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EXTENDED TRIAL EQUATION METHOD AND APPLICATIONS TO
SOME NONLINEAR PROBLEMS

M. Postolache!, Y. Gurefe?, A. Sonmezoglu, M. Ekici and E. Misirli®

In this paper, we introduce the extended trial equation method for solving non-
integrable partial differential equations in mathematical physics. Some exact solutions
including soliton solutions, rational, elliptic integral function, Jacobi elliptic function
solutions to the (N + 1)-dimensional sine-cosine-Gordon equation and the KdV equation
with dual power law nonlinearity are obtained by this method. Also, a more general
version of the extended trial equation method is proposed.
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1. Introduction

Constructing exact solutions to partial differential equations is an important problem
in nonlinear science. In order to obtain the exact solutions of nonlinear partial differen-
tial equations, various methods have been presented, such as Hirota method [1], tanh-coth
method [2, 3], the solitary wave ansatz method [4], (G'/G)-expansion method [5, 6, 7], the
trial equation method [8]-[16], Riccati equation method [17, 18], and so on. There are a
lot of nonlinear evolution equations that are integrated using these and other mathematical
methods. Soliton solutions, compactons, peakons, cuspons, stumpons, cnoidal waves, singu-
lar solitons and other solutions have been found [19, 20]. These types of solutions are very
important and appear in various areas of physics, applied mathematics.

In Section 2, we give a new version of the trial equation method for nonlinear differ-
ential equations with generalized evolution. In Section 3, as applications, we obtain some
exact solutions to two nonlinear problems with higher nonlinear terms such as the (N + 1)-
dimensional sine-cosine-Gordon equation [21]

N
Zux].zj — Uy — accos(u) — Bsin(2u) =0, (1.1)
j=1

the KdV equation with dual power law nonlinearity [13]
ug + auPuy + BuPug + gy, =0, (1.2)
In Discussion, we propose a more general trial equation method.
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2. The extended trial equation method

STEP 1. We consider the most general form of the nonlinear partial differential
equations

P(u, ugy Uy, Uggy - .- ) =0, (2.1)

and use the wave transformation

N
u(zy,x1,...,zN,t) =u(n (Z i—ct], (2.2)
(2.1

where A # 0 and ¢ # 0. Substituting Eq. (2.2) into Eq.
ordinary differential equation

) yields the following nonlinear

N(u,u',u”,...) = 0. (2.3)
STEP 2. We assume that the exact solutions to Eq. (2.3) can be obtained by

4
u= ZTiFi, (2.4)
=0

where
O() &I+ .. +&4TI+ &
T WD) I+ G+ G

Using the relations (2.4) and (2.5), we can derive the terms (u’)? and u” as

5 2
(u)? = ig% (; inFi*) : (2.6)

L YU - oMU (S ) o) [ .
= 20 (231,2@)() ”(Zmr >+\IIEF§<ZZ(Z1)T¢F 2), (2.7)

i=0 i=0
where ®(T") and ¥(T") are polynomials of I". Substituting Egs. (2.6) and (2.7) into Eq. (2.3)
yields an algebraic equation of polynomial Q(T") of I :

QT) =0+ ...+ 01T+ 00 =0. (2.8)

According to the balance principle of this method, we can find a relation in determining the
values of 0, €, and §. From here, we choose the appropriate values of @, ¢, and §.

STEP 3. Equating all coefficients of Q(T") to zero yields a system of algebraic equations
containing free parameters as follows:

0; =0, 1=0,...,5. (2.9)

Solving the system (2.9) with the aid of Mathematica, we determine the values of &g, ..., &s;

Coy .- Ce and 79, ..., Ts.
STEP 4. Reduce Eq. (2.5) to the elementary integral form,

/ \/7? (2.10)

Using a complete discrimination system for polynomlal to classify the roots of ®(I"), we solve
the indefinite integral (2.10) and obtain the exact solutions to Eq. (2.3). Furthermore, we
can write the exact traveling wave solutions to Eq. (2.1) respectively.
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3. Applications

Now, we apply the extended trial equation method to the problems (1.1) and (1.2).
Then, we compare the solutions with the exact solutions obtained in literature.

