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OBSERVABILITY AND SINGULARITY IN THE CONTEXT OF
RÖSSLER MAP

Madalin FRUNZETE1, Adrian LUCA1, Adriana VLAD3, Jean-Pierre BARBOT4

Conceptele de observabilitate şi singularitate descriu structural un sistem di-
namic multi-dimensional şi reprezintă elemente foarte importante ı̂n dezvoltarea
unui observator ı̂n multe aplicaţii bazate pe haos. Lucrarea discută cele două
concepte ı̂n contextul sistemului Rössler discret. Scopul este de a decide care
variabilă de stare este cea mai potrivită pentru a fi aleasă criptogramă ı̂ntr-
o metoda de cifrare de tip incluziune, bazată pe sistemul Rössler. Rezultatele
experimentale obţinute sunt sustinute şi de coeficientul de observabilitate cal-
culat pentru sistemul Rössler discret prin adaptarea unui algoritm cunoscut ı̂n
literatura pentru sisteme dinamice continue.

The concepts of observability and observability singularity describe struc-
turally a multi-dimensional dynamical system and they represent very important
elements for developing an observer for many applications, as for example: ob-
server based diagnostic, control of induction motor without mechanical sensor
or again as it is emphasized in this paper cryptographic application (of type
inclusion method). Here, the two concepts are discussed and evaluated in the
context of Rössler map, coming up in the end with a strong argument in order
to know which state variable of the system will be chosen as cryptogram.
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1. Introduction

Since Shannon’s work in 1949 [1], cryptography has experienced different
development directions including the approach between the chaotic systems and
cryptography. Thus, the approach of different concepts such as statistics, cryp-
tography and dynamical systems theory have led to numerous studies in the field
of chaos based cryptography (e.g. [2], [3], [4], [5]). In general, the applicabil-
ity of dynamical systems in cryptography is based on ergodicity, the property
of mixing and the sensitivity to initial conditions. Besides these properties, the
notions of observability and singularity are basic elements in the development of
cryptographic applications of type inclusion method (see [2], [4]).

Thus, from the perspective of applications in cryptography, this paper makes
a detailed analysis of Rössler map in terms of the two concepts, namely observ-
ability and singularity. The interest in Rössler map is derived from previous
studies [6, 7] which showed good statistical properties and thus its suitability for
applications in cryptography.

Roughly speaking, observability in the context of a n-dimensional chaotic
system means that having involved a sequence of values generated by one of the n
state variables of the system, the phase space of the system can be reconstructed.
Note that the concept of observability is discussed in the hypothesis that the
system parameters are known.

A complete point of view and the definition of the locally weakly observable
is given by R. Hermann and A. Krener in [8]. An algebraic point of view, given
by S. Diop and M. Fliess, may be also found in [9].

Singularity manifold of a chaotic system (noted by SŌ) is the space where the
system loses its observability property from the perspective of the considered state
variable. In terms of use in cryptography is ideal if the system has no singularity
manifold, SŌ = Ø. In other words, the system is 100% observable from the point
of view of the considered state variable. A detailed example on the interpretation
of the singularity manifolds of Rössler continuous system [10] is found in [11].

Section 2 presents theoretical interpretation of the notions of observability
and singularity in the context of three-dimensional discrete time chaotic systems.
Section 3 exemplifies in theory and evaluates experimentally the two concepts in
the context of Rössler map. The results support the usage of Rössler map in
cryptographic applications of type inclusion method and help the experimenter in
choosing state variable to serve as a cryptogram.
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2. Theoretical background

Let us consider a nonlinear discrete system described (1) in the three-
dimensional space R3, i.e. (x1, x2, x3)T , where xi ∈ R are the state variables.

x+
i = fi(x1, x2, x3), i = 1, 2, 3, (1)

x = (x1, x2, x3)T ∈ R3 represents the state vector evaluated at k iteration (i.e.
x(k)), so x+ = x(k + 1). Assume that an observable s is obtained using the
measurement function h : R3(x) → R(s). It is thus possible to reconstruct the
phase space from the time series {xi(k)} using for instance consecutive iterations
(X = s, Y = s+, Z = s++). The coordinate transformation between the origi-
nal phase space R3(x1, x2x3) and the iterative embedding R3, i.e. (X, Y, Z)T , is
defined by:

