

WEAK CONVERGENCE OF A SELF-ADAPTIVE TSENG-TYPE ALGORITHM FOR SOLVING VARIATIONAL INCLUSION PROBLEMS

Youli Yu¹, Tzu-Chien Yin²

In this paper, we discuss iterative algorithms for approximating a solution of a variational inclusion problem in a real Hilbert space. We propose a self-adaptive Tseng-type iterative sequence for finding a solution of a variational inclusion involved in plain monotone operators. We show the weak convergence of the sequence under some appropriate conditions.

Keywords: variational inclusion, Tseng-type algorithm, self-adaptive rule, monotone operator.

MSC2020: 47J05, 47J25, 65J15.

1. Introduction

Let \mathcal{H} be a real Hilbert space with inner $\langle \cdot, \cdot \rangle$ and induced norm $\|\cdot\|$. Let $f : \mathcal{H} \rightarrow \mathcal{H}$ be a single-valued operator. Let $\varphi : \mathcal{H} \rightrightarrows 2^{\mathcal{H}}$ be a multi-valued operator. Recall that the variational inclusion problem aims to search a point $z^* \in \mathcal{H}$ such that

$$0 \in (f + \varphi)(z^*). \quad (1)$$

In the sequel, denote the solution set for the variational inclusion (1) by $(f + \varphi)^{-1}(0)$.

Now, it is well-known that the variational inclusion problem can be used to solve a large number of problems, such as, fixed point problems ([12, 14–16, 19]), variational inequality problems ([1, 11, 20, 22, 23, 25, 28, 30]), feasibility problems ([9, 10, 18, 24]), split problems ([4, 5, 32]), and equilibrium problems ([21, 31]). Especially, the variational inclusion is closely related to the following optimization problem ([6])

$$\min_{z^* \in \mathcal{H}} (\phi(z^*) + \psi(z^*)) \quad (2)$$

where $\phi, \psi : \mathcal{H} \rightarrow \mathbf{R} \cup \{+\infty\}$ are two proper, lower semicontinuous and convex functions. In fact, if ϕ is differentiable and ψ is subdifferentiable, then solving (2) equals to find a point $z^* \in \mathcal{H}$ such that $0 \in (\nabla\phi + \partial\psi)(z^*)$. There are many iterative algorithms for solving

¹School of Electronics and Information Engineering, Taizhou University, Linhai 317000, China, e-mail: yuyouli@tzc.edu.cn

²Corresponding author. Research Center for Interneural Computing, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, e-mail: yintzuchien@mail.cmuh.org.tw

(1) in the literature, see [13, 17, 26, 27, 29]. An interesting way is to apply the following forward-backward method ([3, 7]) which defines a sequence iteratively by

$$x_0 \in H, \quad x_{n+1} = (I + \delta_n \varphi)^{-1}(x_n - \delta_n f(x_n)), \quad n \geq 0, \quad (3)$$

where φ is maximal monotone and f is (inverse) strongly monotone.

Note that the strong monotonicity condition imposed on f is a little strict. Very recently, Cholamjiak, Hieu and Cho [2] proposed the following relaxed forward-backward splitting algorithm for solving (1) in which f is a plain monotone operator.

Algorithm 1.1. *For given an initial point $x_0 \in \mathcal{H}$ and a positive constant λ_0 , define an iterative sequence $\{x_n\}_{n \geq 1}$ by the following manner*

$$\begin{cases} y_n = (I + \lambda_n \varphi)^{-1}(x_n - \lambda_n f(x_n)), \quad n \geq 0, \\ x_{n+1} = (1 - \theta_n)x_n + \theta_n y_n + \theta_n \lambda_n(f(x_n) - f(y_n)), \quad n \geq 0, \\ \lambda_{n+1} = \min \left\{ \lambda_n, \frac{\mu_n \|x_n - y_n\|}{\|f(x_n) - f(y_n)\|} \right\}. \end{cases}$$

It is obviously that the iterative steps in Algorithm 1.1 use Tseng method and self-adaptive rule. In this paper, we continue to investigate iterative algorithms for solving the variational inclusion (1). We use a different search rule to update the stepsize and suggest a Tseng-type algorithm for finding a solution of (1) in which f is plain monotone. We show the weak convergence of the sequence under some appropriate conditions.

