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STOCHASTIC MODEL FOR EVALUATING THE PRECISION 
LANDING OF REENTRY VEHICLE 

Teodor-Viorel CHELARU1, Adrian CHELARU2 

The paper presents a random calculus model for calculating the precision of 
guided flight during terminal phase and automatic landing of a reentry vehicle. The 
proposed method is based on canonical decomposition of the random inputs, which 
allows us to obtain directly the output dispersion of the coordinates of the vehicle 
from the dispersion of any kind of random input signal, which passes through the 
differential equations of motions by using a decomposition of input signal on 
pulsation domains (PD) and by integrating the differential equation system for each 
PD. The novelty of the paper results from the theoretical method of random functions 
theory, applied to solve the technical problem of precision for guided flight during 
terminal phase and automatic landing of a reentry vehicle. 
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Nomenclature 
α  - Attack angle (tangent definition); β  - Sideslip angle (tangent definition); aδ  - 
Aileron deflection; eδ  - Elevator deflection; rδ  - Rudder deflection; ψ  - Azimuth 
angle; θ  - Inclination angle; φ  - Bank angle; ρ  - Air density; Ω  - Body angular 
velocity; ECBA ,,,  - Inertia moments; A

z
A
y

A
x CCC ;;  -  Aerodynamic coefficients of 

force in the body frame; A
n

A
m

A
l CCC ;;  - Aerodynamic coefficients of momentum ; 

T
z

T
y

T
x CCC ;;  - Thrust coefficients in the mobile frame; T

n
T
m

T
l CCC ;;  - Thrust 

momentum coefficients in the mobile frame; SVF 2
0 5.0 ρ=  - Reference 

aerodynamic force; lFH 00 =  - Reference aerodynamic couple; 0T - Reference 
thrust force; lTU0 0=  -Reference couple thrust;  l - Reference length; m  – Mass;  

rqp ,,  - Angular velocity components along the axes of  body frame; S  - 
Reference area; t  - Time; V  - Velocity vector; wvu ,,  - Velocity components in 
body frame;  zyx VVV ,, -Velocity components in local frame; 000 ZYOX  - Normal 
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local-fixed frame (inertial frame); Oxyz  – Body frame (mobile frame); 000 zyx  - 
Coordinates in local-fixed frame . ggg ZYOX  - Ground fixed frame (inertial frame);  

1. Introduction 

 One of the current areas of development in the field of space programs is the 
reentry vehicle.  These vehicles are intended to achieve different space missions, 
from transport of human crew to the space station, till interventions on the 
orbiting satellites.  After the success of the US space shuttle program, the major 
space agencies are considering the development of reentry vehicles, mostly 
without crew, which performs automatic flight.  At European level, European 
Space Agency intends that starting from IXV (Intermediate eXperimental 
Vehicle) vehicle, which is a parachuting re-entry vehicle, to achieve a fully 
automatic re-entry vehicle, PRIDE (Programme for the Reusable In-orbit 
Demonstrator for Europe), which will have a guided landing phase [9]. For these 
types of vehicles there are many problems of study, starting with aero-
thermodynamic issues specific to high speed, heat transfer, accuracy of guidance, 
and others, each of them can be the subject of separate studies. This paper is 
proposing to address one of these issues, namely the one of precision landing, 
when vehicle velocity is low and we can use usual aerodynamic theory for 
ordinary aircrafts. To address this, the paper proposes the determination of the 
landing dispersion zone by developing a stochastic model in which the random 
input values are the flight parameters measured by the sensors, while the output is 
represented by the values that describe the vehicle states (velocity, position). 
 For solving this, there are two possibilities. One of them, developed in work 
[3], consists in the introduction of certain random input in the system that will 
simulate, in the context of classic hypothesis, the noises of the signals introduced 
by the sensors. The determination of the landing dispersion is achieved by 
building a beam of possibilities for the evolution of the vehicle, in so call “Monte 
Carlo” methods. Unfortunately, this method, due to finite number of realizable 
possibilities, gives only a roughly result. 
Another method consists in the canonical decomposition of the random functions. 
This method was founded in paper [1] and developed in papers [2] and [5]. The 
method separates the problem of vehicle dynamic into two sub-problems: one 
consisting in the determination of average evolution, which is a deterministic 
problem, and the second, to obtain the states dispersion. The second problem can 
be solved through the integration of the supplementary equations obtained from 
the canonical separation of random terms from the dynamic equations. This 
method leads to a better quantitative appreciation of the landing dispersion in the 
case of guided vehicle. Next, in the paper we try to apply the method of canonical 
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separation for evaluating the precision automatic landing for a reentry vehicle 
(Fig. 1). 