3.1. Application to the (N + 1)-dimensional sine-cosine-Gordon equation

We consider the traveling wave transformation (2.2), and apply this to Eq. (1.1).
Thus, we can write the following nonlinear ordinary differential equation

M(N — A)u” — acos(u) — Bsin(2u) = 0, (3.1)

where the prime denotes derivative with respect to 7. Take the transformation of trigono-
metric function

u=2tan"' v, (3.2)
then we obtain the following relations, respectively:

" 2(,0// 4 UII,UQ _ 2(1)’)21))
u

_ e , (3.3)
1—22
cos(u) = T (3.4)
. _ Av(1 - v?)
sin(2u) = W (3.5)

Substituting Egs. (3.3)-(3.5) in Eq. (3.1), we can get the nonlinear ordinary differential
equation

2A2(N — )1+ 0?)v" — 4X%(N — Aw(v)? + (v? — 1)(av® + 4Bv + o) = 0. (3.6)
Substituting Eqs. (2.6) and (2.7) into Eq. (3.6) and using the balance principle yield
0=ec+d+2.
If we take 8 =3, ¢ =0 and § = 1, then
(&I + &I + &1 + &)

(v')? = 7 , (3.7)
o — T1(3£3F2 _223521“ + §1)’ (3.8)

where €3 # 0, (o # 0. The system of algebraic equations, which is obtained by substituting
Egs. (3.7)-(3.8) into Eq. (3.6), is solved by the Mathematica. Therefore, we respectively
compute the following variables.

€ = &mo(a+ atd + 287) £ = & (a+ 3arg + 4B70) (3.9)
0 2(3arg +28) e 71(8atg +28) ’
. abmn 1 [A2N —3adeTo — 280
&3 = 3ot 28 ©° j:/\\/ Z , (3.10)

where &9, 19, 71 and (; are free parameters. Substituting these results into Egs. (2.5) and
(2.10), we have

sy —m) = [ 222D ] dar
at3arg T To(atat? T
T \/1"3+ Saro+28e 4 T8arf 4T v | mo(atord +2A7)

aTl aTi
(3.11)
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Integrating Eq. (3.11), we obtain the solutions to the Eq. (1.1) as follows:

1
+(n—no) = 2\/27 (3.12)
VT —a;
— Q9
+(n—mn0) =24/ arctanw/ Qo > o, (3.13)
Qg — O Qg — al

T—a — -
i('r] 770) \/ In \/ Q2 \/Oél (65]
a1 —ar | VT —as+ag — az

A
£ —1m0) =24/ ———F(p,1), a1 >az>as, (3.15)
Q1 — Q3

, Q1 > Qg, (314)

where 5 ) . g
A= Baro£28) g :/ I (3.16)
adaT 0 V1—12sin®¢
and
T — _
= arcsin 7%, =279 (3.17)
Q9 — Q3 Q] — Qg
Here, a1, ao and ag are the roots of the polynomial equation
S22, G, S
P+ 2T2+ 2T+ 2 =0. 3.18
53 &3 &3 (3.18)
Substituting the solutions (3.12-3.15) into (2.4) and (3.2), we have
4 A
u(xy, xa,...,xN,t) = 2arctan{ 79 + 11 + n 5 (s (3.19)
Z rj— vt — @
N
w(xy,Ta,...,rN,t) = 2arctan To + Tias — Aj tanh? | +B; Zl‘] t—— ,
j=1
(3.20)
N
u(xy,xe, ..., xN,t) = 2arctan { 79 + 111 + Ascosech® | By ij — vt ,  (3.21)
j=1
N
u(xy,xa,...,zN,t) = 2arctan 7o + T + Assn? | FBs Zaﬁ]—vt )\ 12 ,
j=1
(3.22)

where Al = Tl(Oé2 - Oél)7 A2 = Tl(Ozl - 062), A3 = 7'1(0[2 — 053), Bl = %1/ ai—as (12 BQ =

A Jai—as _ 41 /A28 N—-3alom0—28¢0
5 7% and v = £+ &

solutions (3.19)-(3.21) can be reduced to rational function solution

. If we choose 79 = —T1a1 and 19 = 0, then the

47’1A

N
g xj; — vt
j=1

u(xy, o, ..., xN,t) = 2arctan (3.23)
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1-soliton solution

Ay

u(xy,xa,...,xN,t) = 2arctan , (3.24)
N
cosh? FB; Z:Ej — ot
j=1
and singular soliton solution
Az

u(xy,xa,...,xN,t) = 2arctan (3.25)

N
sinh? | B ij — vt
j=1
Here, A; and A are respectively the amplitudes of 1-soliton and singular soliton, while v is
the velocity of these solitons and Bj is the inverse width of the solitons. Thus, we can say
that the solitons exist for 71 > 0.
Furthermore, when 79 = —7y a3 and 19 = 0, then the Jacobi elliptic function solution(3.22)
can be simplified as
N
(1,20, ..., 2N,t) = 2arctan { Assn?® | FBs ij —ut |, 12 . (3.26)
j=1
Remark 3.1. The traveling wave solutions (3.23)-(3.26) found by the extended trial equa-
tion method for Eq. (1.1) have been checked by Mathematica. To our knowledge, the

rational function solution and the Jacobi elliptic function solutions obtained in this paper
are not given in the previous literature. These are new traveling wave solutions of Eq. (1.1).

