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SUFFICIENT EFFICIENCY CONDITIONS FOR A MINIMIZING
FRACTIONAL PROGRAM

Ariana P1TEAY, Constantin UDRISTE?

Consideram problema de minimizare a programului (MFP) in care obiectivul
este un vector de caturi de functionale integrale curbilinii cu restrictii inecuatii cu
derivate partiale (IDP) si/sau ecualis cu derivate partiale (EDP). Scopul acestei
lucrari este de a introduce gi studia condifii suficiente de eficientd a unei solutii
realizabile a problemei (MFP). Rezultatele prezentate in §2 sunt originale, ele
finalizand rezultate recente, al caror studiu este inifiat in [7] gi [8].

We consider the minimizing fractional program (MFP), where the objective is
a vector of functionals quotients of paths integrals and the constraints are partial
differential inequations (PDI) and partial differential equations (PDE). The aim
of this work is to introduce and study sufficient conditions for the efficiency of a
feasible solution of the problem (MFP). The results discussed in §2 are new and
finalize a recent research initiated in [7] and [8].
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1. Minimizing fractional programs

Before presenting our results, we need the following background which is nec-
essary for introducing notations and for the completeness of the exposition. For
more details, we address the reader to [7], [8].

Let (T, h) and (M, g) be Riemannian manifolds of dimensions p and n, respec-
tively. Denote by t = (t*), @ = 1, p, and x = (%), i = 1, n, the local coordinates on
T and M, respectively. Consider J'(T, M) be the first order jet bundle associated
to T and M.

Using the product order relation on RP, [5], the hyperparallelepiped € ,, in
RP, with the diagonal opposite points to = (t,...,t5) and t; = (¢},...,}), can be
written as being the interval [to,t1]. Suppose 74, is a piecewise Cl-class curve
joining the points ty and %1.

The closed Lagrange 1-forms densities of C'*°-class

fo=(f): INT, M) = R", ko= (kY): JNT, M) —R", (=17, a=Tp
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determine the following path independent curvilinear functionals (actions)
Fi(x()) = / falt,z(t), 24 () dt,  K(x(-) = / ko (t,2(t), 24(t)) dt®,
Vto,t1 Y

tost1
Ox — . s
where z(t) = %(t), ~v =1, p, are partial velocities.

The closeness conditions (complete integrability conditions) are

DﬁfﬁZDafé, Dﬁkgy:Dakga O‘vﬁ:m7 a%ﬂv 62177‘7

where Dg is the total derivative.
Suppose K*(z(-)) > 0, for all £ = I,7, and accept that the Lagrange matrix
densities

»

g:(gZ):Jl(T,M)—)RmS’ a:l” b:]"m7 m<n’
h=(h): J(T,M) - R® a=T13s, b=14q q<n,

of C*>-class define the partial differential inequations (PDI) (of evolution)
gt z(t),z4(t) =0, t€Qyuy,

and the partial differential equations (PDE) (of evolution)
h(t,z(t),z(t)) =0, t& Q.

On the set C°(y, +,, M) of all functions z: ), — M of C*-class, we set
the norm

p
2] = l|2l]lso + > llZallso-
a=1
Denote by
F( Qo ty) = {1: € Oy t, M) | z(to) = xo, z(t1) =1, or l’(t)|agt0}t1 = given,

g(t,x(f),l‘,y(t)) é 07 h(t’$(t)’x7(t)) = 0’ te Qto,h}

the set of all feasible solutions of the problem (MFP).
The aim of this work is to introduce and study sufficient efficiency conditions
for the variational problem

- (Fl(x(-)) Fe0)
A KGO K@)

subject to () € F(Qg ¢y )-

(MFP)

The authors of this paper and Stefan Mititelu have introduced and studied
such variational problems. More exactly, they have given necessary conditions for
the efficiency of a feasible solution of the problem (MFP) and studied some types of
dualities [7], [8].

Definition 1.1. A feasible solution z°(-) € F(§,+,) is called efficient for the pro-
gram (MFP) if and only if for any feasible solution z(-) € F(£, ), the inequality
Fla() o F(=°()) Fla() _ F@°())
K(z(1) = K(z°()) K(x()  K(x°())

implies the equality
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Definition 1.2. Let z° be an optimal solution of the problem (MFP). Suppose
there are in R” the vectors A'° and A?° having all components nonnegative but al
least one positive and the smooth matrix functions p, and vy, such that

< A, %(t,xo(t) 22(t)) > — < A%, —x(t,xo(t) xo(t)) >

Oz
+ < po(t), gz(t,xo(t),x‘;(t)) >+ < vg(t), gZ(t,xo(t),xfy(t)) >

—D7< < A Y a0(t),20(1) > — < A%

_l_
A\
\S
=
Q)
S
=
H
\/
||

te Qto,h a=1,p (Euler — Lagrange PDEs).
Then z°(-) is called normal optimal solution of problem (MFP).

