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WEAK CONVERGENCE OF A SELF-ADAPTIVE TSENG-TYPE
ALGORITHM FOR SOLVING VARIATIONAL INCLUSION PROBLEMS

Youli Yu!, Tzu-Chien Yin?

In this paper, we discuss iterative algorithms for approximating a solution of
a vartational inclusion problem in a real Hilbert space. We propose a self-adaptive
Tseng-type iterative sequence for finding a solution of a wvariational inclusion involved
in plain monotone operators. We show the weak convergence of the sequence under some

appropriate conditions.
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1. Introduction

Let H be a real Hilbert space with inner (-, -) and induced norm || - ||. Let f: H — H
be a single-valued operator. Let ¢ : 3 = 27 be a multi-valued operator. Recall that the

variational inclusion problem aims to search a point z* € J{ such that

0e(f+e)(z"). (1)

In the sequel, denote the solution set for the variational inclusion (1) by (f + ¢)~1(0).
Now, it is well-known that the variational inclusion problem can be used to solve
a large number of problems, such as, fixed point problems ([12, 14-16, 19]), variational
inequality problems ([1, 11, 20, 22, 23, 25, 28, 30]), feasibility problems ([9, 10, 18, 24]),
split problems ([4, 5, 32]), and equilibrium problems ([21, 31]). Especially, the variational
inclusion is closely related to the following optimization problem ([6])
min (6(=") + ¥(=")) )
where ¢, ¢ : H — R U {400} are two proper, lower semicontinuous and convex functions.
In fact, if ¢ is differentiable and v is subdifferentiable, then solving (2) equals to find a
point z* € H such that 0 € (V¢ 4 0¢)(z*). There are many iterative algorithms for solving
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(1) in the literature, see [13, 17, 26, 27, 29]. An interesting way is to apply the following
forward-backward method ([3, 7]) which defines a sequence iteratively by

20 € H, i1 =+ 5ngp)_1(xn —dnf(zn)), n >0, (3)

where ¢ is maximal monotone and f is (inverse) strongly monotone.
Note that the strong monotonicity condition imposed on f is a little strict. Very
recently, Cholamjiak, Hieu and Cho [2] proposed the following relaxed forward-backward

splitting algorithm for solving (1) in which f is a plain monotone operator.

Algorithm 1.1. For given an initial point xog € H and a positive constant \g, define an

iterative sequence {xy}n>1 by the following manner

Un = (I + @)~ (@ = Anf (@), 120,
Tn+l = (1 - en)xn + O0nyn + en)\n<f<xn) - f(yn))? n >0,
— : B [T —Yn ||
Ant1 = min {Am TFCen) T T }
It is obviously that the iterative steps in Algorithm 1.1 use Tseng method and self-
adaptive rule. In this paper, we continue to investigate iterative algorithms for solving the
variational inclusion (1). We use a different search rule to update the stepsize and suggest

a Tseng-type algorithm for finding a solution of (1) in which f is plain monotone. We show

the weak convergence of the sequence under some appropriate conditions.

2. Preliminaries

Throughout, we assume that H is a real Hilbert space. Then, we have

Iy + (1 =yl = All® + @ =Dyl =@ =Dz -yl (4)

for all z,y € H and Vy € R.
Let f: H — H be a single-valued operator. f is said to be
(i) A-Lipschitz if || f(z) — f(2")|| < M|z — 2T||, Yz, 2T € 3, where A > 0 is some constant.
(ii) strongly monotone if (f(z) — f(z1),z — 2f) > a|lz — 2|2, Yz, 2T € I, where a > 0.
(iii) (plain) monotone if (f(z) — f(z),z — 2T) > 0, Vr, 2T € K.

Let : H = 2% be a multi-valued operator. ¢ is said to be monotone if and only if
(r—y,p—q) 20, Vo,y € H and p € p(z) and g € p(y).

A monotone operator ¢ is said to be maximal monotone if and only if its graph is not

strictly contained in the graph of any other monotone operator.

Lemma 2.1 ([8]). Let C be a nonempty closed convex subset of a real Hilbert space J.
Let {z,} be a sequence in H. Suppose that (i) Vp € C, lim, o0 ||xn — p| exists; (ii)
wy(zn) C C, where wy(zy,) := {2z € H : there is a subsequence {x,,} of {x,} such that

Tn, = 2z as i — +oo}. Then the sequence {x,} converges weakly to some point in C.
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3. Main results

Suppose that H is a real Hilbert space. Suppose that (i) ¢ : H = 2 is a maximal
monotone operator; (ii) f : H — H is a A-Lipschitz monotone operator. In the sequel, we
assume that (f +¢)~1(0) # 0. Suppose that 7, 3 and L are three positive constants in (0,1)
and {v,} is a real number sequence such that 0 < ¢; <7, < ¢y <1 for all n > 0.

Now, we put forward an iterative algorithm for solving (1).

Algorithm 3.1. For given an initial point xo € H and a positive constant oy, define an

iterative sequence {x, }n>1 by the following manner

Yn = (I + B8,0) " (@ — Bénf(xn)), n >0, (5)
and
Tnt1 = (1= 70)Tn + YolYn — Bon(f(yn) — f2n))], n >0, (6)
where &, = max{1,7,7%,---} satisfies
Bonllf(zn) = f(yn)ll < Lllzn = ynll- (7)

Remark 3.1. Noting that ||f(xn) — f(yn)|l < M|zn — ynl|, there is 6, € {1,7,72,-+-} such
that

L
bn < VR (8)
Moreover, there exists a positive constant p = 7™ (for some positive integer m) such that
(7) is well-defined. Otherwise, for all n, we have L||xy, — yn|| < Bonl|lf(xn) — f(yn)|. This
together with || f(xn) — f(yn)l| < AM|xn — ynl| implies that §,, > %, which contradicts (8).