Remark 3.2. If the modulus [ — 1, the solution (3.26) can be reduced to the following
exact solutions of the (N + 1)-dimensional sine-cosine-Gordon equation

N
w(z1,T2,...,TN,t) = 2arctan { Ag tanh? | FBs ij — vt , (3.27)
j=1

where a1 = as.

3.2. The KdV equation with dual power law nonlinearity

To find the wave solutions to Eq. (1.2), we use the traveling wave transformation
u(z,t) = u(n),n = x — ct, where ¢ is an arbitrary constant. Integrating this nonlinear
ordinary differential equation once and equating the integration constant to zero, we obtain

o s
—cu+ ——uPtl 4 2Py =0, 3.28
p+1 2+ 1 7 (8.28)
where p is a positive integer and «, 3,7 are free parameters.
Eq. (3.28), with the transformation
1
u=vr, (3.29)

reduces to
Muvv" + N(v')? — cPv? + Rv® + Tov* =0, (3.30)
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where M = yp(p+1)(2p+1), N = v(1=p*)(2p+1), P = p*(p+1)(2p+ 1), R = ap®(2p+ 1)
and T' = Bp®(p+1). Substituting Egs. (2.6) and (2.7) into Eq. (3.30) and using the balance
procedure yields

0 =¢€+20+2.
If we get § =4, e =0 and § = 1, then

(&l + &T3 + &I? + T + &)

(v)? = G ’ o
e 35;2)2 +260 + &) (3.32)

where & # 0, (o # 0. Substituting Eqgs. (3.31) and (3.32) into Eq. (3.30), we have a
system of algebraic equations. Then, we solve this system by using of the Mathematica and
compute the following results:

2 AR(2M + N) 270 3R(2M + N)
& = 7_*(131 [52712 — &40 (570 + T(3]\4—|—2N))} &= ?13 {527'12 —&470 (47'0 + T(3]\/[+2N))} )
 24(2MR+ NR+ 67MT + 47oNT) €4(2M + N)

€3 o= "%+

1 T(3M + 2N) ’ 2T

. M+ N 670 R T (66478 — Ea1f)
- P 3M +2N &M +N) )’

where &, &, 79 and 71 are free parameters. Substituting these results into Eq. (2.5) and
Eq. (2.10), we have

2M + N ar
E(n—mo) = ﬁ/ (3.33)
i \/F4+§—3F3+%F2+%F+§—Z

Integrating Eq. (3.33), we obtain the solutions to Eq. (1.2), respectively:

When A(T') = (' — aq)*, then

B
= m) =~

If we take A(T') = (I' — a1)3(I' — az) and ay > a1, then

2B I — (65)
+(n — = " 3.35
(77 770) Qg — o T — a ) ( )

If we choose A(I') = (I' — a1)?*(T' — a)? and oy > ag, then

(3.34)

+(n—no) = alljaz lnlg_Z; : (3.36)
When A(T) = (T — a1)?(T — ao)(I' — a3) and oy > as > as, then
(=) = B 1 | VE—ag)(a1 —ag) = /(I — ag) (a1 —as) (3.37)
Vier —as)(ar —az) |/ = ag)(ar — az) + /(T = az)(a1 —az) |

When A(T') = (T' — a1 )(T' — a2)(I' — a3)(I' — a4) and ag > ag > a3 > a4, then

B
i(ﬁ - 770) = 2\/(041 — Oég)(ag — a4)F(905 l)’ (338)
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where
2M + N ® d
B=[-EEY pen= [Tt (3:39)
T 0 1—12sin?y
and
r— _ _ _
= arcsin ( o) (e a4)7 2 = (az — ag)(a a4). (3.40)
T — a2)(a1 — ay) (a1 — ag)(ag — ay)
Also a1, as, ag and a4 are the roots of the polynomial equation
pé g Sps g Sepe g Sip b0 (3.41)

€4 &4 G &
Substituting the solutions (3.34-3.38) into (2.4) and (3.29), we have

1

7'132 ’
u(z,t) = 970+ 10 + ———5 ¢, (3.42)
(x —ct —mo)
4B% (g — B
u(z,t) = 70 + 1101 + (a2 —a1)m 5 , (3.43)
4B?% — [(a1 — ag) (x — ¢t — mp)]
(@2 - 041)7'1 v
t) = 3.44
u(z, 1) {TO+Tla2+exp[B1 (@ —ct—m) =1 ) ( )
1
(Cvl - Oéz)Tl v
t) = 3.45
u(x,t) {To+71a1+exp[Bl w—ct—n)—1J (3.45)
2(a; — ag)(a1 —ag)n P
) = - : 3.46
u(z,t) {TO tna 201 — ay — a3 + (a3 — az) cosh [Bs (z — ct)] ( )
(a1 — ag)(og — az)my g
t) = 3.47
u(z,t) {To+71a2+ o1 —on T (o1 —onsZ[FBs (@ —ct—m) ) (3.47)
where
B, = aq *Otz’ B, = \/(041 — ) —043)’ By = \/(Ch —az)(az — 044)7
B B 2B
and
o= M+ N ( 67 R T(6§4T§—§27’12)) 2= (OéQ—Oé3)(OZ1—O[4)
P 3M+2N 54(2M+N) ’ (041 —Oég)(OtQ —Ot4)'
If we take 79 = —71aq and 19 = 0, then the solutions (3.42)-(3.46) can reduce to rational
function solutions ,
B P
u(z,t) = [\/TT] ) (3.48)
xr—ct