 
Fig. 1.  The reentry vehicle general view (1-body;  2- flaps; 3 – rudders) 

2. Equations of Motion 

2.1. General Motion Equations for Reentry Vehicle 
 

As shown in the paper [3] the vehicle’s dynamic equations are the translation 
equations, which are achieved from the impulse theorem and the rotation 
equations, which come from the kinetic moment theorem. 
The translation equation can be written in local frame which is an inertial frame 
as:  
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 The rotation equation around the center of the mass, written in the body frame 
is: 
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are aerodynamic and thrust moment coefficients in body frame, and  1−J  is the 
inverse matrix for the inertia moment .  
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The kinematical equations are additional equations, which allow us to obtain the 
linear coordinates in local frame: 

[ ] [ ]Tzyx
T VVVzyx =000 .  (6)

For Euler’s angle when the angular velocity components are known we have: 
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2.2. Guidance Command 
 

Resuming [3], the guidance commands for vehicle flight are: 
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where, angular signal command are φu  - Roll command;  θu - Pitch command; ψu  
- Yaw command, zy uu , -Linear  command; Tu  - Thrust command; 
Roll command assure roll control by following imposed yaw angle:  
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Pitch command assures longitudinal attitude control: 
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and Yaw command assure heading control: 
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Linear command terms are: 
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The guidance commands are applied through the actuators which are 
approximated in the paper [3] by relations: 
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where reaT δδδδ ττττ ;;;  are the time constants and  u
r

u
e

u
a

u
T kkkk δδδδ ;;;  are the  gain 

constants. 
Also, we use integral term, defined as: 

θθ
~

=I .    (15)

 
 2.3. Particularities Equation of Motion for Symmetrical Evolution 

 
Next, starting from dynamic translation equations rewritten in quasi-velocity 

frame [3] we will analyse the particular case of a symmetric evolution, which 
ensure the separation of the longitudinal equation of motion by lateral equation of 
motion and finally allow convenient linearization of the motion equation. 

For consistence of lateral motion equation, specific parameters of this motion 
will be considerate small, but different from zero. Based on these approximations, 
we can evaluate for the beginning the expression of aerodynamics angles, 
obtaining:  

αθγ −= . (16)

respectively: 
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Doing as in paper [3], if we consider the flight in a vertical plane and we neglect 
the influences of the small terms, from (7) we obtain: 
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In this case, as shown in the same paper [3], we can separate the longitudinal 

and lateral motion. Hence, the lateral equations of motion are written in the 
following form:  
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to which we add the relation (17).  
 These equations represent the lateral decoupled equations of motion written in the 
specific case of the vehicle evolution in vertical plane.  
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3. The linearized form of equation of motion 

3.1. Linear Form of Lateral Equation 
The equations (19), presented in the previous section can be linearized and 
together with (17) obtaining: 
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 where : Wβ  - Wind sideslip angle (Cross win influence); *

pY  - Lateral perturbation 
force except wind influence; *

pL  *
pN  - Perturbation roll and yaw moments except 

wind influence; All the coefficients are described in work [3]. 
 From relation (20) we can obtain immediately the stability matrix and the 
command matrix for lateral motion of vehicle. 
 
 3.2. Lateral Extended Stability, Command and Control Matrices 
 
Besides the general motion equations in linear form as outlined above, flight 
vehicle needs other relationships to be added. Among them, the most important 
and which can not be neglected are the actuator equations and the guidance 
equations. For the autonomous flight, as is case of a reentry vehicle, the guidance 
equation is necessary to introduce integrated terms specific to PID (Proportional- 
Integrative – Derivative) -type controllers. 
Starting from (14) linear form of the actuator equation for lateral motion becomes:  
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Using linear relation (20) and (21) we can build extended stability and command 
matrices indicated in paper [5] . Also, by linearizing the relation (9) for lateral 
commands we obtain control matrix: 
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where: 
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In this case, we have the system that describes lateral controlled motion in form: 

BuAxx += ; Kxu −=  (22)

where: 
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The stability and command matrices 010 ,, BAA  are indicated in paper [5] 

4. Canonical decomposition method 

In the following, we present a numerical method, based on canonical 
decomposition of the random variables to solve this class of problems, which can 
be easily implemented in calculus software. The method consists of integrating 
the equations (22) using the canonical decomposition of random functions, 
according to the method presented in work [1].  
This method allows obtaining the output signal dispersion from the input signal 
dispersion for any kind of differential linear unsteady equations. For that, we use a 
decomposition of input signal in a number of pulsation domains (PD) and 
integrate differential equation system for each of them.  