2. Preliminaries

Throughout, we assume that \mathcal{H} is a real Hilbert space. Then, we have

$$\|\gamma x + (1 - \gamma)y\|^2 = \gamma\|x\|^2 + (1 - \gamma)\|y\|^2 - \gamma(1 - \gamma)\|x - y\|^2, \quad (4)$$

for all $x, y \in \mathcal{H}$ and $\forall \gamma \in \mathbf{R}$.

Let $f: \mathcal{H} \rightarrow \mathcal{H}$ be a single-valued operator. f is said to be

- (i) λ -Lipschitz if $\|f(x) - f(x^\dagger)\| \leq \lambda\|x - x^\dagger\|$, $\forall x, x^\dagger \in \mathcal{H}$, where $\lambda > 0$ is some constant.
- (ii) strongly monotone if $\langle f(x) - f(x^\dagger), x - x^\dagger \rangle \geq \alpha\|x - x^\dagger\|^2$, $\forall x, x^\dagger \in \mathcal{H}$, where $\alpha > 0$.
- (iii) (plain) monotone if $\langle f(x) - f(x^\dagger), x - x^\dagger \rangle \geq 0$, $\forall x, x^\dagger \in \mathcal{H}$.

Let $\varphi: \mathcal{H} \rightrightarrows 2^{\mathcal{H}}$ be a multi-valued operator. φ is said to be monotone if and only if

$$\langle x - y, p - q \rangle \geq 0, \quad \forall x, y \in \mathcal{H} \text{ and } p \in \varphi(x) \text{ and } q \in \varphi(y).$$

A monotone operator φ is said to be maximal monotone if and only if its graph is not strictly contained in the graph of any other monotone operator.

Lemma 2.1 ([8]). *Let C be a nonempty closed convex subset of a real Hilbert space \mathcal{H} . Let $\{x_n\}$ be a sequence in \mathcal{H} . Suppose that (i) $\forall p \in C$, $\lim_{n \rightarrow \infty} \|x_n - p\|$ exists; (ii) $\omega_w(x_n) \subset C$, where $\omega_w(x_n) := \{z \in \mathcal{H} : \text{there is a subsequence } \{x_{n_i}\} \text{ of } \{x_n\} \text{ such that } x_{n_i} \rightharpoonup z \text{ as } i \rightarrow +\infty\}$. Then the sequence $\{x_n\}$ converges weakly to some point in C .*

3. Main results

Suppose that H is a real Hilbert space. Suppose that (i) $\varphi : H \rightrightarrows 2^H$ is a maximal monotone operator; (ii) $f : H \rightarrow H$ is a λ -Lipschitz monotone operator. In the sequel, we assume that $(f + \varphi)^{-1}(0) \neq \emptyset$. Suppose that τ, β and L are three positive constants in $(0, 1)$ and $\{\gamma_n\}$ is a real number sequence such that $0 < c_1 \leq \gamma_n \leq c_2 < 1$ for all $n \geq 0$.

Now, we put forward an iterative algorithm for solving (1).

Algorithm 3.1. *For given an initial point $x_0 \in H$ and a positive constant δ_0 , define an iterative sequence $\{x_n\}_{n \geq 1}$ by the following manner*

$$y_n = (I + \beta\delta_n\varphi)^{-1}(x_n - \beta\delta_n f(x_n)), \quad n \geq 0, \quad (5)$$

and

$$x_{n+1} = (1 - \gamma_n)x_n + \gamma_n[y_n - \beta\delta_n(f(y_n) - f(x_n))], \quad n \geq 0, \quad (6)$$

where $\delta_n = \max\{1, \tau, \tau^2, \dots\}$ satisfies

$$\beta\delta_n\|f(x_n) - f(y_n)\| \leq L\|x_n - y_n\|. \quad (7)$$

Remark 3.1. Noting that $\|f(x_n) - f(y_n)\| \leq \lambda\|x_n - y_n\|$, there is $\delta_n \in \{1, \tau, \tau^2, \dots\}$ such that

$$\delta_n \leq \frac{L}{\lambda\beta}. \quad (8)$$

Moreover, there exists a positive constant $\rho = \tau^m$ (for some positive integer m) such that (7) is well-defined. Otherwise, for all n , we have $L\|x_n - y_n\| < \beta\delta_n\|f(x_n) - f(y_n)\|$. This together with $\|f(x_n) - f(y_n)\| \leq \lambda\|x_n - y_n\|$ implies that $\delta_n > \frac{L}{\lambda\beta}$, which contradicts (8).

