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WEAK CONVERGENCE OF A SELF-ADAPTIVE TSENG-TYPE

ALGORITHM FOR SOLVING VARIATIONAL INCLUSION PROBLEMS
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In this paper, we discuss iterative algorithms for approximating a solution of

a variational inclusion problem in a real Hilbert space. We propose a self-adaptive

Tseng-type iterative sequence for finding a solution of a variational inclusion involved

in plain monotone operators. We show the weak convergence of the sequence under some

appropriate conditions.
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1. Introduction

Let H be a real Hilbert space with inner 〈·, ·〉 and induced norm ‖ · ‖. Let f : H→ H

be a single-valued operator. Let ϕ : H ⇒ 2H be a multi-valued operator. Recall that the

variational inclusion problem aims to search a point z∗ ∈ H such that

0 ∈ (f + ϕ)(z∗). (1)

In the sequel, denote the solution set for the variational inclusion (1) by (f + ϕ)−1(0).

Now, it is well-known that the variational inclusion problem can be used to solve

a large number of problems, such as, fixed point problems ([12, 14–16, 19]), variational

inequality problems ([1, 11, 20, 22, 23, 25, 28, 30]), feasibility problems ([9, 10, 18, 24]),

split problems ([4, 5, 32]), and equilibrium problems ([21, 31]). Especially, the variational

inclusion is closely related to the following optimization problem ([6])

min
z∗∈H

(φ(z∗) + ψ(z∗)) (2)

where φ, ψ : H → R ∪ {+∞} are two proper, lower semicontinuous and convex functions.

In fact, if φ is differentiable and ψ is subdifferentiable, then solving (2) equals to find a

point z∗ ∈ H such that 0 ∈ (∇φ+ ∂ψ)(z∗). There are many iterative algorithms for solving
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(1) in the literature, see [13, 17, 26, 27, 29]. An interesting way is to apply the following

forward-backward method ([3, 7]) which defines a sequence iteratively by

x0 ∈ H, xn+1 = (I + δnϕ)−1(xn − δnf(xn)), n ≥ 0, (3)

where ϕ is maximal monotone and f is (inverse) strongly monotone.

Note that the strong monotonicity condition imposed on f is a little strict. Very

recently, Cholamjiak, Hieu and Cho [2] proposed the following relaxed forward-backward

splitting algorithm for solving (1) in which f is a plain monotone operator.

Algorithm 1.1. For given an initial point x0 ∈ H and a positive constant λ0, define an

iterative sequence {xn}n≥1 by the following manner
yn = (I + λnϕ)−1(xn − λnf(xn)), n ≥ 0,

xn+1 = (1− θn)xn + θnyn + θnλn(f(xn)− f(yn)), n ≥ 0,

λn+1 = min

{
λn,

µn‖xn−yn‖
‖f(xn)−f(yn)‖

}
.

It is obviously that the iterative steps in Algorithm 1.1 use Tseng method and self-

adaptive rule. In this paper, we continue to investigate iterative algorithms for solving the

variational inclusion (1). We use a different search rule to update the stepsize and suggest

a Tseng-type algorithm for finding a solution of (1) in which f is plain monotone. We show

the weak convergence of the sequence under some appropriate conditions.

2. Preliminaries

Throughout, we assume that H is a real Hilbert space. Then, we have

‖γx+ (1− γ)y‖2 = γ‖x‖2 + (1− γ)‖y‖2 − γ(1− γ)‖x− y‖2, (4)

for all x, y ∈ H and ∀γ ∈ R.

Let f : H→ H be a single-valued operator. f is said to be

(i) λ-Lipschitz if ‖f(x)− f(x†)‖ ≤ λ‖x− x†‖, ∀x, x† ∈ H, where λ > 0 is some constant.

(ii) strongly monotone if 〈f(x)− f(x†), x− x†〉 ≥ α‖x− x†‖2, ∀x, x† ∈ H, where α > 0.

(iii) (plain) monotone if 〈f(x)− f(x†), x− x†〉 ≥ 0, ∀x, x† ∈ H.

Let ϕ : H ⇒ 2H be a multi-valued operator. ϕ is said to be monotone if and only if

〈x− y, p− q〉 ≥ 0, ∀x, y ∈ H and p ∈ ϕ(x) and q ∈ ϕ(y).

