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TOPOLOGICAL ENTROPY AND TOPOLOGICAL PRESSURE OF
A HOMEOMORPHISM ON A DYNAMICAL SPACE
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We introduce the notions of topological G-entropy and topological G-
pressure on topological G-spaces and present a method for computing this quantity
for G-expansive homeomorphisms. Also, we show that these notions are invariant
under topological G-conjugacy.
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1. Introduction

The notion of entropy, as a measure of information content, was first intro-
duced in 1948 by Shannon. The roots of this issue can be traced back to statistical
mechanics, which is originated in the work of Boltzmann who studied the relation
between entropy and probability in physical systems in 1870’s. Entropy has also
generalized around 1932 to quantum mechanics by von Neumann.

Topological entropy is a nonnegative real number that measures the complexity
of systems on topological spaces and it is the greatest type of entropy of a system.
Topological entropy is introduced in 1965 by Adler, Konheim and McAndrew [1],
and subsequently studied by many researchers, see for instance [7]. For a system
given by an iterated function, the topological entropy represents the exponential
growth rate of the number of distinguishable orbits of the iterates. To be more
precise, let (X, d) be a compact metric space and 7' : X — X be a homeomorphism.
Let dy(z,y) = maxo<i<n—1d(T%(z), T%(y)) for all n € N. Each d,, is a metric on
X and the d,,’s are all equivalent metrics in the sense that they induce the same
topology on X. Fix € > 0 and let n € N. A set F'in X is (n, €)-spanning if for every
point z € X there exists a point y € F' such that d,(x,y) < e. By compactness,
there are finite (n, €)-spanning sets. Let 7, (¢, T") be the minimum cardinality of the
(n, €)-spanning sets. A set £ C X is (n, €)-separated if the d,,-distance between any
two distinct points in E is at least e. Let s,(e,T") be the maximum cardinality of
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(n, €)-separated sets. Then

hiop(T') = 11_1)1% nlg]élo % log sp(e,T) = ll_r)ré nl;rglo % logry,(e,T)
is called the topological entropy of T, see [2].

We intend to study the topological entropy of a dynamical system (X,T)
whose underlying space X is a dynamical space, that is, a space on which some
topological group G acts continuously. In this case, the triple (X, G, 0) is called a
metric G-space, in which 6 : G x X — X is a continuous action, see [6]. If Y C X,
then Y is G-invariant if gY =Y for all g € G. Given a subset A of X, the G-orbit
of A is defined by

G(A)=GA={ga|geG,ac A}.

If x € X, then Gz is the G-orbit passing through x. Clearly, each G-orbit is a
G-invariant subset of X. The orbit space for the action of G on X is the quotient
topological space X/G. In particular, if G is compact, then the quotient map 7 : = €
X — Gz € X/G is an open, closed and proper (the inverse image of each compact
set is compact) map and X/G is a Hausdorff space. Moreover, X/G equipped with
the metric defined by

d(Gz,Gy) = inf{d(u,v) : uwe Gz,v e Gy} ; Gz,Gy € X/G

is a compact metric space, see [4]. The isotropy subgroup at a point x € X is the
set G, = {g € G | gr = z}, which is a closed subgroup of G. The action of G on X
is called

(1) trivial when G, = G, or equivalently, Gz = {z} for all z € X
(2) transitive provided that Gz = X for all x € X;
(3) minimal if Gz = X for all z € X.

Given two metric G-spaces X and Y, amap T : X — Y is called G-equivariant if
T(gx) = gT(x) for all z € X and g € G, and it is called G-pseudo equivariant if
T(Gx) = G(Tz) for all x € X.

Let T: X - X and §:Y — Y be two homeomorphisms of compact G-spaces
X and Y, respectively. We say that T is topologically G-conjugate to S if there
exists a G-equivariant homeomorphism ¢ : X — Y such that ¢ o T = S o ¢. The
homeomorphism ¢ is called a G-conjugacy.