Next, we firstly prove several propositions. In what follows, choose any $z^\dagger \in (f + \varphi)^{-1}(0)$.

Proposition 3.1. $\lim_{n \rightarrow +\infty} \|x_n - z^\dagger\|$ exists.

Proof. Taking into account

$$\begin{aligned} \|y_n - z^\dagger + \beta\delta_n(f(x_n) - f(y_n))\|^2 &= \|y_n - z^\dagger\|^2 + \beta^2\delta_n^2\|f(x_n) - f(y_n)\|^2 \\ &\quad + 2\beta\delta_n\langle f(x_n) - f(y_n), y_n - z^\dagger \rangle, \end{aligned}$$

and

$$\|y_n - z^\dagger\|^2 = \|x_n - z^\dagger\|^2 - \|y_n - x_n\|^2 + 2\langle y_n - x_n, y_n - z^\dagger \rangle,$$

we obtain

$$\begin{aligned} \|y_n - z^\dagger + \beta\delta_n(f(x_n) - f(y_n))\|^2 &= \|x_n - z^\dagger\|^2 + 2\beta\delta_n\langle f(x_n) - f(y_n), y_n - z^\dagger \rangle \\ &\quad - \|y_n - x_n\|^2 + 2\langle y_n - x_n, y_n - z^\dagger \rangle + \beta^2\delta_n^2\|f(x_n) - f(y_n)\|^2 \\ &= \|x_n - z^\dagger\|^2 + \beta^2\delta_n^2\|f(x_n) - f(y_n)\|^2 \\ &\quad + 2\langle y_n - x_n + \beta\delta_n(f(x_n) - f(y_n)), y_n - z^\dagger \rangle - \|y_n - x_n\|^2. \end{aligned} \quad (9)$$

Thanks to (5), we have

$$x_n - \beta\delta_n f(x_n) \in (I + \beta\delta_n\varphi)y_n. \quad (10)$$

Thus,

$$x_n - y_n - \beta\delta_n(f(x_n) - f(y_n)) \in \beta\delta_n(f + \varphi)y_n. \quad (11)$$

Observe that $0 \in \beta\delta_n(f + \varphi)z^\dagger$ and $\beta\delta_n(f + \varphi)$ is monotone. Based on (11), we get

$$\langle y_n - x_n + \beta\delta_n(f(x_n) - f(y_n)), y_n - z^\dagger \rangle \leq 0. \quad (12)$$

Furthermore, by (7),

$$\beta^2\delta_n^2\|f(x_n) - f(y_n)\|^2 \leq L^2\|x_n - y_n\|^2.$$

This together with (9) and (12) implies that

$$\|y_n - z^\dagger + \beta\delta_n(f(x_n) - f(y_n))\|^2 \leq \|x_n - z^\dagger\|^2 - (1 - L^2)\|y_n - x_n\|^2. \quad (13)$$

Applying (4) to (6) to derive

$$\begin{aligned} \|x_{n+1} - z^\dagger\|^2 &= (1 - \gamma_n)\|x_n - z^\dagger\|^2 + \gamma_n\|y_n - z^\dagger + \beta\delta_n(f(x_n) - f(y_n))\|^2 \\ &\quad - (1 - \gamma_n)\gamma_n\|y_n - x_n + \beta\delta_n(f(x_n) - f(y_n))\|^2. \end{aligned} \quad (14)$$

Combining (13) and (14), we have

$$\begin{aligned} \|x_{n+1} - z^\dagger\|^2 &\leq \|x_n - z^\dagger\|^2 - \gamma_n(1 - L^2)\|y_n - x_n\|^2 \\ &\quad - (1 - \gamma_n)\gamma_n\|y_n - x_n + \beta\delta_n(f(x_n) - f(y_n))\|^2 \\ &\leq \|x_n - z^\dagger\|^2, \end{aligned} \quad (15)$$

which implies that $\lim_{n \rightarrow +\infty} \|x_n - z^\dagger\|$ exists. \square

Proposition 3.2. $\lim_{n \rightarrow +\infty} \|y_n - x_n\| = 0$ and $\lim_{n \rightarrow +\infty} \|x_{n+1} - x_n\| = 0$.