The method is an approximation, because the number of PD is limited. 
Theoretically, if we use an infinite number of PD we can obtain the exact 
solutions. To evaluate the accuracy of the method firstly we analyse a simple case, 
like a test case, with known analytical solutions.     
 
 4.1 Calculus Example, Dispersion Evaluation 
 
Therefore, we choose, as example, the well known linear stationary equation with 
constant coefficients: 

11 ττ xydtdy +−= . (23)
After the Laplace transformation, the equation can be put as a transfer function:  
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Considering as input random variable x , similarly with “white noise”3, centred in 
zero, to output will be a random signal y  also centred in zero. The analytical link 
between spectral densities of the signals is given by: 

xxy SS
i
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1
1

1
22
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2

1 +ωτ
=

+ωτ
= , (25)

The dispersion of the output signal can be obtained through integration of the 
spectral density related to the pulsation ω : 
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where it was taken in the consideration that spectral density of the input signal 
does not depend by pulsation. As numerical example we took the time 
constant ][5,01 s=τ , and as input the signal ][00394.0 sSx =  with dispersion 1=xD  for 
a maximum pulsation ]/1[127max s=ω . Using the analytical relation (26) we 
obtained 02468,0=yAD   
For the calculus example, we noticed that the PD for the spectral density of the 
output signal is limited, transfer function (24) working as a “low band” filter (cut 
the high frequencies). In this case, in our example we could approximate the 
spectral density of the input signal with a rectangle, which contains PD in which 
the output spectral density has values.  
In work[1] it is shown that for an unsteady random function )(tx  it can be used a 
canonical decomposition: 
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where: )(tx  is a centred unsteady function; )(tmx  is an average function,  kV  are 
the random quantities and )(tkϕ  are the coordinate deterministic functions. Also, 
in this work it is shown the link between coordinate functions of the input 
separated signal and the output separated signal. This link allows building the 
spectral density and dispersion of the output signal using spectral density of the 
input signal.  If the input signal is stationary, the coordinate functions have a 
particular form: ti

k
ket ωϕ =)( . In this case, supposing that the input signal is 

stationary and centred we can use the following decomposition: 
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3 Different from “white noise”, the input used is defined over a finite frequencies domain. 



Stochastic model for evaluating the precision landing of reentry vehicle                    61 

where kW  it is complex random centred quantity with the dispersion  
][22 *

kKk WDDD ==  obtained from the spectral density for the input signal 
)(2)( kxkx SS ω=ω ∗  corresponding a pulsation band kωΔ  centred in pulsation kω . 

Because input signal is even, we can write: 
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If the coordinate functions for the input signal are tj
k

ket ω=ϕ )( , and the coordinate 
functions for output signal are )(tkψ , the dispersion for the output signal can be 
obtained with relation:  
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where coordinate functions of the output signal can be obtained from coordinate 
functions of the input signal through equation (23). We can build an equation 
system, containing an equation for each pulsation kω : 
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where: nk ...1= . 
 Because the functions )(tkϕ , )(tkψ , are complex, the solution of the system (31) 
can be obtained by separating the imaginary part from real part:  
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Together with the system solution we obtained the square of the coordinate 
function corresponding the pulsation kω : 2
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corresponding to the pulsation band kωΔ : kxk SD ωΔ= . Using relation (30) until 
maximum pulsation 127max =ω  , for a pulsation number 500=n  and time 

5max =t  we obtained the output signal dispersion, which for numerical application 
has the value 02443,0=yND . For this application, we directly evaluated the 
relative error between analytical result and numerical result:  
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 4.2 Dispersion of Flight Parameters for reentry vehicle 
 
For the re-entry vehicle case, we can put linear system (22) in a form similarly 
with (23): 

XYdtdY BKA −= , (34) 
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where X  is a random input signal and Y  is a random output signal.  Because the 
system describes an autonomous motion where states Y  follows reference 
values DY , the input and output signals can by considerate in form: 

XYYX D D+−= , YYY +=  (35) 

where X   is a noise introduced by sensors that measure the system states.  The Y  

means the average of random states variables and Y  is output unsteady random 
centred signal. D  matrix allows us to choose the sensors that introduce the noise. 
In this case, the equation (34) can be separate in two equations. First is a 
determistic one, in average of states: 

DYYdtYd BKBKA +−= )( , (36) 
and the second an equation in random variables: 

XYdtYd BKDBKA −−= )( , (37) 

The solution Y  of equation (37) means getting the dispersion of the system state 

when we know the dispersion of the input X , namely the disperion of the signal 
measured by sensors. In order to obtain the solutions we proceed similarly to 
previou calculus example, by building an equations sistem in coordinate functions 
and separate the real part from the imaginary part for each equation:   
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Taking into account the number of the states (8) the number of  frequencies (200) 
and the fact that each equation must be solved in real  and in imaginary parte, 
finaly we have a system on 3200 ordinary differential equations, system which 
can be solved by numerical methods. 