2. Topological G-Entropy of a Homeomorphism

Thomas [9, 10] introduced a measure theoretic entropy for transformations of
G-spaces. On the other hand, the notion of topological entropy has been extended
from different viewpoints, which can be found in [8], where Malziri and Molaei
presented the notion of base for a dynamical system on a non compact metric space,
and used this notion to define a new kind of entropy. Here, we present a new
extension of topological entropy using compact G-spaces. Throughout this paper,
X denotes a compact metric G-space in which G a compact group and T : X — X
denotes a homeomorphism of X.
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Definition 2.1. Let X be a compact metric G-space. For each positive integer n
we define a metric d,, : X/G x X/G — [0,00) by

dn(Gz,Gy) = inf{d, (u,v) : vwe Gz, ve Gy}, Gz,Gy € X/G,
where dy, is defined as in section 1.

Since G is compact, (X/G, dy,) is a compact metric space. By B,(d, Gz) we
mean an open ball with d,,-diameter less than ¢ in X/G.

Definition 2.2. Let ¢, (€, G, T) be the minimum number of coverings of X/G by the
sets of dyn-diameter less than €. Then the limit

1
ha(T,e) = lim —logey,(e, G, T)
n

n—oo

exists and is monotonically increasing as € — 0. So hq(T) = lim_,o+ ha(T,€) is
well defined and we call it the topological G-entropy of T'.

A subset F of X/G is said to be (n, €, G)-spanning if for each Gx € X/G there
exists Gy € J such that d,(Gz, Gy) < e. Since X/G is compact, there exist (n, €, G)-
spanning sets with finite cardinality. Let r,(e, G,T) be the minimum cardinality of
(n, €, G)-spanning sets of T

A subset € of X/G is said to be an (n,e, G)-separated set if Gx,Gy € &
and G(r) # G(y) implies that d,(Gz,Gy) > €. Let s,(¢,G,T) be the maximum
cardinality of (n, €, G)-separated sets for T

Lemma 2.1. If X is a compact metric G-space and T : X — X is a homeomor-
phism, then the following results hold.

(1) cn(2¢,G,T) <1y(6,G,T) < 55(6,G,T) < cn(5,G,T);

(2) For any subgroup H of G, sy (¢, H,T) > s,(¢,G,T) and ry,(e, H,T) > r,(e,G,T).

Proof. (1) If € is an (n, €, G)-separated set of maximum cardinality, then it is an
(n, €, G)-spanning set and hence (e, G,T) < s, (¢, G, T).

Now, suppose that J is an (n, €, G)-spanning set of minimum cardinality. The

family

{Bn(e,Gx): Gx € F}
is an open cover for X/G. By compactness of X/G we can choose ¢’ < € so that the
family {B,(¢',Gz) : Gz € F} covers X/G. Since the diameter of this family is less
than 2¢, we have ¢, (2¢, G, T) < r,(e,G,T).

To prove the last inequality, let € be an (n, €, G)-separated set with cardinality
sn(e,G,T) and let C be an open cover with d,-diameter less than ¢/2. Then no
member of € contains two elements of €. Therefore s, (¢,G,T) < ¢,(€/2,G,T).

(2) This part follows from the fact that d,(Gz,Gy) < d,(Hz, Hy) for each
z,y € X. ]

Proposition 2.1. Let X be a compact metric G-space and T : X — X be a home-
omorphism. Then the following results hold.

(1) he(T) = lim_o+ limy, 0 L 1og s,(€, G, T);

(2) ha(T) = lim, o+ limy, o 2 log (e, G, T);
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(8) hg(T) > ha(T) for each subgroup H of G;

(4) 0< hG(T) < htop(T); L

(5) If there is a point x € X such that Gx = X, then hg(T) = 0;
(6) If the action is minimal, then hg(T) = 0;

(7) If the action is transitive, then hg(T) = 0;

(8) If the action is trivial, then hg(T') = hiop(T).