Let p be a real number and b: C°(Q 4,, M) x C°(Q4y4,, M) — [0, 00) a func-
tional. To any closed 1-form a = (a,) we associate the path independent curvilinear
functional

Aat) = [ aalt,a(t) (1) de”
Tto,ty

The following definition of the quasiinvexity [5], [7], [8], helps us to state the

results included in our main section.

Definition 1.3. The functional A is called [strictly] (p,b)-quasiinver at the point
z°(+) if there is a vector function n: J*(Qty ¢, M) X JH( Qg 4,, M) — R", such that

U(t7 ‘ro(t)7 x,oy(t)’ x° (t)a x'oy(t)) =0,
and the functional 0: C*°(Qy, ¢, M) x C®°(Qyt,, M) — R™, such that for any z(-)
[z(-) # x°(+)], the following implication holds
(A(z(-) = A@=°()) = <b(fc((')7l’°(‘))/ [< n(t, 2(t), 24(t), 2°(t), 25(1)),
VYtg,t1

e (1,220 23(0)) > + < Dyt wlt), 4 (1), 2°(8),23.0),
Oag,

Oz

o (t,2°(t), 25(1)) > ]dto‘[<] = —pb(x(-%x"(-))H@(ﬂf(-),wO(-))HQ)~

In order to find some sufficient efficiency conditions for the problem (MFP),
we need the following [7]

Theorem 1.1 (Necessary efficiency conditions). Let the function z°(-) € F(Q4,)
be a normal efficient solution of problem (MFP). Then there exist A°, A>° € R"
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and the smooth functions p°: Q44 — R™P v Qp 4 — RYP | such that we have

<A, %ﬁ“(t,xou),x;(m > — < A%, %’Zj(t,ﬁ(t),x;(t)) >
9 oh
<R, S (a0, 25(8) > + < (), 5o (62 (8),25(8) >

Ox
0fa Ok

o lo YJa o o o 20
D7(<A ,ax’y(t,x(t)a: (1) > — <A™,

(&, 2°(t), =5 (1)) >

(MFP), { + <pa(t,2°(t),25(t)), 5—

[e] ah o o
+ < Va(t)7 aT(t,x (t),x,y(t)) > > = 0,
g
t € Qyt, a=1,p (Euler — Lagrange PDEs)

< pa(t),g(t, 2°(t),25(t)) >=0, t€Qyuy, a=1,p,
NZ(t) i 07 te Qto,t17 o = 17p7
Al° >0, <e,A°>=1, e=(1,...,1) €R".

2. Efficiency sufficient conditions

We shall establish efficiency sufficient conditions for the problem (MFP).

Theorem 2.1. Let us consider the vectors A, A%° from R™ and the functions
z°(+), p°(+), v°(-) which satisfy the conditions (MFP),. Suppose that the following
properties hold:

a) the functional

<A F(z() > — < A®, K(2(-)) > :/ [ <A™, fa(t,z(t), 24(2) >
Tto,t1

— < A% ko (t, z(t), m4(t) > |dt™
is (p1,b)-quasiinvex at the point x°(-) with respect to n and 6;

b) the functz’onal/ < pa(t),g(t, x(t), zy(t)) > dt is (p2,b) -quasiinvex at
Veo oty

the point x°(-) with respect to n and 6;

c) the functional/ < vg(t), h(t,z(t), z,(t)) > dt* is (ps,b)-quasiinvezr at
Vto,t1
the point z°(-) with respect to n and 6;
d) one of the integrals of a)-c) is strictly (p1,b), (p2,b) or (ps,b)-quasiinvex at
the point z°(-) with respect to n and 6;

e) p1+p2+p3>0;
f) A%OFe(xo(')) _ AgoKE(wo(.)) =0, for each { = W
Then the point z°(+) is an efficient solution of problem (MFP).
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Proof. Let us suppose that the point 2°(-) is not an efficient solution for problem
(MFP). Then, there is a feasible solution x(-) for problem (MFP), such that

Fi(a() _ F'(=°())
Kia() = Ko ()
the case z(-) = x°(-) being excluded. That is
APF () = AP (2()) < AP FAa°() — AP K (2°(),

:1,7',

~
Il

—_

5

Making the sum after £ = 1,7, we get
<A F(a() > — < A K(2() > < < A1°, F(z°()) > — < A%, K(2°()) > .
According to condition a), it follows
b)) [

Vto,t1

%k;f(t, x(t), x5 (t)) >> 4 < Dan(t, x(t), (), 2°(t), 25, (t)),

0f Ok
lo YJa _ 2 Oka o . N
<AL g (D) 2y (1) > = < A%, SR (2 (1), 25() >> | db

< = pab(a (), 2 (DO (), 2°())|1%.

