B1 (x− ct− η0)]− 1

} 1
p

, (3.45)

u(x, t) =

{
τ0 + τ1α1 −

2(α1 − α2)(α1 − α3)τ1
2α1 − α2 − α3 + (α3 − α2) cosh [B2 (x− ct)]

} 1
p

, (3.46)

u(x, t) =

{
τ0 + τ1α2 +

(α1 − α2)(α4 − α2)τ1
α4 − α2 + (α1 − α4)sn2 [∓B3 (x− ct− η0) , l2]

} 1
p

, (3.47)

where

B1 =
α1 − α2

B
, B2 =

√
(α1 − α2)(α1 − α3)

B
, B3 =

√
(α1 − α3)(α2 − α4)

2B
,

and

c =
M +N

P

(
6τ0R

3M + 2N
+
T (6ξ4τ

2
0 − ξ2τ

2
1 )

ξ4(2M +N)

)
, l2 =

(α2 − α3)(α1 − α4)

(α1 − α3)(α2 − α4)
.

If we take τ0 = −τ1α1 and η0 = 0, then the solutions (3.42)-(3.46) can reduce to rational

function solutions

u(x, t) =

[
B
√
τ1

x− ct

] 2
p

, (3.48)

u(x, t) =

{
4B2(α2 − α1)τ1

4B2 − [(α1 − α2) (x− ct)]
2

} 1
p

, (3.49)

traveling wave solutions

u(x, t) =

{
(α2 − α1)τ1

2

{
1∓ coth

[
α1 − α2

2B
(x− ct)

]}} 1
p

, (3.50)

and soliton solution

u(x, t) =
A3(

D + cosh
[
B2(x− ct)

]) 1
p

, (3.51)
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where A3 =
(

2(α1−α2)(α1−α3)τ1
α3−α2

) 1
p

, D = 2α1−α2−α3

α3−α2
. Here, A3 and c are respectively the

amplitude and velocity of the soliton, while B2 is the inverse width of the soliton. Thus,

we can say that the solitons exist for τ1 < 0. Furthermore, for τ0 = −τ1α2 and η0 = 0, the

Jacobi elliptic function solution (3.47) can be reduced to the form

u(x, t) =
A4(

D1 + sn2
[
∓B3(x− ct), (α2−α3)(α1−α4)

(α1−α3)(α2−α4)

]) 1
p

(3.52)

where A4 =
(

τ1(α1−α2)(α4−α2)
α1−α4

) 1
p

and D1 = α4−α2

α1−α4
.

Remark 3.3. All exact solutions obtained for Eq. (1.2) have been checked by Mathematica.

Also, for the corresponding values of some parameters, the soliton solution (3.51) is in full

agree with the solution obtained in Ref. [13]. The exact solutions Eqs. (3.48)-(3.50) and

(3.52) are not shown in the previous literature.

Remark 3.4. If we choose l → 1, α3 = α4 and l → 0, α2 = α3, the Jacobi elliptic function

solutions can be written as follows, respectively:

u(x, t) =
A4(

D1 + tanh2 [∓B3(x− ct)]
) 1

p

(3.53)

and

u(x, t) =
A4(

D1 + sin2 [∓B3(x− ct)]
) 1

p

. (3.54)

4. Discussion

Now, we discuss a more general form of the extended trial equation method in order

to solve the nonlinear partial differential equations as follows.

Step 1. The new trial equation can be given in the more general form

u =
A(Γ)

B(Γ)
=

∑δ
i=0 τiΓ

i∑µ
j=0 ωjΓj

, (4.1)

where

(Γ′)2 = Λ(Γ) =
Φ(Γ)

Ψ(Γ)
=
ξθΓ

θ + ...+ ξ1Γ + ξ0
ζϵΓϵ + ...+ ζ1Γ + ζ0

. (4.2)

Here, τi (i = 0, ..., δ), ωj (j = 0, ..., µ), ξς (ς = 0, ..., θ) and ζσ (σ = 0, ..., ϵ) are the constants

of the above equations.

Step 2. Using Eqs. (4.1) and (4.2), we have

(u′)2 =
Φ(Γ)

Ψ(Γ)

(
A′(Γ)B(Γ)−A(Γ)B′(Γ)

)2
B4(Γ)

, (4.3)

u′′ =
(A′(Γ)B(Γ)−A(Γ)B′(Γ)) {(Φ′(Γ)Ψ(Γ)− Φ(Γ)Ψ′(Γ))B(Γ)− 4Φ(Γ)Ψ(Γ)B′(Γ)}

2B3(Γ)Ψ2(Γ)

+
2Φ(Γ)Ψ(Γ)B(Γ)(A′′(Γ)B(Γ)−A(Γ)B′′(Γ))

2B3(Γ)Ψ2(Γ)
(4.4)

and other derivation terms such as u′′′, and so on.
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Step 3. By substituting (u′)2, u′′ and other derivation terms into Eq. (2.3), the

polynomial algebraic equation can be obtained as

Ω(Γ) = ϱsΓ
s + ...+ ϱ1Γ + ϱ0 = 0. (4.5)

A relationship among the values θ, ϵ, δ and µ can be determined by the balance procedure.

Step 4. Equating the coefficients of Ω(Γ) to zero yields a system of algebraic equa-

tions ϱi = 0 (i = 0, ..., s). Solving this system by using of the Mathematica, Matlab, and so

on, we can determine the values τ0, ...τδ; ω0, ..., ωµ; ξ0 ..., ξθ and ζ0, ..., ζϵ.

Step 5. Substituting the values computed in the previous step into Eq. (4.2) and

integrating Eq. (4.2), we can classify the traveling wave solutions of Eq. (2.1).

5. Conclusion

In this article, we studied the extended trial equation method as an alternative ap-

proach to obtain the exact solutions of nonlinear partial differential equations arising in

mathematical physics. We use this method aided with symbolic computation to construct

the soliton solutions, the elliptic integral function, Jacobi elliptic function and rational func-

tion solutions for the (N+1)-dimensional sine-cosine-Gordon equation and the KdV equation

with dual power law nonlinearity. The elliptic integral function and Jacobi elliptic function

solutions obtained by the present approach are new exact solutions. Also, we propose a

more general trial equation method in discussion. We think that the methods presented

and proposed in this paper can also be applied to other generalized nonlinear differential

equations.
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