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A DYNAMIC SYSTEM GOVERNED BY SOMMERFELD 
EFFECT 

Valerica MOŞNEGUŢU1, Ligia MUNTEANU2, Veturia CHIROIU3, Cristina 
ŞTIRBU4  

The behaviour of a dynamic system governed by Sommerfeld effect is studied 
in this paper. We refer to a small building equipped with an electromechanical 
vibration absorber subjected to harmonic excitation with time dependent 
frequencies and random vibrations, respectively. This structure is a non-ideal 
system which acts like an energy sink for which a part of the source energy is spend 
to deform the system rather than increasing the drive speed. We show that this 
system exhibits a rich variety of phenomena, including chaotic motion.  

Keywords: Non-ideal system, Sommerfeld effect, chaotic behaviour. 

1. Introduction 

A vibrating system is said ideal when its excitation is not influenced by the 
response of the system. When the excitation is influenced by the response of the 
system, the system is said non-ideal. A new degree of freedom is present in the 
theory for which a new equation has to be added in order to describe how the 
energy source interacts with the vibrating system. The energy transfer in these 
dynamic systems is governed by the Sommerfeld effect which appears as a result 
of the law of energy conservation.   

Sommerfeld observed this phenomenon in 1902 while making an 
experiment with a cantilever beam connected with an energy source at its free 
end. He observed that the structural response of the system to which an electrical 
motor is connected may act like energy sink under certain conditions so that a part 
of the energy supplied by the source is spend to vibrate the structure rather than 
increasing the drive speed. Sommerfeld had calculated the change of energy 
between the source and the beam and per se observed that the motor has a speed 
which remains the same until it suddenly jumps to a much higher value when the 
driving frequency is closer to the natural frequency of the beam and the drive 
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power increases further. Its amplitude jumps to a much lower value upon 
exceeding a critical input power [1-4].  

Several papers have analyzed the Sommerfeld effect [5-11]. Depending on 
the problem, the Sommerfeld effect can be positive and desirable, or can be 
completely unfavorable, and in this case the effect must be controlled. One of the 
undesirable effects consists in the additional vibrations send by the source to the 
system instead of speeding up the machine. The system mimics a disappearance 
of the energy in the resonance regions which can affect the stability of the system, 
sending it to chaos [2, 12-13].  Moreover, the class of models governed by the 
Sommerfeld effect exhibits a rich variety of phenomena, including chaotic motion 
due to the strong sensitivity to the control parameter [14].  

In this paper, we start from the papers [10] and [11], and analyse the 
response of a small building equipped with an electromechanical vibration 
absorber to harmonic excitation with time dependent frequencies and random 
vibrations, respectively. It is shown that the unstable periodic orbits of the 
structure without the vibration absorber become the source of chaos.  

2. Mathematical formulation 

We consider the same structure analysed in [10] and [11] equipped with an 
electromechanical vibration absorber (Fig.1). The second floor is equipped with 
an absorber. The stiffness and damping considered here are the cubic Duffing, 
cubic-quintic Duffing or Rayleigh, or another such as the Van der Pol with first, 
second, third, fourth and fifth term. The stiffness is expressed as a sum of a linear 
and a cubic Duffing term, while the damping is considered to be linear.  

 

 
Fig. 1. Scheme of the structure coupled to the absorber device [10], [11]. 
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The coupling between the motion equations of the building and the 
equations of the energy source is presented next by the following set of equations 
[10], [11]  

 
3

1 1 2 0 1 1 1 2 0 2 1 2 0(2 ) (2 ) (2 ) 0,my c y y y dy k y y y k y y y+ − − + + − − + − − =   (1) 
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0 2 cosm ry I a bϕ = ϕ+ ϕ− ,                                                                       (3) 

 
( )2 2 1 2 3 4 5

2 1 0 0 0 3 0 5( ) 1T y y Lq R i q q C q i q i q− −− = − + − − − α − α ,                     (4) 
 

0 ( )y f t= .                                                                                                (5)  
 

where jy  is the displacement of thj  story, 1,2j = , m  the mass of each story,  c  
the interfloor damping (internal damping), d  the external damping constant 
(velocity damping), 1k  the linear spring constant, 2k  the cubic spring constant, ϕ  
the angular displacement of the rotor, r  the eccentricity of unbalanced shaft of the 
electric motor, 1 0m m m= +  with 0m  the mass of unbalanced shaft of the electric 
motor, I  the moment of inertia of the rotor, 2T nlB= π  the transducer constant, 
n   the number of turns in the coil, l  the radius of the coil, B the uniform radial 
magnetic field strength in the annular gap, L  the inductor, C  the capacitor, R  the 
resistor, resV the voltage in the resistor, condV the voltage in the capacitor, 0i  the  
initial current in the electrical part, 0C  the capacitive characteristic, 3α , 5α  the 
capacitor coefficients and q  the instantaneous electrical charge. The expression 
for the driving torque of the motor is b a− ϕ  (linear in the stationary regime) with 
b  related to the voltage applied to the armature of the DC motor, and a  is a 
constant depending of the considered motor.  

