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A DYNAMIC SYSTEM GOVERNED BY SOMMERFELD
EFFECT

Valerica MOSNEGUTU', Ligia MUNTEANU?, Veturia CHIROIU?, Cristina
STIRBU*

The behaviour of a dynamic system governed by Sommerfeld effect is studied
in this paper. We refer to a small building equipped with an electromechanical
vibration absorber subjected to harmonic excitation with time dependent
frequencies and random vibrations, respectively. This structure is a non-ideal
system which acts like an energy sink for which a part of the source energy is spend
to deform the system rather than increasing the drive speed. We show that this
system exhibits a rich variety of phenomena, including chaotic motion.
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1. Introduction

A vibrating system is said ideal when its excitation is not influenced by the
response of the system. When the excitation is influenced by the response of the
system, the system is said non-ideal. A new degree of freedom is present in the
theory for which a new equation has to be added in order to describe how the
energy source interacts with the vibrating system. The energy transfer in these
dynamic systems is governed by the Sommerfeld effect which appears as a result
of the law of energy conservation.

Sommerfeld observed this phenomenon in 1902 while making an
experiment with a cantilever beam connected with an energy source at its free
end. He observed that the structural response of the system to which an electrical
motor is connected may act like energy sink under certain conditions so that a part
of the energy supplied by the source is spend to vibrate the structure rather than
increasing the drive speed. Sommerfeld had calculated the change of energy
between the source and the beam and per se observed that the motor has a speed
which remains the same until it suddenly jumps to a much higher value when the
driving frequency is closer to the natural frequency of the beam and the drive
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power increases further. Its amplitude jumps to a much lower value upon
exceeding a critical input power [1-4].

Several papers have analyzed the Sommerfeld effect [5-11]. Depending on
the problem, the Sommerfeld effect can be positive and desirable, or can be
completely unfavorable, and in this case the effect must be controlled. One of the
undesirable effects consists in the additional vibrations send by the source to the
system instead of speeding up the machine. The system mimics a disappearance
of the energy in the resonance regions which can affect the stability of the system,
sending it to chaos [2, 12-13]. Moreover, the class of models governed by the
Sommerfeld effect exhibits a rich variety of phenomena, including chaotic motion
due to the strong sensitivity to the control parameter [14].

In this paper, we start from the papers [10] and [11], and analyse the
response of a small building equipped with an electromechanical vibration
absorber to harmonic excitation with time dependent frequencies and random
vibrations, respectively. It is shown that the unstable periodic orbits of the
structure without the vibration absorber become the source of chaos.

2. Mathematical formulation

We consider the same structure analysed in [10] and [11] equipped with an
electromechanical vibration absorber (Fig.1). The second floor is equipped with
an absorber. The stiffness and damping considered here are the cubic Duffing,
cubic-quintic Duffing or Rayleigh, or another such as the Van der Pol with first,
second, third, fourth and fifth term. The stiffness is expressed as a sum of a linear
and a cubic Duffing term, while the damping is considered to be linear.

motor

Fig. 1. Scheme of the structure coupled to the absorber device [10], [11].
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The coupling between the motion equations of the building and the
equations of the energy source is presented next by the following set of equations
[10], [11]

my, +c(2y, =y, = )+ dy, + b2y, — v, = y) + kK, 2y, — v, _yo)3 =0, (1)

my, +c(y, —y)+dy, +k (¥, = ») +k,(», _)"1)3 =

=Tq + myr{cos @ —myrd’ sin g, @
myry, cos@=1p+ap—>b, 3)
T(3,-3)=-Li+R(1-i,’q* )4 - C,'q —izasq’ —igosq’, 4)
Yo=S(0). (5)

where y; is the displacement of j" story, j=1,2, m the mass of each story, c

the interfloor damping (internal damping), d the external damping constant
(velocity damping), k, the linear spring constant, &, the cubic spring constant, ¢
the angular displacement of the rotor, » the eccentricity of unbalanced shaft of the
electric motor, m, =m+m, with m, the mass of unbalanced shaft of the electric
motor, / the moment of inertia of the rotor, T =27nnlB the transducer constant,
n the number of turns in the coil, / the radius of the coil, B the uniform radial
magnetic field strength in the annular gap, L the inductor, C the capacitor, R the
resistor, V the voltage in the resistor, V ,the voltage in the capacitor, i, the

res

initial current in the electrical part, C, the capacitive characteristic, a,,o, the

ond

capacitor coefficients and ¢ the instantaneous electrical charge. The expression
for the driving torque of the motor is »—a¢ (linear in the stationary regime) with
b related to the voltage applied to the armature of the DC motor, and a is a
constant depending of the considered motor.