(9) If G is a finite group, then hg(T') = hiop(T).

Proof. The parts (1) and (2) follow immediately from Lemma 2.1(1). Also, the part
(3) is a direct result of Lemma 2.1(2). The part (4) follows from Lemma 2.1(2) with
H = {e}.

To prove part (5), let € > 0 be given and n € N. Then there exists 6 > 0
such that d(z,y) < ¢ implies d,(x,y) < e. We show that F = {Gz} is an (n, €, G)-
spanning set. To end this, notice that if Gy € X/G and g1 € G, then there exists
g2 € G such that d(g1y, g2x) < 6. Thus d,(g1y, g22) < €, so that d,,(Gx, Gy) < e.

The parts (6) and (7) follow from (5), and part (8) is obvious.

(9) Suppose that G = {g1,92,...,9r}. Choose € > 0 small enough such that
so(e,T) > k% and let n € N. Then, there exists § € (0,¢) such that d(z,y) < §
implies that maxseq dn(9x,gy) < €. Hence, there exist a number m € N and
0 <7 < K2—1such that s, (e, T) = mk?+r. We show that s,,(5, G, T) > m. Suppose
that £ = {z1,22,..., T2y} and s,(0,G,T) =1 < m. Let &€ = {Gz1,...,Gx}
be an (n,G,§/2)-separated set, hence d,,(Gz;, Gx;) > 0/2 for each i,j € {1,...1},
and that for each i € {I +1,...,mk? + r} there exists j € {1,...1} in such a way
that d,(Gz;, Gxj) < 6/2. By invoking pigeonhole principle, there exists an index
jo € {1,...,1} such that the number of indeces i € {I +1,...,mk? 4 r} for which
dn(Gwi, Gxj)) < §/2 is at least [(mk? +r — [)I~!]. The total number of possible
selections of disjoint pairs in G is k(k — 1) and it is less than |(mk? +r —1)I71].
Thus there are an index ¢ and an element g € G such that d,(gx;, gxj,) < 0. Then
dn(xi,xj5,) < €, which is a contradiction. Therefore

ha(T) = lim lim %bg sn(0,G,T)

e—0n—oo

1 n(e,T) — . .1
> lim lim —log s(e) = r =lim lim —logs,(€,T) = hiop(T),

e—0n—oo N k2 e—0n—oon

as required. O

3. Some properties of topological G-entropy

Definition 3.1. A homeomorphism T : X — X on a metric G-space X is said to be
weak G-expansive if there exists § > 0 such that for every z,y € X with Gx = Gy,
u € Gz and v € Gy, it follows that

d(T"(w), T"(v)) > &

for some n = n(u,v) € Z. The constant § is called a weak G-expansive constant for
T.

Weak G-expansivity is a generalization of both expansivity and G-expansivity, see
[5].
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Theorem 3.1. Let T be a pseudo-equivariant homeomorphism on a compact metric
G-space (X,d). If T is weak G-expansive with constant 0, then hg(T) = ha(T,¢)
for any € € (0,96).

Proof. Fix v and € with 0 < 2y < € < 4. It is enough to show that hg(T,2v) =
ha(T,¢€). Since T is weak G-expansive, for two elements x and y not in the same
G-orbit, there exists a number n = n(x,y) such that d(T™(z),T"(y)) > 6 > €. The

set {(z,y) : d(Gz,Gy) > v} is compact and

{(z.y) + d(Gz,Gy) =7} < [ J{(zy) + d(T'(@), T'(y)) > e}
1€EZ
Then, by compactness, there is a number k € N such that if d(Gz,Gy) > v then
d(T*(z), T'(y)) > € for some |i| < k.