/

[ <t 0(t), 5 (1),2°(0), 25(0), < A%, D21, 00(0), 250 >

— < A%,

(1)

Applying property b), the inequality

<09t (0,0, 0) > S [ < 0.9t 1), 5 0) > e

to,t1 'Yto,tl
leads us to
a2 () [ (< nta(t)n (0,0, 530, < 20 G000 030) >

Vo.t1
+ < Dan(t, z(t), 7 (1), 2°(t), 25(t)), < pa(t), aagi(t,xo(t),x;(t)) >>) dt®
< = pab(a(), 2° ()10 (), 2 ()]

Taking into account condition ¢), the equality

/ < V200, Wt (), 2 (£) > dt™ = / < V2(8), Bt 2°(1), 25(8)) > dt®

implies
b(w('),l‘o('))/ << n(t, x(t), 2+ (t), 2°(t), 23 (1)), < va(t), gl;(tax"(t)aw%(t)) >>
Tto,ty

+ < Dan(t, 2(t), 74 (1), 2°(t), 25(t)), < v (1), 88%

(t,2°(t), 25(t)) >>> dt®
Y
< = psb(a(), 2 ()0 (), ()1
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Summing side by side relations (1), (2), (3) and using condition d), it follows

b)) [ < nltn(t) o (0,70, 2530), < A1, F2 (050 >

< %’; (1,0°(1),250)) > + < (1), 90,2 (1), 25,1)) >
(

<0, (6 (0,550) >> de* +0a()a°0) [ < Dyttt
i

(0, °(0), 250, < A1, 021, 00(0), 25 (6) > — < A%, T2 1,000, 51)) >
v Y
+ < po (t), (fi(t, z°(t), 25(t)) > + < va(t), gﬁl(t, z°(t), x5 (t)) >> dt”

= (p1+ p2 + p3) b(a(:), 2°()) |0z (), 2°())II>.
This inequality implies that b(z(-),z°(-)) > 0, therefore we obtain

[ <ttt 0.0 @500, < A, 52 00000500 >
—en, T o), 020)) > 4 < i 0), 221, 0°(0),250)) >

+ <wa(t), %(t,:ro(t),xfy(t)) >> dt®

+/ < Dyn(t,a(t), (1), 2°(t), 25(1)), < A" %(tfc"(f),w%(t)) >
Vtg,t1 Y

— < A%, gzw (t, 2°(t), z5(t) > + < pga(t), ;ai(t,xo(t),xz(t)) >

+ < vg(t), %(t,w"(t),x%(t)) >> dt®

= (pr+ p2 + p3) 10(z(-), z°())]1*.

According to [13], §9, we have the following
Lemma 2.1. A total divergence is equal to a total derivative.

Integrating by parts the second integral and using Lemma 2.1, the previous
inequality leads us to a contradiction, that is

0 < —(p1+p2+ p3) [0(z(-), 2°()) >
Therefore, the point z°(-) is an efficient solution for problem (MFP). O

Replacing the integrals from hypotheses b), ¢), of Theorem 2.1 by the integral
[ < gttt (@) > + < Vi@ hit,z(o).a(6) > dt®
.

to,t1
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the following statement is obtained.

Corollary 2.1. Let z°(-) be a feasible solution of problem (MFP), u°(-), v°(:) be
functions and A'°, A2° vectors from R such that the relations (MFP)
Suppose that the following conditions are fulfilled:

a) the functional

. are satisfied.

< A, F(e() > — < A, K (2() > :/ [ < A%, fu(t,(t), 2 (8)) >
il

to,t1

— < A® ko (t, 3(t), 24(t)) > |dt™
is (p1,b)-quasiinvez at the point x°(-) with respect to n and 6;
b) the functional

/ (< (), gt 2(t), 24 (8)) > + < v2(1), h(t, 2(t), 2 () >)dt®
:

to,t1
is (p2, b)-quasiinvez at the point x°(-) with respect to n and 6;
c) one of the integrals from a) or b) is strictly-quasiinvez at the point z°(-);
d) p1+p2 > 0;
e) AfPFY(x°(+)) — AZK*(z°(-)) = 0, for each £ =1,7.
Then, the point x°(-) is an efficient solution of problem (MFP).

For other developments of optimization problems of path independent curvi-
linear integrals with PDE constraints or with isoperimetric constraints as multiple
integrals or path independent curvilinear integrals, see [2] + [6] and [9] + [16]. For
a computer aided study of PDE and/or PDI optimization problems using MAPLE,
see [1] and [14].

3. Conclusions

We considered the minimizing fractional program (MFP), where the objective
is a vector of functionals quotients of paths integrals and the constraints are partial
differential inequations (PDI) and equations (PDE). In this work, we introduced
and studied sufficient conditions for the efficiency of a feasible solution of problem
(MFP). The present study completes previous results obtained with Stefan Mititelu
and included in papers [7] and [8].
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