The electric component of the controller is composed by an inductor L, a
capacitor C, and a resistor R . The expression of the voltage in resistor and the
capacitor are [9]

. . 3
Vres = _RiO [i_%[iJ J) Vcond = Ci—i_ a3q3 + G‘qu H (6)
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In (2) the right side term represents the action of the source of energy. Eq.
(3) expresses the supplying of the last story with the source energy. Egs. (4) and
(5) represent the boundary conditions for Egs. (1)-(3).
When loading is deterministic, the function f(z) from (5) is known as a
function of time. When loading is random, the function f(¢) is not known a priori

and it is defined statistically.
In this paper, the function f(¢) can be viewed as a step dependent function

Q(1)

W, — 0,

Q(t) = o, [1 + (1 +%tanh(8(t —t, ))ﬂ , 0t <T, 7

where o, and o, the initial and final frequencies, ¢, is the time at which the

frequency is changed, and € — o« is a parameter which describes the step function
limit. Also, the function f(f) can be viewed as an average of various data y,

measured from k" earth motions y, = £,(¢). This is equivalent to obtain f, ()
from the average curve E{f(¢)}. The random vibrations are of short duration, so

the process is not stationary. From this point of view we can not use a purely
random stationary Gaussian process.
We start with 1D expected value E{f(¢)}, and the 2D expected function

E{f(t), f(t,)} respectively, which are given by [14]

E{f (O} = [ FOW(f O (@),
E{f@)f(t)} = f J@ W, (f (@), f @D (1)df (1), ®)
where W (f)and W,(f(t,),f(t,)) are the 1D probability density function for a

given ¢, and the 2D probability density function, respectively, for given ¢, and

t,. The n” and m" moments (m,n =0,1,2,...) are also calculated

E{f (0} = [ (N

E{S" ()" (60} = [ S @) G @), 1)
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For m=n=1, the correlation function R, (f,7,) is obtained
R (1,6) = EXf(4)f (1)} = J S@) W, (f @), f())df (6)df (1) (9)

In (7) we can change f(r)with E{f(t)} or R (#,t,)=E{f(t),f(s,)}so0
that the calculations to remain the same as in the deterministic case. If the
correlation function R, (7,7,)is known, we can calculate the cross correlation

functions
Ry/yk (t,1,)= E{yj )y, (1)} =

. (10)
= _[ Vi (t) Y, (tz)VVz(y_/ () (tz))dy_; (1)dy, (1),

and the square displacements F{ yi (¢)} forthe j”, j=1,2 story

E{ (@0} = [ y20W,(0;(0),,(6)dy(0). 11

The dimensionless version of (1-5) is
X' +Bx + A(o+8,47 )+, A" =0, A=2x-x,—x, , (12)

x5 + B, —A,x; + Bu(a+8,B%) + o uB’ = (1—p)(x! cos x; —x sin x,),

B=x,—x, (13)
X; —MX; COSX, +uUx; =V, (14)
x5 — o) +Byxy +y,x, +8,x, +M,x; +A,B=0, (15)
X =8(9), (16)

where g(9)depends on f(¢#)which can be viewed as an average of various data
v, measured from k" earth motions Yo =/,,(). In (12-16) prime means the
differentiation with respect to t, and
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/k Yy Yy Y q

_ _ 1 _ 20 _ 1 _ 72 _ —_

T=0f, O =, [—, X =7, =", X, =", 3=0, X, =—,
m

r r r q,
= i _ﬂ: = k12=1> 1 < aBl_ d ’
m+m, m mo, ) mo,
k,r? T b
81: 2r29 ?\‘1 qO 7711—%, u:i, V= 2 (17)
mo, mro, 1 T, T,
Tr R Rg® 1
Ay = » Oy = 7622%,Y2=—25
q,Lo, Lo, iyL LC,o,
5, = igo%gé LM, = igas?g , 8=£.
Lo, Lo, o,

In (13) o, is the first natural frequency of the structure. Unknowns of Egs.
(12)-(16) are the dimensionless displacement of ;" story x;, j=1,2, the angular
velocity of the rotor x,, and the dimensionless instantaneous electrical charge x,.
The resonance condition with the building is given byx; =1, for which
0=0,0=0,.