Φi


X = s = xi
Y = s+ = x+

i

Z = s++ = x++
i

(2)

Variables X, Y and Z correspond to the current k iteration, next iteration
k + 1 and to the k + 2 iteration, respectively. The observability matrix Oi of a
nonlinear system of type (1) observed using the ith state variable is the Jacobian
matrix of map Φi, [12]. The same idea has been shown for continuous systems
(Lorenz, Rössler systems) by Letellier et al. in [13].

Oi =

 ∂X
∂x1

∂X
∂x2

∂X
∂x3

∂Y
∂x1

∂Y
∂x2

∂Y
∂x3

∂Z
∂x1

∂Z
∂x2

∂Z
∂x3

 (3)

The system is thus fully observable when the determinant det(Oi) never
vanishes, that is when map Φi defines a global diffeomorphism (Φi must also be
injective, a property observed in most of the cases). When det(Oi) never vanishes,
the map Φi can be inverted everywhere and the system can always be rewritten
under a reiterative form: 

X+ = Y

Y + = Z

Z+ = Fi(X, Y, Z)

(4)

where the model function Fi(X, Y, Z) is free of singularities and subscript i des-
ignates the measured state variable. Otherwise, a system such (4) might be ob-
tained, but with singularities. This situation occurs when det(Oi) = 0 over some
space in the original space: the system is said to be not fully observable.
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The subspace mentioned in the previous paragraph can be Ø or many points.
The different states in such a subspace, in the original phase space, cannot be
distinguished in the reconstructed space using the observable. It is then said that
the original system cannot be fully observed from the recorded state variable.
From a practical point of view, even two different states that are close to the
aforementioned subspace are very hard to distinguish in the reconstructed space.

The singularity manifold SŌ is the subspace where the map Φi cannot be
inverted and the system cannot be rewritten under a form as (4). A mathematical
interpretation of the singularity manifold is given in (5):

SŌ,i = {(x1, x2, x3) ∈ R3 | det(Oi) = 0} (5)

where subscript i designates for which state variable was computed SŌ. Therefore
the quality of the observable depends on the existence of a singularity subset, its
dimension and its location with respect to the attractor of the system.

3. Case study: Rössler map

In this section the way to obtain the singularity manifold in the context of
Rössler map (6) will be presented; the parameter vector was considered for the
experiments: (a1, a2, b1, b2, b3, b4, c1, c2)T = (3.78, 0.2, 0.1, 2, 0.35, 1.9, 3.8, 0.05)T .
The analytic exemplification is done in the case when selected observable is the
first state variable x1. Also some experimental results are given for the other two
state variables. 

x+
1 = a1x1(1− x1) + a2x2

x+
2 = b1[(1− b2x1)(x2 + b3)− 1](1− b4x3)

x+
3 = c1x3(1− x3)− c2(1− b2x1)(x2 + b3)

(6)

By the form (6) considering as observable the first state variable s = x1, the
coordinate transformation between the original phase space 3, i.e. (x1, x2, x3)T ,
and the iterative embedding R3, i.e. (X, Y, Z)T , of type (2) is obtained:

Φ1


X = s = x1

Y = s+ = x+
i

Z = s++ = x++
1

⇒


x1

a1x1(1− x1) + a2x2

a1x
+
1 (1− x+

1 ) + a2x
+
2

(7)

The observability matrix O1 of Rössler map (6) obtained using the first state
variable x1 is the Jacobian matrix of map Φ1 (see (3) and (7)):

O1 =

 1 0 0
e1 a2 0
e2 e3 a2b1b4[(1− b2x1)(x2 + b3)− 1]