A monotone operator ϕ is said to be maximal monotone if and only if its graph is not

strictly contained in the graph of any other monotone operator.

Lemma 2.1 ([8]). Let C be a nonempty closed convex subset of a real Hilbert space H.

Let {xn} be a sequence in H. Suppose that (i) ∀p ∈ C, limn→∞ ‖xn − p‖ exists; (ii)

ωw(xn) ⊂ C, where ωw(xn) := {z ∈ H : there is a subsequence {xni} of {xn} such that

xni
⇀ z as i→ +∞}. Then the sequence {xn} converges weakly to some point in C.
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3. Main results

Suppose that H is a real Hilbert space. Suppose that (i) ϕ : H ⇒ 2H is a maximal

monotone operator; (ii) f : H → H is a λ-Lipschitz monotone operator. In the sequel, we

assume that (f +ϕ)−1(0) 6= ∅. Suppose that τ, β and L are three positive constants in (0, 1)

and {γn} is a real number sequence such that 0 < c1 ≤ γn ≤ c2 < 1 for all n ≥ 0.

Now, we put forward an iterative algorithm for solving (1).

Algorithm 3.1. For given an initial point x0 ∈ H and a positive constant δ0, define an

iterative sequence {xn}n≥1 by the following manner

yn = (I + βδnϕ)−1(xn − βδnf(xn)), n ≥ 0, (5)

and

xn+1 = (1− γn)xn + γn[yn − βδn(f(yn)− f(xn))], n ≥ 0, (6)

where δn = max{1, τ, τ2, · · · } satisfies

βδn‖f(xn)− f(yn)‖ ≤ L‖xn − yn‖. (7)

Remark 3.1. Noting that ‖f(xn)− f(yn)‖ ≤ λ‖xn − yn‖, there is δn ∈ {1, τ, τ2, · · · } such

that

δn ≤
L

λβ
. (8)

Moreover, there exists a positive constant ρ = τm (for some positive integer m) such that

(7) is well-defined. Otherwise, for all n, we have L‖xn − yn‖ < βδn‖f(xn) − f(yn)‖. This

together with ‖f(xn)− f(yn)‖ ≤ λ‖xn − yn‖ implies that δn >
L
λβ , which contradicts (8).

Next, we firstly prove several propositions. In what follows, choose any z† ∈ (f +

ϕ)−1(0).

Proposition 3.1. limn→+∞ ‖xn − z†‖ exists.

Proof. Taking into account

‖yn − z† + βδn(f(xn)− f(yn))‖2 = ‖yn − z†‖2 + β2δ2n‖f(xn)− f(yn)‖2

+ 2βδn〈f(xn)− f(yn), yn − z†〉,

and

‖yn − z†‖2 = ‖xn − z†‖2 − ‖yn − xn‖2 + 2〈yn − xn, yn − z†〉,

we obtain

‖yn − z† + βδn(f(xn)− f(yn))‖2 = ‖xn − z†‖2 + 2βδn〈f(xn)− f(yn), yn − z†〉

− ‖yn − xn‖2 + 2〈yn − xn, yn − z†〉+ β2δ2n‖f(xn)− f(yn)‖2

= ‖xn − z†‖2 + β2δ2n‖f(xn)− f(yn)‖2

+ 2〈yn − xn + βδn(f(xn)− f(yn)), yn − z†〉 − ‖yn − xn‖2.

(9)
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Thanks to (5), we have

xn − βδnf(xn) ∈ (I + βδnϕ)yn. (10)

Thus,

xn − yn − βδn(f(xn)− f(yn)) ∈ βδn(f + ϕ)yn. (11)

Observe that 0 ∈ βδn(f + ϕ)z† and βδn(f + ϕ) is monotone. Based on (11), we get

〈yn − xn + βδn(f(xn)− f(yn)), yn − z†〉 ≤ 0. (12)

Furthermore, by (7),

β2δ2n‖f(xn)− f(yn)‖2 ≤ L2‖xn − yn‖2.