The only control parameter is v=5b/Iw,, where b is related to voltage
applied across to the DC motor, / is the moment of inertia of the rotor, and ®, is

the first natural frequency of the structure. In addition, we take into account the
influence of parameters o, =c/mw, and B, =d/m®,, where c is the interfloor

damping (internal damping) and d is the external damping constant (velocity
damping), upon the chaotic behaviour of the system.
Starting from (11) it is interesting to calculate various averages

Ely; (0} = I K (t=0E{f(v)idr, (18)

E{y, )y )= [ [ K (6 =1)K, (6, =) EL (1) /(2)hdrde, . (19)
For E{f (1)} =0, itresults E{y (¢)} =0 from (18). If the autocorrelation

function of f(#) is known, we see that R, (7,,7,) is also known. So, we obtain from
(19)



A dynamic system governed by Sommerfeld effect 9

L)

R, = [ | Kt =t)K,(t,~1,)R, (x,,7,)dr,dr, . (20)

Calculation of the mean kinetic energy for each story requires the calculation
of the integral

Lo b

R, = | | Kt =t)K,(t,~1)R, (x,,7,)dr,dr, . (1)

The shearing force correlation includes the part given by the spring force and
the part that is dissipated by the internal damping

V=23 =3, = 3) + ki (2y, =y, = y) + ke 2y, =y, = 1)
The maximum displacement is observed at this story
V,=c(, =) +k(y,=y)+k(», _y1)3-

The expression for the shearing force correlation is
L)

R, (tut) = [ [ K\ (6, =1)K, (6 = TR, (x,,7,)dr dr, (22)

—00 —0

where R, , (1,5,) =R, —R; ;.
The 1D and 2D probability density functions are given by [15]

1 -y’
W)= exp -y 23)
s c,V2n 2G§
Wz(y_,«,yk)z
= 1 exp ! - Y, _y_:+2pﬂcyjyk 24
Gjrk 2“(1_pﬂ() (I_ij) 2(5? Zti Gka

with
o, =E{y}-E"{y,}=R, (t.0), 6, =0R,  (t0), ;=R (1,1). (29

From (23) or (24), the correlation functions and various moments become

Ely}= Jy,-VK(y,)dy,,
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Eyyes = I jyjyk%(y,-,yk)dy,dyk =R, , . (26)

—00 —00

EW)=[yim)dy,, EGyiy=[ [ yim . podvdy, . @7)

—00 —00

The autocorrelation functionsR,,, R, and the cross correlation functions

41

R, ,respectively, are divided by R, = VTR where f; is the spectral density (a
T

constant) of R, which characterizes a Gaussian processes, for which the

correlation function R, (#,7,) becomes

Rf(tlatz) =E{f@)f()}= f028(t1 -1,), (28)

with 8(¢) is the Dirac’s delta function.

3. Harmonic excitation with time dependent frequencies

Numerical simulations of solutions are carried out by taking the following
values for parameters: n=0.7, y,=0.89, 3 =0.83, A =12, 1n,=04, A,=2,
a,=03, B,=0.07, « =0.015 B,=0.011, y,=0,01, §,=0.06, n,=0.9,
g,=15and 9=1. For a, =c¢/mw,, B, =d/me,. The time frames are the following:
0<1<500 and 500<t<800 above the resonance, 800 <t <1400 inside resonance,

and 1400 <t<1600, 1600 <1<2000 below the resonance, respectively.

Mm___M™ Varies from 0.7 to 1. The

m+m, m

The range of the parameter p=

value n=0.7 corresponds to the case when the m, represents 40% of m while
p =1 means that the m, is negligible compared to m .

The step function (7) is introduced for two cases: (1) T=2 in the interval
0<1<500 above the resonance and (2) t=815 in the interval 800<1t<1400
inside the resonance.

Fig. 2 plots the step function in the interval 0<t<500 for o, = 1, ©,=2
(solid line) and ®, =3 (dash line) and €¢=20, t, =2 [10]. For other intervals, the

step function has similar shapes.
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Fig. 3. Variation of control parameter v with respectto T above and inside the resonance.

The variation of the control parameter v with respect to t is shown in Fig.
3, in the intervals above the resonance and also, inside the resonance, respectively.
The control parameter v knows a sudden variation with respect to t at the
beginning of the interval 0< t < 60. For 1 >60, v is constant and then it jumps to
2.5 when 1=500. Next, v is constant on 500 <t < 800 and again has a sudden
variation at 800 <t < 900. For 900< t <1315, v is constant and then it jumps to
the value 1.5 when t =1400.

The time variation of the displacement x, corresponding to the last story
with and without the absorber is plotted in Fig.4 above the resonance in the case
of both solid and dash lines (blue and green contours) respectively. The grey
region corresponds to the case of no coupling to the absorber, and the red one to
the case of coupling.
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The time variation of the displacement x, corresponding to the last story

without/with the absorber, are plotted in Figs. 5 and 6, respectively, inside the
resonance in the case of both solid and dash lines (blue and green contours),
respectively. According to Fig. 5, the displacements present squeezing and
weaving, and an increasing in magnitude for the last story without the absorber
inside the resonance. The squeezing and amplitude are enhanced for the dash line
(blue and green contours) in Fig. 5. These squeezing and weaving which appear in
Fig. 5 characterize large amplitude vibrations and tendency to chaos.