Next, we firstly prove several propositions. In what follows, choose any z' € (f +
¢)1(0).

Proposition 3.1. lim,,_, o ||z, — 27| ewists.

Proof. Taking into account
lyn — 2" + B6n(f(xn) = Fy))I? = llyn — 21 + 826211 F (2n) — £ ) I?
+ 286, (f(wn) = f(yn)s yn — 27),
and
I = 2112 = o 2112 = g = 2+ 2051 — 20,00~ 21,
we obtain
1y = 25+ B8 (f(2n) = fya))I? = 20 = 2TI° + 288, (f (2n) = f(yn)s yn — 2T)
— [lyn = @nll® +2(yn — T, yn — 21) + 820211 F(wn) — £ (yn)|I?
= [lzn — 211> + 2621 f (xn) — f(yn)|I?
+2(Yn — Tn + B6n(f(@n) = F(Yn))s Un — 27) = llyn — zal*.
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Thanks to (5), we have
Tn = Bonf(xn) € (I + Bon@)yn.-
Thus,
Tn = Yn = Bon(f(2n) = f(yn)) € BOn(f + ©)yn-
Observe that 0 € 86, (f + ¢)z' and 83, (f + ¢) is monotone. Based on (11), we get
(Yn = @0 + BOn(f(@n) = fyn)).yn — 27) <0.
Furthermore, by (7),
B2 f (n) = f )l < L2 [lzn — yall*.
This together with (9) and (12) implies that
lyn = 2"+ B8n(f(@n) = Fya))II* < llan — 2717 = (1= L)y — zal®.
Applying (4) to (6) to derive
lzns1 = 211 = (1= y)llzn — 2717 +nllyn — 2" + B (f (20) — Fya))I1?
— (1= 9)llyn = @n + B0a(f(@n) = f(ya))|*.
Combining (13) and (14), we have
21 = 271% < Hlzn = 277 = (1 = L) lyn — 2a?
— (=) mllyn — 20 + BOa(f(n) — f(yn))®
< Jlzn — 21,
which implies that lim,, o ||, — 27| exists.

Proposition 3.2. lim, i [|[Yn — Zx|| =0 and limy, 4 o0 [|[Tnt1 — 2| = 0.

Proof. By (15), we deduce that the sequence {z,} is bounded and
(1= L2)||yn - xn”Q < lzn — ZT”2 — [|zpt1 — ZTH2 — 0.

It results in that

From (6), we have
12041 = Znll = lIynlyn — 20 — Bon(f (yn) — f(zn))]ll
< (1 + BAG) lyn — 2.
This together with (16) implies that

TLEI_POO [#n+1 — 2l =0.

Proposition 3.3. w,(z,) C (f +¢)"1(0).

(10)

(11)

(17)
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Proof. Letting @ € wy,(xy,), there exists a subsequence {z,,} of {z,} satisfying x,,, — @ as
i — 0o. Next, we will prove @ € (f + ) ~1(0).

Let (vf,b) € graph(f + ¢). Then, b — f(v!) € @(vt). By virtue of (5), we have
Yn;, = (I + B, ) Y (xn, — Bon, f(zn,)) which yields that

—_ . ;). 1
5o, f(@n) € o(yn,) (18)
According to the monotonicity of ¢ and (18), we derive
7 LTn; — Yny
(b= fh) = (g5 = Fan))of =y} 20

It follows that
(b0 = ) 2 (F1) = flarn) + e 0T — )
= <f(UT) - f(yni),’UT - yn1> + <f(yn1) - f(xni)va - ym> (19)
1 t
+ ﬁTnl<xnl - ynwv - ynl>

As a result of (f(v1) — f(yn,),v" — yn,) >0, from (19), we attain

<b7UT - ym> Z <f(ym> - f(w’ﬂi)7UT - ym) + %@7’”1 - yni”UT - ym> (20)

Bon,

Since x,, — 4, from Proposition 3.2, we conclude that y,, — 4. So, by (20), we receive
(b,v" —a) > 0 for all (v,b) € graph(f + ¢). Hence, @ € (f + ¢)~1(0) which implies that
ww(zn) C (f +¢)7(0). O

Next, we state our main convergence theorem.

Theorem 3.1. The sequence {x,} generated by Algorithm 3.1 converges weakly to some
point in (f + ) ~1(0).

Proof. Based on Propositions 3.1-3.3, we have the following results in the hand: (i) Vz! €
(f + )7L limy, o0 |2, — 2| exists; (ii) wy(z,) C (f + )L Therefore, utilizing Lemma
2.1, we can conclude that the sequence {z,} generated by Algorithm 3.1 converges weakly

to some point in (f + )~ . This completes the proof. |

4. Concluding remarks

In this paper, we devote to construct an iterative algorithm for solving the variational
inclusion problem (1) in Hilbert spaces. A popular algorithm for finding a solution of (1) is to
use the well-known forward-backward algorithm in which the investigated operator f should
be (inverse) strongly monotone in order to ensure the convergence of the algorithm. In our
paper, we propose a self-adaptive Tseng-type iterative algorithm [Algorithm 3.1] in which
the involved operator f is a general monotone operator. Under some additional conditional,

we prove that the sequence {z,} generated by Algorithm 3.1 has weak convergence.
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