The electric component of the controller is composed by an inductor L , a 
capacitor C , and a resistor R . The expression of the voltage in resistor and the 
capacitor are [9]  
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In (2) the right side term represents the action of the source of energy. Eq. 
(3) expresses the supplying of the last story with the source energy. Eqs. (4) and 

(5) represent the boundary conditions for Eqs. (1)-(3).  
When loading is deterministic, the function ( )f t  from (5) is known as a 

function of time. When loading is random, the function ( )f t  is not known a priori 
and it is defined statistically.  

In this paper, the function ( )f t  can be viewed as a step dependent function 
( )tΩ   

 2 1
1

1( ) 1 1 tanh( ( ))
2 2 st t tω −ω⎡ ⎤⎛ ⎞Ω = ω + + ε −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, 0 t T≤ ≤ ,                      (7) 

where 1ω  and 2ω  the initial and final frequencies, st  is the time at which the 
frequency is changed, and ε →∞  is a parameter which describes the step function 
limit.  Also, the function ( )f t  can be viewed as an average of various data 0y  
measured from k th earth motions 0 ( )ky f t= . This is equivalent to obtain ( )kf t  
from the average curve { ( )}E f t . The random vibrations are of short duration, so 
the process is not stationary.  From this point of view we can not use a purely 
random stationary Gaussian process.  

We start with 1D expected value { ( )}E f t , and the 2D expected function 

1 2{ ( ), ( )}E f t f t respectively, which are given by [14]  
 

1{ ( )} ( ) ( ( ))d ( )E f t f t W f t f t
∞

−∞

= ∫ ,  

1 2 1 2 2 1 2 1 2{ ( ) ( )} ( ) ( ) ( ( ), ( ))d ( )d ( )E f t f t f t f t W f t f t f t f t
∞

−∞

= ∫ ,                     (8) 

 
where 1( )W f and 2 1 2( ( ), ( ))W f t f t  are the 1D probability density function for a 
given t , and  the 2D probability density function, respectively, for given 1t  and 

2t . The thn and thm moments ( , 0,1, 2,...)m n = are also calculated   
 

1{ ( )} ( )dnE f t fW f f
∞

−∞

= ∫ ,     

1 2 1 2 2 1 2{ ( ) ( )} ( ) ( ) ( ( ), ( ))dm n m n m nE f t f t f t f t W f t f t f
∞

−∞

= ∫ . 
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For 1m n= = , the  correlation function 1 2( , )fR t t  is obtained  
 

1 2 1 2 1 2 2 1 2 1 2( , ) { ( ) ( )} ( ) ( ) ( ( ), ( ))d ( )d ( )fR t t E f t f t f t f t W f t f t f t f t
∞

−∞

= = ∫ .    (9) 

 
In (7) we can change ( )f t with { ( )}E f t  or 1 2 1 2( , ) { ( ), ( )}fR t t E f t f t= so 

that the calculations to remain the same as in the deterministic case. If the 
correlation function 1 2( , )fR t t is known, we can calculate the cross correlation 
functions 

1 2 1 2

1 2 2 1 2 1 2

( , ) { ( ) ( )}

( ) ( ) ( ( ), ( ))d ( )d ( ),

j ky y j k

j k j k j k

R t t E y t y t

y t y t W y t y t y t y t
∞

−∞

= =

= ∫
                                     (10) 

 
and the square displacements 2{ ( )}jE y t  for the thj , 1,2j =  story   

         
2 2

2{ ( )} ( ) ( ( ), ( ))d ( )j j j jE y t y t W y t y t y t
∞

−∞

= ∫ .                                                (11) 

 
 The dimensionless version of (1-5) is 
 

2
1 1 1 1 1( ) 0,x x A A A′′ ′ ′+β + α + δ +α =   1 2 02A x x x= − −  ,                         (12) 

 
2 2

2 1 2 1 4 1 1 3 3 3 3( ) (1 )( cos sin )x x x B B B x x x x′′ ′ ′ ′ ′′ ′+β μ −λ + μ α + δ +α μ = −μ − ,  
 

2 1B x x= − ,                                                                                           (13) 
 