Let & be an (n,G,~)-separated set for T and & = T%&. We show that
¢ is an (n + 2k, e, G)-separated set for T. Suppose that Gx and Gy are distinct
G-orbits in &, u € Gz and v € Gy. Then GT*(u) and GT*(v) are distinct G-
orbits in €. Therefore, d,,(GT*(u), GT*(v)) > ~. So, there is a number i with
|i| < k such that d,(T"*(u), T *(v)) > ¢, and this shows that d,,;o1(Gz, Gy) > e.
Hence, ¢,(27,9,T) < sp,(7,G,T) < Sptor(€,G,T) and so we obtain hg(T,27v) <
ha(T,€). On the other hand, by monotonicity, we have hg(T,2v) > hg(e, T), giving
ha(T,2v) = ha(T€). O

Theorem 3.2. For each m € N, hq(T™) = mha(T).

Proof. Let § be an (mn, €, G)-spanning set for T' of maximal cardinality. Then for
each Gx € X/G there exists Gy € F such that dp,(Gz, Gy) < €, which implies that
dmn(g9z,g'y) < € for some g, ¢’ € G. Hence, d(T' gz, T'g'y) < efor all 0 < i < mn—1
and so
d(T™ gz, T™¢'y) <e, forall0<i<n-—1.
Therefore, F is an (n, €, G)-spanning set for 7" and accordingly
rn(@ G, Tm) < Tmn(G, G, T),

which implies that hg(T) < mhg(T). Since T' is uniformly continuous, for each
€ > 0 there exists a number ¢ > 0 such that maxo<;<m—1 d(T"z, T'y) < € whenever
d(z,y) < 0. So, every (n, e, G)-spanning set for 7™ is an (n, €, G)-spanning set for
T, too. Thus r, (3, G, T™) > rmn(e, G, T) and consequently hg(T™) > mha(T). O

Let (X,d) and (Y, p) be metric G- and H-spaces, respectively. We define a
metric d on X x Y by D((z,y), (/,y")) = max{d(x,2'), p(y,y')}. Obviously, X x Y
is a metric (G x H)-space with the action

(GxH)x(XxY) —- XxY
((9,h), (z,9)) = (g2, hy).

Utilizing the above action, we have the following result.

Theorem 3.3. Let T and S be homeomorphisms of G-space X and H-space Y,
respectively. Then hgxu(T x S) = ha(T) + hu(S).
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Proof. Let F be an (n, e, G)-spanning set with minimal cardinality for 7" and let
' be an (n,e, H)-spanning set with minimal cardinality for S. Then F x F is an
(n,e, G x H)-spanning set for 7' x S. Hence

rn(e,G x H,/T x 8) <rp(e, G,T).rp (€, H, S)

so that haxg(T x S) < ha(T) + hu(S).

Now, let € be an (n, e, G)-separated set with maximal cardinality for 7" and
& be an (n, e, H)-separated set with maximal cardinality for S. Then € x & is an
(n,e,G x H)-separated set for T' x S. Hence

sn(€,G,T).sn(e, H,S) < sp(e, G x H,T x S)
and consequently hq(T) + hu(S) < haxu(T % S). O

4. Topological G-entropy and conjugacy

In this section, we show that the topological G-entropy is an invariant of
topological G-conjugacy.

Theorem 4.1. Let T : X — X and S : Y — Y be homeomorphisms of compact
metric G-spaces. If T is topologically G-conjugate to S, then hg(T) = hg(S).

Proof. Let ¢ be a topological G-conjugacy satisfying ¢ o T' = S o ¢ and assume
that € > 0. Then there exists a number § > 0 such that the inequality d(z,y) < 0
implies d(¢(x),¢(y)) < € for all xz,y € X. Let & be an (n, €, G)-separated set
with maximal cardinality for S. We show that ¢='€ = {¢~1(Gx); Gz € €} is an
(n, 8, G)-separated set for T. To end this, let G¢~'(z) and Gé~1(y) be distinct
points in ¢1E. If d,,(Go~ ' (x), Gp~(y)) < 6, then