Proof. By (15), we deduce that the sequence $\{x_n\}$ is bounded and

$$\gamma_n(1 - L^2)\|y_n - x_n\|^2 \leq \|x_n - z^\dagger\|^2 - \|x_{n+1} - z^\dagger\|^2 \rightarrow 0.$$

It results in that

$$\lim_{n \rightarrow +\infty} \|y_n - x_n\| = 0. \quad (16)$$

From (6), we have

$$\begin{aligned} \|x_{n+1} - x_n\| &= \|\gamma_n[y_n - x_n - \beta\delta_n(f(y_n) - f(x_n))]\| \\ &\leq \gamma_n(1 + \beta\lambda\delta_n)\|y_n - x_n\|. \end{aligned}$$

This together with (16) implies that

$$\lim_{n \rightarrow +\infty} \|x_{n+1} - x_n\| = 0. \quad (17)$$

\square

Proposition 3.3. $\omega_w(x_n) \subset (f + \varphi)^{-1}(0)$.

Proof. Letting $\hat{u} \in \omega_w(x_n)$, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ satisfying $x_{n_i} \rightharpoonup \hat{u}$ as $i \rightarrow \infty$. Next, we will prove $\hat{u} \in (f + \varphi)^{-1}(0)$.

Let $(v^\dagger, \hat{b}) \in \text{graph}(f + \varphi)$. Then, $\hat{b} - f(v^\dagger) \in \varphi(v^\dagger)$. By virtue of (5), we have $y_{n_i} = (I + \beta\delta_{n_i}\varphi)^{-1}(x_{n_i} - \beta\delta_{n_i}f(x_{n_i}))$ which yields that

$$\frac{x_{n_i} - y_{n_i}}{\beta\delta_{n_i}} - f(x_{n_i}) \in \varphi(y_{n_i}). \quad (18)$$

According to the monotonicity of φ and (18), we derive

$$\langle \hat{b} - f(v^\dagger) - \left(\frac{x_{n_i} - y_{n_i}}{\beta\delta_{n_i}} - f(x_{n_i}) \right), v^\dagger - y_{n_i} \rangle \geq 0.$$

It follows that

$$\begin{aligned} \langle \hat{b}, v^\dagger - y_{n_i} \rangle &\geq \langle f(v^\dagger) - f(x_{n_i}) + \frac{x_{n_i} - y_{n_i}}{\beta\delta_{n_i}}, v^\dagger - y_{n_i} \rangle \\ &= \langle f(v^\dagger) - f(y_{n_i}), v^\dagger - y_{n_i} \rangle + \langle f(y_{n_i}) - f(x_{n_i}), v^\dagger - y_{n_i} \rangle \\ &\quad + \frac{1}{\beta\delta_{n_i}} \langle x_{n_i} - y_{n_i}, v^\dagger - y_{n_i} \rangle. \end{aligned} \quad (19)$$

As a result of $\langle f(v^\dagger) - f(y_{n_i}), v^\dagger - y_{n_i} \rangle \geq 0$, from (19), we attain

$$\langle \hat{b}, v^\dagger - y_{n_i} \rangle \geq \langle f(y_{n_i}) - f(x_{n_i}), v^\dagger - y_{n_i} \rangle + \frac{1}{\beta\delta_{n_i}} \langle x_{n_i} - y_{n_i}, v^\dagger - y_{n_i} \rangle. \quad (20)$$

Since $x_{n_i} \rightharpoonup \hat{u}$, from Proposition 3.2, we conclude that $y_{n_i} \rightharpoonup \hat{u}$. So, by (20), we receive $\langle \hat{b}, v^\dagger - \hat{u} \rangle \geq 0$ for all $(v^\dagger, \hat{b}) \in \text{graph}(f + \varphi)$. Hence, $\hat{u} \in (f + \varphi)^{-1}(0)$ which implies that $\omega_w(x_n) \subset (f + \varphi)^{-1}(0)$. \square

Next, we state our main convergence theorem.