3 1 2 3 3cosx x x ux v′′ ′′ ′− η + = ,                                                                    (14) 
 

3 3 5
4 2 4 2 4 2 4 2 4 2 4 2 0x x x x x x B′′ ′ ′−α +β + γ + δ +η + λ = ,                                  (15) 

 
 0 ( )x g= ϑ ,                                                                                           (16) 

 
where ( )g ϑ depends on ( )f t which can be viewed as an average of various data 

0y  measured from k th earth motions 0 ( )ky f t= . In (12-16) prime means the 
differentiation with respect to τ , and  



8                       Valerica Moşneguţu, Ligia Munteanu, Veturia Chiroiu, Cristina Ştirbu 

1tτ = ω , 1
1

k
m

ω = , 0
0

yx
r

= , 1
1

yx
r

= ,  2
2

yx
r

= ,  3x = ϕ , 4
0

qx
q

= ,  

0 1

m m
m m m

μ = =
+

, 1
2
1

1k
m

α = =
ω

, 1
1

c
m

α =
ω

, 1
1

d
m

β =
ω

,   

2
2

1 2
1

k r
m

δ =
ω

,  0
1

1 1

Tq
m r

λ =
ω

, 0
1

rm
I

η = ,  
1

au
I

=
ω

,  2
1

bv
I

=
ω

,                  (17) 

2
0 1

Tr
q L

λ =
ω

, 2
1

R
L

α =
ω

, 
2
0 1

2 2
0

Rq
i L
ω

β = , 2 2
0 1

1
LC

γ =
ω

,  

2 2
0 3 0

2 2
1

i q
L
α

δ =
ω

, 
4 4
0 5 0

2 2
1

i q
L
α

η =
ω

,  
1

Ω
ϑ =

ω
. 

In (13) 1ω  is the first natural frequency of the structure. Unknowns of Eqs. 
(12)-(16) are the dimensionless displacement of thj  story jx , 1, 2j = , the angular 
velocity of the rotor 3x , and the dimensionless instantaneous electrical charge 4x . 
The resonance condition with the building is given by 3 1x′ = , for which 

1 1′ϕ = ω ϕ = ω .   
The only control parameter is 2

1/v b I= ω , where b  is related to voltage 
applied across to the DC motor, I  is the moment of inertia of the rotor, and 1ω  is 
the first natural frequency of the structure. In addition, we take into account the 
influence of parameters 1 1/c mα = ω  and 1 1/d mβ = ω , where c  is the interfloor 
damping (internal damping) and d  is the external damping constant (velocity 
damping), upon the chaotic behaviour of the system. 

Starting from (11) it is interesting to calculate various averages  

{ ( )} ( ) { ( )}d
t

j jE y t K t E f
−∞

= − τ τ τ∫ ,                                                        (18)  

1 2

1 2 1 1 2 2 1 2 1 2{ ( ) ( )} ( ) ( ) { ( ) ( )}d d
t t

j k j kE y t y t K t K t E f f
−∞ −∞

= − τ − τ τ τ τ τ∫ ∫ ,      (19) 

 
For { ( )} 0E f τ = , it results { ( )} 0jE y t =  from (18).  If the autocorrelation 

function of ( )f t is known, we see that 1 2( , )fR t t is also known. So, we obtain from 
(19) 
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1 2

1 1 2 2 1 2 1 2( ) ( ) ( , )d d
j k

t t

y y j k fR K t K t R
−∞ −∞

= − τ − τ τ τ τ τ∫ ∫ .                              (20) 

Calculation of the mean kinetic energy for each story requires the calculation 
of the integral 

1 2

1 1 2 2 1 2 1 2( ) ( ) ( , )d d
j k

t t

y y j k fR K t K t R
−∞ −∞

= − τ − τ τ τ τ τ∫ ∫ .                              (21) 

The shearing force correlation includes the part given by the spring force and 
the part that is dissipated by the internal damping 

 
3

1 1 2 0 1 1 2 0 2 1 2 0(2 ) (2 ) (2 )V c y y y k y y y k y y y= − − + − − + − − . 
 

The maximum displacement is observed at this story 
  

3
2 2 1 1 2 1 2 2 1( ) ( ) ( )V c y y k y y k y y= − + − + − . 