5.  Input Data, Results  

5.1 Input Data for the Model 
 

Geometrical data 
As input data, we use the geometrical elements of the vehicle from figure 2. 
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Fig. 2. The reentry vehicle geometry (all dimensions in m) 

 
Geometrical characteristics for the model are: Reference length – body 
length ml 94.3= ; Reference area – cross body area 2131.1 mS = ; 
 
Mechanical data  
Mass characteristics of the model are: kgm 1000= ; 
 Centre of mass position: mxcm 4.2= .  
Inertial moments: 2512kgmA = ; 2827kgmB = ; 21191kgmC = ; 24.1 kgmE =  
 
Aerodynamic data 
For the configuration from Fig 2, considering a Taylor series expanding around 
the origin and by taking into account the parity of the terms, we obtain the 
following polynomial form of the aerodynamic coefficients in a body frame:  
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where the coefficients 1a , 21a  … generally are  depending on Mach number. and,  
by definition[7]   

)/arctan( uv−=α , )/arctan( uw=β . (40) 
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 Stability, command and control matrices 
Using aerodynamical and mechanical data we can  obtain stbility and command 
derivatives as well as controler parameter. For descending flight with velocity 

smV /300=  and climb angle °−= 30γ , at altitude of  mH 1000=  we obtain  the 
following values: 
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After controller sithesys using the gradient modified technicque [4]  we obtain 
followin optimale values: 
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5.2  Results 
 

Because we have chosen to analyse the lateral motion, as results we will 
present the influence of the noice of  diferent sensors to the lateral coordinate y . 
We will consder a constant standard deviation (STD) of the input signal the time 
evolution of the STD of the lateral coordinate y .  
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Fig. 3.  Influense of the sesor  noise by lateral 

coordinate  0y   
on lateral coordinate 0y . 
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Fig. 4.  Influense of the sesor noise by yaw 

angular  velocity r   
on lateral coordinate 0y . 
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Figure 3 presents STD of the lateral position 0y  due by the noice  of the 0y  
sensor, for diferent gain values ]01.0;02.0;04.0[ −−−=y

urk .  STD input signal for 
y  sensor is  m23.2=σ . It can be seen that increasing the gain module values 
leads to increased lateral deviation.  
Figure 4 presents STD of the lateral position 0y  due by the noise of the sensor for 
angular velocity  r   for diferent gain values ]42.0;59.0;84.0[=r

urk . STD  input 
signal for r  sensor is ][deg/23.2 s=σ . It can be seen that increasing the gain 
module values leads to decreased lateral deviation. 
Figure 5 presents STD of the lateral position 0y  due by the noice of the sensor for  
yaw angle ψ , for different  gain values  ]2.13;0.14;7.14[=ψ

urk . STD input signal 
for  ψ  sensor is [deg]1=σ . It can be seen that increasing the gain module values 
leads to increased lateral deviation. 
Figure 6 show influence of all sensors on lateral deviation 0y . In order to obtain 
this synthetic diagram, we consired:  
All angular sizes read by the sensors have  STD 1 degree. 
All angular velocity sizes read by the sensors have  STD 1 degree. 
All linear sizes read  by sensors have STD 1 m. 
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Fig. 5.  Influense of the sesor noise by yaw 
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Fig. 6.  The noise influence of all sensors on 
lateral coordinate 0y  

6. Conclusions 
As we showed in the introduction, for solving problems of accuracy guided 

flight, such as the automatic landing of reentry vehicle, there are two possibilities:  
the first one is based on random number generators, leading to methods of the 
"Monte Carlo" type; the second, based on canonical decomposition of random 
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variables and integration of equations by coordinated functions. In the sense of the 
second choices, the paper makes an assessment of the landing precision  of the 
reentry vehicle, by evaluating the lateral deviation due to the  noise introduced by 
the sensors. For this purpose, first we built a calculus linearized model for the 
vehicle and we determined the stability matrix, command matrix and control 
matrix. After that, was presented some calculation methods based on the 
canonical decomposition along with a sample calculation to verify the accuracy of 
the method. Finally, the calculation method was applied to the system of 
equations associated with reentry vehicle and we obtained some results 
concerning the influence of sensor noise on the lateral  deviation during landing. 
Considering preliminary stage of this type of project, with a configuration which 
is to be defined, the results are not final and may be resumed during the evolution 
of the project.  
What is actually important, and is the novelty of the work, is the proposed 
method, which is less used in current technical applications, but can even be used 
to cross check the results with the most popular methods of "Monte Carlo" type. 
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