To understand the appearance of the chaos, the stability of trajectories is
investigated. Given the trajectories we analyze if their behaviour is chaotic or not
with respect to v. To do this we investigate the behaviour of the Euclidean
distance in the phase space [15-17] between a parent trajectory and another
trajectory obtained by a slight perturbation of the trajectory parent at t=0

D(r)=\/i(xf—x;)2+z4:(x;°—x;')zr2 , (29)

where the superscript 0 indicates the parent trajectory and 1 the perturbed
trajectory, respectively. The initial perturbation applied to the parent trajectory is
D, =2x10".

The motion of the system not coupled with absorber is stable when
D(7) behaves linearly at short intervals of time. However, for certain values of the

control parameter v, the motion is far away from the linear behaviour and shows
an exponential increase in short periods of time. This instability is characteristic
of the chaotic motion behaviour at short intervals of time, and can be
characterized by the leading Lyapunov exponent A defined by

exp(At) =lim, = D(1)/D,. (30)

The initial perturbation applied to the trajectory is denoted by D, and its
value is D, =3x107.
The resonant curves of the displacement amplitudes for the last story without the
absorber (grey colour) and with the absorber (red colour) are plotted in Fig. 7. We
see that in the absence of coupling, the displacements exhibit high values for both

damping cases, with increased amplitudes with chaotic aspect over the ranges
v>5.6.
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Fig. 6. Time history for x, with absorber during resonance for ®, =2.
The green contour corresponds to ®, =3 .
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Fig. 7. Resonant curves of the displacement amplitudes for the last story without (grey colour) and
with (red colour) coupling.

The initial small deviations amplify exponentially and it takes time to
accumulate to substantial amount relative to the small initial swerve. When the
structure is not coupled with the absorber, the chaotic aspect is observed over the
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ranges 5.6 <v<10. In the case of coupling, the chaotic aspect is absent. The sharp
jump phenomenon at v= 2.6 and 7.55 is a manifestation of the Sommerfeld effect
when the energy transfer of the structure to the vibration absorber leads to
reduction of the displacements.

4. Random vibrations

The autocorrelation functions R, ,, R, and the cross correlation functions

2,22
R ,respectively, are plotted versus the correlation interval in Figs. 8-10. The

a1’  k
parameters values were selected as R, = iz ,—=50,c=d=0.2.
441" " m

200

with vibration abeorber

———— without vilwation absorber

100

Fig. 8. Displacement autocorrelation functions for the second story with and without the vibration
absorber.
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Fig. 9. Displacement autocorrelation functions for the first story with and without the
B2/ Ry

100

with vibration abzorbe
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=100

Fig. 10. Displacement cross correlation functions with and without the vibration absorber.

It is clear that the general case evaluation presented in this Section is
difficult. Eringen [6] has simplified these calculations by considering the purely
random stationary Gaussian processes. In this case (20) becomes

f;)Z L
R 2

ViV = 4TC

—00 —0

J. .[ K, (t, - K, (¢, - )dr.

(€2))
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where f, is defined in (28). Eringen [18] has observed a peculiar dependence on

T in the correlation functions which indicate that in the random response perhaps
a period is present. This dependence becomes important in a damped fashion. This
periodicity is not present in the autocorrelation function for the shearing force.
The maximum mean square shearing force occurs at the first floor.

5. Conclusions

This work is dealt with the analysis of the response to vibrations of a small
building equipped with an electromechanical vibration absorber. The interaction
between the vibrating system and the energy source is investigated for step
dependent frequencies and for random vibrations, respectively. This interaction
corresponds to a system with non-ideal excitation explained by the Sommerfeld
effect. The Sommerfeld effect is a universal phenomenon which appears as a
result of the law of energy conservation. It is due to direct and feedback coupling
between the vibration absorber and the vibrational loads. The Sommerfeld effect
concerns the jump induced due to the influence of the unbalance response on a
non-ideal drive around the critical speed of the excited structure. As the motor
accelerates to reach near resonant conditions, a considerable part of its output
energy is consumed to generate large amplitude motions of the forced structure
which can counteract the vibrations of this structure, without increasing the
angular speed of the motor. Therefore, the reduction of vibrations for a resonant
structure is made by coupling it with a vibration absorber.
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