 
The expression for the shearing force correlation is 

1 2

1 2 1 1 2 2 1 2 1 2( , ) ( ) ( ) ( , )d d
j k j k

t t

V V j k V VR t t K t K t R
−∞ −∞

= − τ − τ τ τ τ τ∫ ∫ ,                   (22) 

 
where 1 2 , , 1( , )

j kV V j k j kR t t R R −= − . 
The 1D and 2D probability density functions are given by [15] 
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with 
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From (23) or (24), the correlation functions and various moments become 

1{ } ( )dj j j jE y y W y y
∞

−∞

= ∫ ,   
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2{ } ( , )d d
j kj k j k j k j k y yE y y y y W y y y y R

∞ ∞

−∞ −∞

= =∫ ∫ ,                                       (26) 

1{ } ( )dn n
j j j jE y y W y y

∞

−∞

= ∫ ,   2{ } ( , )d dm n n m
j k j k j k j kE y y y y W y y y y

∞ ∞
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The autocorrelation functions 2,2R , 1,1R and the cross correlation functions 

1,2R respectively, are divided by 
2

0
0 2

4
441

fR =
π

, where 2
0f  is the spectral density (a 

constant) of  fR  which characterizes a Gaussian processes, for which the 
correlation function 1 2( , )fR t t   becomes 

 
2

1 2 1 2 0 1 2( , ) { ( ) ( )} ( )fR t t E f t f t f t t= = δ − ,                                               (28) 
 

with ( )tδ  is the Dirac’s delta function. 
 

3.  Harmonic excitation with time dependent frequencies  

Numerical simulations of solutions  are carried out by taking the following 
values for parameters:  0.7μ = ,  1γ = 0.89,  1δ = 0.83,   1λ = 1.2, 1η = 0.4,  2λ =  2, 

2α = 0.3, 2β = 0.07, 1α = 0.015, 1β =0.011, 2γ = 0,01, 2δ =0.06, 2η = 0.9, 
0 15g = and ϑ = 1. For 1 1/c mα = ω , 1 1/d mβ = ω . The time frames are the following: 

0 500≤ τ ≤  and 500 800≤ τ ≤  above the resonance, 800 1400≤ τ ≤  inside resonance, 
and 1400 1600≤ τ ≤ , 1600 2000≤ τ ≤  below the resonance, respectively. 

The range of the parameter 
0 1

m m
m m m

μ = =
+

 varies from 0.7 to 1. The 

value 0.7μ =  corresponds to the case when the 0m  represents 40% of m  while 
1μ =  means that the 0m  is negligible compared to m .  

The step function (7) is introduced for two cases: (1) τ =2 in the interval 
0 500≤ τ ≤  above the resonance and (2) τ =815 in the interval 800 1400≤ τ ≤  
inside the resonance.  

Fig. 2 plots the step function in the interval 0 500≤ τ ≤  for 1ω =  1, 2ω = 2 
(solid line) and 2ω = 3 (dash line) and 20ε = , sτ =2 [10].  For other intervals, the 
step function has similar shapes. 
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Fig. 2. ( )ϑ τ as a function of τ  above the resonance [10]. 

 

 
Fig. 3. Variation of control parameter v  with respect to τ   above and inside the resonance. 

 
 The variation of the control parameter v  with respect to τ  is shown in Fig. 
3, in the intervals above the resonance and also, inside the resonance, respectively. 
The control parameter v  knows a sudden variation with respect to τ  at the 
beginning of the interval 0< τ <  60. For τ >60, v  is constant and then it jumps to 
2.5 when τ =500.  Next, v  is constant on 500 < τ <  800 and again has a sudden 
variation at 800 < τ <  900. For 900< τ <1315, v  is constant and then it jumps to 
the value 1.5 when τ =1400.  

The time variation of the displacement 2x  corresponding to the last story 
with and without the absorber is plotted in Fig.4 above the resonance in the case 
of both solid and dash lines (blue and green contours) respectively. The grey 
region corresponds to the case of no coupling to the absorber, and the red one to 
the case of coupling.  
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The time variation of the displacement 2x  corresponding to the last story 
without/with the absorber, are plotted in Figs. 5 and 6, respectively, inside the 
resonance in the case of both solid and dash lines (blue and green contours), 
respectively. According to Fig. 5, the displacements present squeezing and 
weaving, and an increasing in magnitude for the last story without the absorber 
inside the resonance. The squeezing and amplitude are enhanced for the dash line 
(blue and green contours) in Fig. 5. These squeezing and weaving which appear in 
Fig. 5 characterize large amplitude vibrations and tendency to chaos.  

To understand the appearance of the chaos, the stability of trajectories is 
investigated. Given the trajectories we analyze if their behaviour is chaotic or not 
with respect to v . To do this we investigate the behaviour of the Euclidean 
distance in the phase space [15-17] between a parent trajectory and another 
trajectory obtained by a slight perturbation of the trajectory parent at 0τ =  

 
4 4

0 1 2 0 1 2 2

1 1
( ) ( ) ( )i i i i

i i
D x x x x

= =

′ ′τ = − + − τ∑ ∑ ,                                               (29) 

 
where the superscript 0  indicates the parent trajectory and 1 the perturbed 
trajectory, respectively. The initial perturbation applied to the parent trajectory is 

3
0 2 10D −= × .  