 (8)
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where:
e1 = a1 − 2a1x1

e2 = a2
1 − a2

1(a2
1 − 2)x1 + a2

1(a2
1 + 2a2)x2

1 − 2a2
1a2x

3
1 − a3

1a2x2+

+ 2a1a
2
2x1x2 − a2b1b2(x2 + b3)(1− b4x3)

e3 = −2a3
1a2x1(1 + x1)− 2a2

1a
2
2x2 + a1a2 + a2b1(1− b2x1)(1− b4x3)

The determinant of observability matrix O1 from (8):

det(O1)
not
= ∆x1 = a2

2b1b4[(1− b2x1)(x2 + b3)− 1] (9)

From (5) and (9) the singularity manifold SŌ,1 is:

SŌ,1 = {(x1, x2, x3) ∈ R3 | ∆x1 = 0}
= {(x1, x2, x3) ∈ R3 | (1− b2x1)(x2 + b3)− 1 = 0}

(10)

The graphical representation of the singularity manifold and the attractor
of the Rössler map is presented in Fig. 1.

The system attractor was computed for 106 iterations starting from the ini-
tial condition x(0) = (x1(0), x2(0), x3(0))T = (0.224, 0.054, 0.741)T . By computing
the determinant of the observability matrix for each point of this attractor in all
three cases it can be concluded which of the state variables has a better observ-
ability. For interpreting the results the experimental distribution law of each ∆xi

is given in the Figs. 2, 3 and 4.
So, in each of the three Figs. 2, 3 and 4 is given a distribution p(∆xi

) of
the values for each determinant. The intersection with the singularity manifold is
represented by the points situated on 0.

Selecting the observable as first state variable s = x1 of (6) it can be observed
that there are no values around the critical point 0. By performing a comparative
analysis, Figs. 1 and 2, it is confirmed that there are no intersections between the
Rössler attractor and singularity manifold SŌ,1 because the determinant of the
observability matrix ∆x1 is always different than 0. So, there are no points of the
attractor on the singularity manifold and the system is fully observable when x1

is selected as observable.
An interpretation in terms of the distribution of the computed values for ∆x2

and ∆x3 was given only for the state variables x2 and x3. A graphic interpretation
of the type given in Fig. 1 for x1 was not comprehensive for x2 or x3. This is
because the complexity of singularity manifolds for these state variables does not
allow a clear view.

Analyzing the distribution of values of ∆x2 for the same 106 points of the
system attractor it can be observed that all the values of the determinant can be
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Fig. 1. Rössler attractor (a), singularity manifold SŌ,1 (b) and
combined Rössler attractor and singularity manifold SŌ,1 (c)

Fig. 2. Determinant of the observability matrix for x1

found in the vicinity of the critical value 0 determined with an approximation of
10−1.

The corresponding Fig. 4 for the state variable x3 is obtained in the same
manner as for the observable s = x2. It can be observed that most of the values
are in the vicinity of 0 too.

An interval of range ε = 10−4 around the critical point 0 was set in order to
compute an average probability to reach this singularity region. The probability
that ∆xi

to belong to this interval was computed as a ratio between the occurrences
of ∆xi

∈ ε and 106 (total number of the points for the experimental attractor).
For the state variable x2 the values of the determinant represented in Fig. 3 found
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Fig. 3. Determinant of the observability matrix for x2

in the interval ε are 0.0803% from the ensamble of 106. For the state varable x3,
3.18% values of the determinant from the ensamble of 106 belong to the ε interval.

Fig. 4. Determinant of the observability matrix for x3

The results, obtained in this section, are in line with the observability coef-
ficients computed for Rössler map in the Appendix. The algorithm implemented
represents the interpretation for the discrete case for an existing algorithm [14].

4. Conclusions

Analyzing the experimental results for this new approach it can be said that
the choice of the state variables x1 to act as a cryptogram in an application of
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type inclusion method [4] is well done. In terms of the principle of bi-univocal
cryptography concepts, this paper makes a contribution in terms of respecting it;
namely for x1 as cryptogram there is no loss of observability, then there is no loss
of information.

Also, concepts for a multi-dimensional discrete systems by adjusting analysis
for continuous systems were presented.