Theorem 3.1. *The sequence $\{x_n\}$ generated by Algorithm 3.1 converges weakly to some point in $(f + \varphi)^{-1}(0)$.*

Proof. Based on Propositions 3.1-3.3, we have the following results in the hand: (i) $\forall z^\dagger \in (f + \varphi)^{-1}$, $\lim_{n \rightarrow \infty} \|x_n - z^\dagger\|$ exists; (ii) $\omega_w(x_n) \subset (f + \varphi)^{-1}$. Therefore, utilizing Lemma 2.1, we can conclude that the sequence $\{x_n\}$ generated by Algorithm 3.1 converges weakly to some point in $(f + \varphi)^{-1}$. This completes the proof. \square

4. Concluding remarks

In this paper, we devote to construct an iterative algorithm for solving the variational inclusion problem (1) in Hilbert spaces. A popular algorithm for finding a solution of (1) is to use the well-known forward-backward algorithm in which the investigated operator f should be (inverse) strongly monotone in order to ensure the convergence of the algorithm. In our paper, we propose a self-adaptive Tseng-type iterative algorithm [Algorithm 3.1] in which the involved operator f is a general monotone operator. Under some additional conditional, we prove that the sequence $\{x_n\}$ generated by Algorithm 3.1 has weak convergence.

Acknowledgment

Youli Yu was supported by the Science and Technology Program of Taizhou [grant number 21gyb23] and the Scientific Research Fund of Zhejiang Provincial Education Department [grant number Y202147035].

REFERENCES

- [1] *J. Baloee, M. Postolache and Y. Yao*, System of generalized nonlinear variational-like inequalities and nearly asymptotically nonexpansive mappings: graph convergence and fixed point problems, *Ann. Funct. Anal.*, **13(4)**(2022), Article number 68.
- [2] *P. Cholamjiak, D. V. Hieu and Y. J. Cho*, Relaxed forward-backward splitting methods for solving variational inclusions and applications, *J. Sci. Comput.*, **88**(2021), Article number 85.
- [3] *V. Dadashi and M. Postolache*, Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators, *Arab. J. Math.*, **9**(2020), 89-99.
- [4] *Q. L. Dong, L. Liu and Y. Yao*, Self-adaptive projection and contraction methods with alternated inertial terms for solving the split feasibility problem, *J. Nonlinear Convex Anal.*, **23(3)**(2022), 591-605.
- [5] *Q. L. Dong, Y. Peng and Y. Yao*, Alternated inertial projection methods for the split equality problem, *J. Nonlinear Convex Anal.*, **22**(2021), 53-67.
- [6] *S. He, Z. Wang, Q. Dong, Y. Yao and Y. Tang*, The dual randomized Kaczmarz algorithm, *J. Nonlinear Convex Anal.* in press.
- [7] *Y. Malitsky and M. K. Tam*, A forward-backward splitting method for monotone inclusions without cocoercivity, *SIAM J. Optim.*, **30**(2020), 1451-1472.
- [8] *R. T. Rockafellar*, Monotone operators associated with saddle functions and minimax problems, In: Browder F.E. (ed.) *Nonlinear Functional Analysis*, Part 1, Amer. Math. Soc., **18**(1970), 397-407.
- [9] *D. R. Sahu, A. Pitea and M. Verma*, A new iteration technique for nonlinear operators as concerns convex programming and feasibility problems, *Numer. Algor.*, **83(2)**(2020), 421-449.
- [10] *S. S. Santra, O. Bazighifan and M. Postolache*, New conditions for the oscillation of second-order differential equations with sublinear neutral terms, *Mathematics*, **9(11)**(2021), Article Number 1159.
- [11] *T. Seangwattana, K. Sombut, A. Arunchai and K. Sitthithakerngkiet*, A modified Tseng's method for solving the modified variational inclusion problems and its Applications, *Symmetry-basel*, **13**(2021), Article Number 2250.
- [12] *W. Sintunavarat and A. Pitea*, On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis, *J. Nonlinear Sci. Appl.*, **9**(2016), 2553-2562.