This together with (9) and (12) implies that

‖yn − z† + βδn(f(xn)− f(yn))‖2 ≤ ‖xn − z†‖2 − (1− L2)‖yn − xn‖2. (13)

Applying (4) to (6) to derive

‖xn+1 − z†‖2 = (1− γn)‖xn − z†‖2 + γn‖yn − z† + βδn(f(xn)− f(yn))‖2

− (1− γn)γn‖yn − xn + βδn(f(xn)− f(yn))‖2.
(14)

Combining (13) and (14), we have

‖xn+1 − z†‖2 ≤ ‖xn − z†‖2 − γn(1− L2)‖yn − xn‖2

− (1− γn)γn‖yn − xn + βδn(f(xn)− f(yn))‖2

≤ ‖xn − z†‖2,

(15)

which implies that limn→+∞ ‖xn − z†‖ exists. �

Proposition 3.2. limn→+∞ ‖yn − xn‖ = 0 and limn→+∞ ‖xn+1 − xn‖ = 0.

Proof. By (15), we deduce that the sequence {xn} is bounded and

γn(1− L2)‖yn − xn‖2 ≤ ‖xn − z†‖2 − ‖xn+1 − z†‖2 → 0.

It results in that

lim
n→+∞

‖yn − xn‖ = 0. (16)

From (6), we have

‖xn+1 − xn‖ = ‖γn[yn − xn − βδn(f(yn)− f(xn))]‖

≤ γn(1 + βλδn)‖yn − xn‖.

This together with (16) implies that

lim
n→+∞

‖xn+1 − xn‖ = 0. (17)

�

Proposition 3.3. ωw(xn) ⊂ (f + ϕ)−1(0).
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Proof. Letting û ∈ ωw(xn), there exists a subsequence {xni} of {xn} satisfying xni ⇀ û as

i→∞. Next, we will prove û ∈ (f + ϕ)−1(0).

Let (v†, b̂) ∈ graph(f + ϕ). Then, b̂ − f(v†) ∈ ϕ(v†). By virtue of (5), we have

yni = (I + βδniϕ)−1(xni − βδnif(xni)) which yields that

xni
− yni

βδni

− f(xni
) ∈ ϕ(yni

). (18)

According to the monotonicity of ϕ and (18), we derive

〈b̂− f(v†)− (
xni
− yni

βδni

− f(xni)), v
† − yni〉 ≥ 0.

It follows that

〈b̂, v† − yni
〉 ≥ 〈f(v†)− f(xni

) +
xni
− yni

βδni

, v† − yni
〉

= 〈f(v†)− f(yni
), v† − yni

〉+ 〈f(yni
)− f(xni

), v† − yni
〉

+
1

βδni

〈xni − yni , v
† − yni〉.

(19)

As a result of 〈f(v†)− f(yni
), v† − yni

〉 ≥ 0, from (19), we attain

〈b̂, v† − yni
〉 ≥ 〈f(yni

)− f(xni
), v† − yni

〉+
1

βδni

〈xni
− yni

, v† − yni
〉. (20)

Since xni
⇀ û, from Proposition 3.2, we conclude that yni

⇀ û. So, by (20), we receive

〈b̂, v† − û〉 ≥ 0 for all (v†, b̂) ∈ graph(f + ϕ). Hence, û ∈ (f + ϕ)−1(0) which implies that

ωw(xn) ⊂ (f + ϕ)−1(0). �

Next, we state our main convergence theorem.

Theorem 3.1. The sequence {xn} generated by Algorithm 3.1 converges weakly to some

point in (f + ϕ)−1(0).

Proof. Based on Propositions 3.1-3.3, we have the following results in the hand: (i) ∀z† ∈
(f + ϕ)−1, limn→∞ ‖xn − z†‖ exists; (ii) ωw(xn) ⊂ (f + ϕ)−1. Therefore, utilizing Lemma

2.1, we can conclude that the sequence {xn} generated by Algorithm 3.1 converges weakly

to some point in (f + ϕ)−1. This completes the proof. �

4. Concluding remarks

In this paper, we devote to construct an iterative algorithm for solving the variational

inclusion problem (1) in Hilbert spaces. A popular algorithm for finding a solution of (1) is to

use the well-known forward-backward algorithm in which the investigated operator f should

be (inverse) strongly monotone in order to ensure the convergence of the algorithm. In our

paper, we propose a self-adaptive Tseng-type iterative algorithm [Algorithm 3.1] in which

the involved operator f is a general monotone operator. Under some additional conditional,

we prove that the sequence {xn} generated by Algorithm 3.1 has weak convergence.
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