The motion of the system not coupled with absorber is stable when 
( )D τ behaves linearly at short intervals of time. However, for certain values of the 

control parameter v , the motion is far away from the linear behaviour and shows 
an exponential increase in short periods of time. This instability is characteristic 
of the chaotic motion behaviour at short intervals of time, and can be 
characterized by the leading Lyapunov exponent λ  defined by 

 
0 0 0exp( ) lim ( ) /d D D
→

λτ = τ .                                                                  (30) 
 

The initial perturbation applied to the trajectory  is denoted by 0D  and its 
value is 5

0 3 10D −= × .  
The resonant curves of the displacement amplitudes for the last story without the 
absorber (grey colour) and with the absorber (red colour) are plotted in Fig. 7. We 
see that in the absence of coupling, the displacements exhibit high values for both 
damping cases, with increased amplitudes with chaotic aspect over the ranges 
v > 5.6 .  
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Fig. 4. Time history for 2x  with and without the absorber above the resonance for 2ω = 2 .  

The blue and green contours correspond to 2ω = 3 . 
 

        

 
Fig. 5. Time history for 2x without the absorber during resonance  for 2ω = 2.  

The green contour corresponds to 2ω = 3 . 
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Fig. 6. Time history for 2x with absorber during resonance for 2ω = 2.  

The green contour corresponds to 2ω = 3 . 
 

 
Fig. 7. Resonant curves of the displacement amplitudes for the last story without (grey colour) and 

with (red colour) coupling. 
 

The initial small deviations amplify exponentially and it takes time to 
accumulate to substantial amount relative to the small initial swerve. When the 
structure is not coupled with the absorber, the chaotic aspect is observed over the 
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ranges 5.6 10v< ≤ . In the case of coupling, the chaotic aspect is absent. The sharp 
jump phenomenon at v =  2.6 and 7.55 is a manifestation of the Sommerfeld effect 
when the energy transfer of the structure to the vibration absorber leads to 
reduction of the displacements. 

4. Random vibrations 

The autocorrelation functions 2,2R , 1,1R  and the cross correlation functions 

1,2R respectively, are plotted versus the correlation interval in Figs. 8-10. The 

parameters values were selected as 
2

0
0 2

4
441

fR =
π

, 50k
m
= , c d= = 0.2 .  

 

 
 

Fig.  8. Displacement autocorrelation functions for the second story with and without the vibration 
absorber. 
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Fig. 9. Displacement autocorrelation functions for the first story with and without the 

vibration absorber. 
 

 
Fig. 10. Displacement cross correlation functions with and without the vibration absorber. 

 
It is clear that the general case evaluation presented in this Section is 

difficult. Eringen [6] has simplified these calculations by considering the purely 
random stationary Gaussian processes. In this case (20) becomes 

 
1 22

0
1 22 ( ) ( )d

4j k

t t

y y j k
fR K t K t

−∞ −∞

= − τ − τ τ
π ∫ ∫ .                                                        (31) 
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where 0f  is defined in (28).  Eringen [18] has observed a peculiar dependence on 
τ  in the correlation functions which indicate that in the random response perhaps 
a period is present. This dependence becomes important in a damped fashion. This 
periodicity is not present in the autocorrelation function for the shearing force. 
The maximum mean square shearing force occurs at the first floor. 

5. Conclusions  

This work is dealt with the analysis of the response to vibrations of a small 
building equipped with an electromechanical vibration absorber. The interaction 
between the vibrating system and the energy source is investigated for step 
dependent frequencies and for random vibrations, respectively. This interaction 
corresponds to a system with non-ideal excitation explained by the Sommerfeld 
effect. The Sommerfeld effect is a universal phenomenon which appears as a 
result of the law of energy conservation. It is due to direct and feedback coupling 
between the vibration absorber and the vibrational loads. The Sommerfeld effect 
concerns the jump induced due to the influence of the unbalance response on a 
non-ideal drive around the critical speed of the excited structure. As the motor 
accelerates to reach near resonant conditions, a considerable part of its output 
energy is consumed to generate large amplitude motions of the forced structure 
which can counteract the vibrations of this structure, without increasing the 
angular speed of the motor. Therefore, the reduction of vibrations for a resonant 
structure is made by coupling it with a vibration absorber.  
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