[13] *R. Suparatulatorn, W. Cholamjiak, A. Gibali and T. Mouktonglang*, A parallel Tseng's splitting method for solving common variational inclusion applied to signal recovery problems, *Adv. Diff. Equ.*, **2021**(2021), Article number 492.

[14] *B. S. Thakur, D. Thakur and M. Postolache*, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, *Appl. Math. Comput.*, **275**(2016), 147-155.

[15] *B. S. Thakur, D. Thakur and M. Postolache*, A new iteration scheme for approximating fixed points of nonexpansive mappings, *Filomat*, **30**(2016), 2711-2720.

[16] *D. Thakur, B. S. Thakur and M. Postolache*, New iteration scheme for numerical reckoning fixed points of nonexpansive mappings, *J. Inequal. Appl.*, **2014**(2014), No. 328.

[17] *P. Tseng*, A modified forward-backward splitting method for maximal monotone mappings, *SIAM J. Control Optim.*, **38**(2000), 431-446.

[18] *G. I. Uzarelu*, Split feasibility handled by a single-projection three-step iteration with comparative analysis, *J. Nonlinear Convex Anal.* **22(3)**(2021), 544-558.

[19] *G. I. Uzarelu, A. Bejenaru and M. Postolache*, Newton-like methods and polynomiographic visualization of modified Thakur processes, *Int. J. Comput. Math.*, **98(5)**(2021), 1049-1068.

[20] *Y. Yao, Olaniji S. Iyiola and Y. Shehu*, Subgradient extragradient method with double inertial steps for variational inequalities, *J. Sci. Comput.*, **90**(2022), Article number 71.

[21] *Y. Yao, H. Li and M. Postolache*, Iterative algorithms for split equilibrium problems of monotone operators and fixed point problems of pseudo-contractions, *Optim.*, **71(9)**(2022), 2451-2469.

[22] *Y. Yao, M. Postolache and J. C. Yao*, Iterative algorithms for the generalized variational inequalities, *U.P.B. Sci. Bull., Series A*, **81**(2019), 3-16.

[23] *Y. Yao, M. Postolache and J. C. Yao*, Strong convergence of an extragradient algorithm for variational inequality and fixed point problems, *U.P.B. Sci. Bull., Series A*, **82(1)**(2020), 3-12.

[24] *Y. Yao, M. Postolache and Z. Zhu*, Gradient methods with selection technique for the multiple-sets split feasibility problem, *Optim.*, **69**(2020), 269-281.

[25] *Y. Yao, N. Shahzad and J. C. Yao*, Convergence of Tseng-type self-adaptive algorithms for variational inequalities and fixed point problems, *Carpathian J. Math.*, **37**(2021), 541-550.

[26] *Y. Yao, Y. Shehu, X. Li and Q. L. Dong*, A method with inertial extrapolation step for split monotone inclusion problems, *Optim.*, **70**(2021), 741-761.

[27] *Y. Yao, J. C. Yao and M. Postolache*, An iterate for solving quasi-variational inclusions and nonmonotone equilibrium problems, *J. Nonlinear Convex Anal.*, **24**(2023), 463-474.

[28] *C. Zhang, Z. Zhu, Y. Yao and Q. Liu*, Homotopy method for solving mathematical programs with bounded box-constrained variational inequalities, *Optim.*, **68**(2019), 2293-2312.

- [29] *X. Zhao, J. C. Yao and Y. Yao*, A proximal algorithm for solving split monotone variational inclusions, U.P.B. Sci. Bull., Series A, **82**(3)(2020), 43-52.
- [30] *X. Zhao and Y. Yao*, Modified extragradient algorithms for solving monotone variational inequalities and fixed point problems, Optim., **69**(2020), 1987-2002.
- [31] *L. J. Zhu, Y. Yao and M. Postolache*, Projection methods with linesearch technique for pseudomonotone equilibrium problems and fixed point problems, U.P.B. Sci. Bull., Series A, **83**(2021), 3-14.
- [32] *L. J. Zhu and Y. Yao*, Algorithms for approximating solutions of split variational inclusion and fixed point problems, Mathematics, **11** (2023), Article number 641.