T=

u(x,t) = 4B2(a2 —o)n 3.49
1) {432—[(041—042)(37—075)]2} ’ (349

traveling wave solutions

u(z,t) = {(0‘22“1)71 {1 F coth {0‘12]30‘2 (z — ct)] }} , (3.50)

and soliton solution A
u(z,t) = 2 ) (3.51)

(D + cosh [Bs(z — ct)])

S
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1
where A3 = <2(a17(;23)£i1;a3)ﬁ "D = 2"‘;%;;3 Here, A3 and c are respectively the
amplitude and velocity of the soliton, while Bj is the inverse width of the soliton. Thus,
we can say that the solitons exist for 7, < 0. Furthermore, for 7o = —7ja9 and 79 = 0, the
Jacobi elliptic function solution (3.47) can be reduced to the form
A
u(z,t) = 4 (3.52)

1
(D1 + sn? [:FBg(;c — ct) WD g

> (a1 —asz)(az—aa)

1
where Ay = (—Tl(al_w)(a“a?)) " and Dy = =22

a1 —ay ar—ay’

Remark 3.3. All exact solutions obtained for Eq. (1.2) have been checked by Mathematica.
Also, for the corresponding values of some parameters, the soliton solution (3.51) is in full
agree with the solution obtained in Ref. [13]. The exact solutions Eqgs. (3.48)-(3.50) and
(3.52) are not shown in the previous literature.

Remark 3.4. If we choose l — 1, a3 = a4 and | — 0, g = a3, the Jacobi elliptic function
solutions can be written as follows, respectively:

u(z,t) = As . (3.53)
(D1 + tanh2 [:FBg(I — Ct)]) P
and
u(z,t) = A4 . (3.54)

10

(D1 + sin® [£Bs(z — ct)])
4. Discussion

Now, we discuss a more general form of the extended trial equation method in order
to solve the nonlinear partial differential equations as follows.

STEP 1. The new trial equation can be given in the more general form

AT Y
u = B ?:0 T3 (4.1)

where o) )
(I ol + ...+ 5T+ &
I")? =AT) = = . 4.2
() () () CTle+ ..+ G0+ (42)
Here, 7 (i =0,...,0), w; (j =0,...,0), & (¢ =0,...,0) and {, (0 =0,...,€) are the constants

of the above equations.

STEP 2. Using Eqgs. (4.1) and (4.2), we have
_ 2 (A(D)B() — A)B'(1)”

(u')” = W0 BT : (4.3)
g - AOBE) — AD)B(L) {(¢'(T)¥(T) — o(1)¥(1))BL) — 4@(1) (1) B'(I)}
2B3(0)W2(I)
20(I)W(T) B(T)(4"(T) B(T) — A(T)B"(T)
+ 2B3(T)02(T) (44)

and other derivation terms such as v/, and so on.
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STEP 3. By substituting (u’)?, u” and other derivation terms into Eq. (2.3), the
polynomial algebraic equation can be obtained as

Q) = 0T + . + 01T + 00 = 0. (4.5)

A relationship among the values 0, €, 6 and p can be determined by the balance procedure.

STEP 4. Equating the coefficients of Q(T') to zero yields a system of algebraic equa-
tions g; =0 (i =0, ..., s). Solving this system by using of the Mathematica, Matlab, and so
on, we can determine the values 7, ...7s; wo, ..., wyu; &o -.-, &g and (o, ..., Ce.

STEP 5. Substituting the values computed in the previous step into Eq. (4.2) and
integrating Eq. (4.2), we can classify the traveling wave solutions of Eq. (2.1).

5. Conclusion

In this article, we studied the extended trial equation method as an alternative ap-
proach to obtain the exact solutions of nonlinear partial differential equations arising in
mathematical physics. We use this method aided with symbolic computation to construct
the soliton solutions, the elliptic integral function, Jacobi elliptic function and rational func-
tion solutions for the (N +1)-dimensional sine-cosine-Gordon equation and the KdV equation
with dual power law nonlinearity. The elliptic integral function and Jacobi elliptic function
solutions obtained by the present approach are new exact solutions. Also, we propose a
more general trial equation method in discussion. We think that the methods presented
and proposed in this paper can also be applied to other generalized nonlinear differential
equations.
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