—1gi —1qi _ i —1 i —1
Og%ail d(¢~"S'Gz, ¢ S'Gy) = oglg??f—ld(T ¢ Gz, T'¢" " Gy) <.
Therefore,

do(Gz,Gy) = max d(S'G(z),S'G(y)) < e,

0<i<n—1
which is a contradiction for Gx and Gy are distinct points of €. This contradiction
shows that d,(Go~1(z),Go~1(y)) > 6, that is, 1€ is an (n,§, G)-separated set.
Thus s, (€, G, S) < r,(0,G,T), giving hg(S) < hg(T). Similarly, we have hg(T) <
h(S), hence the result follows. O

5. Topological G-pressure

The well-known notion of topological pressure for additive potentials was in-
troduced by Ruelle [3] in 1973 for expansive maps acting on compact metric spaces.

Definition 5.1. Let X be a compact metric G-space and T : X — X be a homeo-
morphism. Denote by C(X,R) the space of all real valued functions of X. Letn € N.
For each f € C(X,R) define S, f = Z?:_ol oT" and

P,(e,G, T, f) = inf{ Z inf eS"f(“)] F is an (n,€,G) — spanning set} .
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Clearly, P,(e,G,T,0) = ry(¢,G,T) and
0< P,(e,G, T, f) < HeS”ern(e,G,T).

Definition 5.2. Let X be a compact metric G-space and T : X — X be a homeo-
morphism. For f € C(X,R) we define

1
P(e,G, T, f) = limsup;logpn(e, G,T,f).

If €1 < € then we have P,(€1,G, T, f) > P,(e2,G, T, f). Thus P,(¢,G, T, f) (and
hence P(e,G, T, f)) is decressing in terms of €. Therefore, the following limit exists

lim P(e, G, T, f).
A Pl G )

Definition 5.3. Let X be a compact metric G-space and let T : X — X be a
homeomorphism. The topological G-pressure of T is the map Pg(T,.) : C(X,R) —
R U {o0} defined via

PG(T7f) :lg%P(e,G,T,f)

Remark 5.1. Let X be a compact metric G-space and T : X — X be a homeomor-
phism. If f,g € C(X,R), then

(1) Po(T,0) = ha(T),
(2) if [ <g then PG(T7 f) < Pg(T,g), and
(8) If H is a subgroup of G, then Pg(T, ) < Py (T, f).

Theorem 5.1. Let (X,d) and (Y, p) be two G-spaces. If T : X - X and S:Y =Y
are two countinuous maps and ¢ : X — Y is a G-pseudoequivariant homeomorphism
such that g o T = S o ¢, then Pg(S, f) = Pa(T, f o ¢) for each f € C(Y,R).

Proof. Given e > 0; there exists a number § > 0 such that d(¢(z), ¢(y)) < € for each
x,y € X satisfying d(z,y) < 6. Let F = {Gz1,...,Gz} be an (n,d, G)-spanning
set for T. We show that ' = {G¢(x1),...,Gd(x)} is an (n, €, G)-spanning set for
S. For each Gy € Y/G there exists a point z € X such that Gy = G¢(x). Since
Gz € X/G, there exists Gx; € F with d,(Gz,Gx;) < 6. Hence, d,(gx, gz;) < & for
some g, g € G. Thereofre, maxo<;<n—1 d(Tgx, T'¢'r;) < § and so

pJnax d(S'6(gw), §'6(g'xi)) = | max d(@(T"gx), $(I"g'zi)) <e.

Hence, maxo<;<n—1 d(S*(ho(x), S'(h' ¢(z;)) < € for some h,h' € G. So
dn(Gy, Go(21)) = dn(G(x), G(x:)) < e.