Acknowledgement. The authors are very grateful to Professor Christophe Letellier
for his advice and encouragement during all this research.

The work has been funded by the Sectoral Operational Programme Human
Resources Development 2007-2013 of the Romanian Ministry of Labour, Family
and Social Protection through the Financial Agreement POSDRU/6/1.5/S/19.

Also, the paper has been partially supported by PEPS-A2SDC (Automa-
tique et Analyse de Système à Dynamiques Chaotiques).
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Appendix

Observability coefficient in discrete case is computed by adapting the algo-
rithm proposed in [14].
(1) Write the so-called fluency matrix by replacing each (non)linear element of

the Rössler map (6) with (1̄) 1, and zero otherwise. This corresponds to
(non)linear term in the vector field. The elements from the first line cor-
responding to the first equation (x+

1 = a1x1(1 − x1) + a2x2) are: F11 = 1̄
because there exists a nonlinear dependence on x1, F12 = 1 means that it is
a linear dependence on x2 and F13 = 0 as there is no dependence on x3.

Fij =

1̄ 1 0
1̄ 1̄ 1̄
1̄ 1̄ 1̄

 (11)

(2) Choose a variable to “reconstruct” the dynamics. Define a column vector
C1,i when 1 corresponds to the “measured” state variable xi and 0 otherwise.
Then replace the diagonal element of the fluency matrix F corresponding
to this variable by a dot and multiply each row of it by the corresponding
element in C1,i. The matrix H1,i is thus obtained:

C1,1 =

1
0
0

 C1,2 =

0
1
0

 C1,3 =

0
0
1


H1,1 =

• 1 0
0 0 0
0 0 0

 H1,2 =

0 0 0
1̄ • 1̄
0 0 0

 H1,3 =

0 0 0
0 0 0
1̄ 1̄ •


(3) Count the number p1,i of the linear elements and the number q1,i of nonlinear

elements in H1,i for each state variable xi, i ∈ {1, 2, 3}.

p1,1 = 1 p1,2 = 0 p1,3 = 0
q1,1 = 0 q1,2 = 2 q1,3 = 2
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(4) Replace the dot in H1,i by 0, 1 or 1̄ acording to the fluency matrix Fij, and
transpose H1,i.

HT
1,1 =

1̄ 0 0
1 0 0
0 0 0

 HT
1,2 =

0 1̄ 0
0 1̄ 0
0 1̄ 0

 HT
1,3 =

0 0 1̄
0 0 1̄
0 0 1̄


(5) Count the sum ot the elements of each row, both 1 and 1̄ should be counted

as 1. This defines the new column vector C2,i.

C2,1 =

1
1
0

 C2,2 =

1
1
1

 C2,3 =

1
1
1


(6) H2,i is obtained by replacing each non zero element of HT

1,i by a dot and
replacing each remaining element by its corresponding element in the fluency
matrix multiplied by the corresponding element of the column vector C2,i.

H2,1 =

• 1 0
• 1̄ 1̄
0 0 0

 H2,2 =

1̄ • 0
1̄ • 1̄
1̄ • 1̄

 H2,3 =

1̄ 1 •
1̄ 1̄ •
1̄ 1̄ •


(7) Count the number p2,i of 1 and the number q2,i of 1̄.

p2,1 = 1 p2,2 = 0 p2,3 = 1
q2,1 = 2 q2,2 = 5 q2,3 = 5

(8) By the notation p1 = p1,i, p2 = p2,i, q1 = q1,i, q2 = q2,i with i ∈ {1, 2, 3}. The
observability coefficient is given by:

ηi =
1

2

[
p1

p1 + q1

+
q1

(p1 + q1)3
+

p2

p2 + q2

+
q2

(p2 + q2)2

]
where pk + qk is replaced with 1 + qk, if pk = 0.

x1 x2 x3

η1 = 0.7778 η2 = 0.1065 η3 = 0.1898

The results of the observability coefficient computed for Rössler map are in
line with the experimental results from section 3.