Therefore JF is an (n, €, G)-spanning set for S. Also we have

k
inf ef(¢(u))+f(¢(Tu))++f(¢(Tn_1u))
ueGz;

= inf ef(¢(u))+f(5¢(u))+...+f(5n—1¢(u))
UGGIZ‘

= inf ef(y)+f(5y)+...+f(sn71y)
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Thus P,(e,G, S, f) < P,(6,G, T, f o ¢) so that Pg(S, f) < Pg(T, f o ¢). Since ¢ is

a homeomorphism, we have

Po(T, fod) < Pa(S,fogpog™)=Pu(S,f),

as required. O

Theorem 5.2. Let (X,d) and (Y, p) be a G-space and a H-space, respective ly. If
T:X = XandS:Y —Y are two countinuous maps, f € C(X,R) and g € C(Y,R).
Then

Poxu(T xS, f xg)=Pa(T, f) + Pu(S,g).

Proof. Let F be an (n, e, G)-spanning set with minimal cardinality for 7" and let
3’ be an (n, e, H)-spanning set with minimal cardinality for S. Then F x F is an
(n,€e, G x H)-spanning set for 7" x S. Also, we have

Z inf eiso (Fxg)((TxS) (u,))
(G, Hy)egx g (WOEETEY)
= ¥ nf et F(Tw) 20 g(St)

Gottoes e (BVIEGEGY)

=Y g EIRT) g (EI et
u vEGY
(Gz,Hy)eFxTF'

Therefore,
PTI(e?G X HaT X S?f X g) S PR(G,G,T,f).Pn(E,H,S,g),

which implies that Pgug (T x S, f x g) < Pa(T, f) + Pu(S,g).

Now consider the quotient map 7 : X — X /G defined by n(z) = Gz. For any
map T : X — X, the induced map T : X/G — X/G satisfies Tor=moT. Let X
be a set and B(X) denote the group of all bijections on X. We have an action of
B(X) on X defined by

BX)xX — X
(g,2) = g(x).

Let (X,d) be a compact metric space and Iso(X) C B(X) denote the group of
isometries of X. Let p be a metric on Iso(X) defined via

p(f,g9) = sup d(f(z),g(z))
reX

. The group operations of multiplication and inversion are continuous with respect
to p and Iso(X) has the structure of a topological group. The associated action
Iso(X) x X — X of Iso(X) on X is continuous. If G is a subgroup of Iso(X), then
X /G equipped with the metric

d(Gz,Gy) = inf{d(u,v) : u e Gz, ve Gy}
is a compact metric space. If f € C(X,R) is constant on G-orbits (f(gz) = f(x)
for g € G and x € X), then f induces a map f € C(X/G,R) satisfying f(Gx) =
f(z). O
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Theorem 5.3. IfT is a homeomorphism on the metric G-space X and f € C(X,R),

Proof. Given e > 0. There is § > 0 such that d(n(z),7(y)) < e whenever d(z,y) < 4.
Suppose that F is an (n, d, G)-spanning set for 7' of maximum cardinality. We show
that F is an (n, €)-spanning set for T. If Gz € X/G then there exists Gy € F such
that d,(Gx,Gy) < e. Hence, there are elements g1, g2 € G with

0<I§1<arz( d(T (1), T (ggy)) < 0.

Thus,
dn(Gz,Gy) = max d(T(Gz), T'(Gy))

0<i<n-—1

- d(T* T
o Jnax | (T o m(g1), T o w(gay))

= Ogr%af_l d(moT"(giz),m o T*(g2y)) < €

Therefore, F is an (n, €)-spanning set for 7. On the other hand, we have
S.f(Gx) = f(Gz) + F(T(Gx)) +--- + f(T"(Gx))

f(Ga) + f(GTzx) + -+ f(GT" 2)

f(z) + f(Tz) + '+f(T"71$)

= Snf(z).

3 inf ST = 37 (S@) = 3 S (G,
ucGx

Gzed Gzed Gzed
Therefore, Py(e, T, f) < P,(e,G, T, f), from which the result follows. O
<

Hence,

Corollary 5.1. If T is a homeomorphism on the metric G-space X, then hyop(T )
ha(T).

6. Examples

First we compute the topological G-entropy for the most common action in
dynamical systems.

Example 6.1. Let X be a compact metric space and T : X — X be a homeomor-
phism. The group Z acts continuously on X as follows
7Z x X—=X
(n,x) +— T"(x).
Thus X s a ‘compact metric Z-space. In this case, we have Zx = Op(x) and
dp(Zz,Zy) = d(Zx,Zy) for eachn > 1 and x,y € X. Hence, hy(T) = 0.

Example 6.2. Consider the linear ordinary differential equation

. (0 B
i1 o)~
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N
7N
N

—~~
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Solution to this linear system is given by
x(t) = xg cos(Pt) — yo sin(St)
y(t) = xo sin(Bt) 4 yo cos(St)

where (xo,y0) = (x(0),y(0)) and the trajectories of this system lie on circles as
shown in Figure (A). Hence the flow of this linear system is given by

(o, yo) = (xo cos(Bt) — yo sin(Bt), xo sin(Bt) + yo cos(Bt)) .

Consider the unit disc D = {(z,y) € R? : 22 + 4? < 1} and define an equivalence
relation on D as follows:

X~Y & |[X-Y|eZ
Then X = D/ ~ with the metric
d(X,Y) = min{ | X — Y|, 1— | X = Y|}

is a compact metric space called a quotient metric space [4]. We know that the group
G =R acts continuously on the space X as follows:

(t, (z0,y0)) = @t(z0,Yo)-

Now, we compute the topological G-entropy of the map T : (X,d) — (X,d) with
T(x0,y0) = (20,2y0), mod 1 (note that for any (xo,y0) € X with xo # 0, the
point T(xo,yo) is the intersection of the line y = g—gm and the circle z? + y?> =
(2v/xF + 3 — 225 + 55))? )-

For each k € N we define

Fk:{(%,m: m:O,l,...,Qk_l} c B.

Let € > 0 and choose k € N such that 2% <e< %%1 We show that the set Fy1x—o
is an (n, €, G)-separated set for each n € N. Suppose that (5:47=,0) and (5:5%==,0)
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are two distinct points in Fpir_o. Then,

p <T”_1(m1 cos(Bt) my sin(Bt) ) Tn_l(mg cos(Bs) magsin(Bs) )>

2n+k72 ) 2n+k72 2n+k72 ? 2n+k72

=d ((2k ; cos(ﬂt) sm(ﬁt)) (2m21 cos(fs), 2k : sm(ﬁs)))

>d (( T cos(Bt) sm(ﬂt)) (271?21 Cos(ﬁt) 2 sm(,Bt)))

mi1 — My 2 mi1 — My
= 2k—1 = 2k—1
for all s,t € G. Hence, d, (G(%,O),G(%,O))) > € so that s(n,e,G) >
27+k=2 and hence hg(T) > log(2).

Now we show that the set Fi1—1 is an (n,€, G)-spanning set. Suppose that
(z1,72) € B. Then, we can choose (5ti=1,0) € Fyi—1 such that

m
on+k—1 Y .’L‘% + y% <

1
— 2k71

> €

on+k—1"

Therefore,
m
dn (G(xlayl):G(W70)>
<inf{ max d (T"(go (z1,91)), T (¢ (L 0))) cteGr< 1 <e
>~ 0<isn—1 t\«L1,Y1)) t+71 2n+k71’ . 2k >~ &

where T = tan_l(%) (see Figure (B)). Thus rn(n,e,G) < 2"HE=1 This im-
plies that hq(T) <log(2). Therefore, hq(T) = log(2).

7. Conclusion

In this paper, we introduced an extension of the notion of topological entropy.
Our approach opens a door to a method for developing a meaningful notion of
topological entropy for dynamical systems, which are defined on the solutions of
some differential equations. Computation of the topological entropy of such systems
will be a topic for future research.
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