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SUFFICIENT EFFICIENCY CONDITIONS FOR A MINIMIZING
FRACTIONAL PROGRAM

Ariana Pitea1, Constantin Udrişte2

Considerăm problema de minimizare a programului (MFP) ı̂n care obiectivul

este un vector de câturi de funcţionale integrale curbilinii cu restricţii inecuaţii cu

derivate parţiale (IDP) şi/sau ecuaţii cu derivate parţiale (EDP). Scopul acestei

lucrări este de a introduce şi studia condiţii suficiente de eficienţă a unei soluţii

realizabile a problemei (MFP). Rezultatele prezentate ı̂n §2 sunt originale, ele

finalizând rezultate recente, al căror studiu este iniţiat ı̂n [7] şi [8].

We consider the minimizing fractional program (MFP), where the objective is

a vector of functionals quotients of paths integrals and the constraints are partial

differential inequations (PDI) and partial differential equations (PDE). The aim

of this work is to introduce and study sufficient conditions for the efficiency of a

feasible solution of the problem (MFP). The results discussed in §2 are new and

finalize a recent research initiated in [7] and [8].
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1. Minimizing fractional programs

Before presenting our results, we need the following background which is nec-
essary for introducing notations and for the completeness of the exposition. For
more details, we address the reader to [7], [8].

Let (T, h) and (M, g) be Riemannian manifolds of dimensions p and n, respec-
tively. Denote by t = (tα), α = 1, p, and x = (xi), i = 1, n, the local coordinates on
T and M , respectively. Consider J1(T,M) be the first order jet bundle associated
to T and M .

Using the product order relation on Rp, [5], the hyperparallelepiped Ωt0,t1 , in
Rp, with the diagonal opposite points t0 = (t10, . . . , t

p
0) and t1 = (t11, . . . , t

p
1), can be

written as being the interval [t0, t1]. Suppose γt0,t1 is a piecewise C1-class curve
joining the points t0 and t1.

The closed Lagrange 1-forms densities of C∞-class

fα = (f `
α) : J1(T, M) → Rr, kα = (k`

α) : J1(T,M) → Rr, ` = 1, r, α = 1, p
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determine the following path independent curvilinear functionals (actions)

F `(x(·)) =
∫

γt0,t1

f `
α(t, x(t), xγ(t)) dtα, K`(x(·)) =

∫

γt0,t1

k`
α(t, x(t), xγ(t)) dtα,

where xγ(t) =
∂x

∂tγ
(t), γ = 1, p, are partial velocities.

The closeness conditions (complete integrability conditions) are

Dβf `
α = Dαf `

β, Dβk`
α = Dαk`

β, α, β = 1, p, α 6= β, ` = 1, r,

where Dβ is the total derivative.
Suppose K`(x(·)) > 0, for all ` = 1, r, and accept that the Lagrange matrix

densities
g = (gb

a) : J1(T,M) → Rms, a = 1, s, b = 1,m, m < n,

h = (hb
a) : J1(T, M) → Rqs, a = 1, s, b = 1, q, q < n,

of C∞-class define the partial differential inequations (PDI) (of evolution)

g(t, x(t), xγ(t)) <= 0, t ∈ Ωt0,t1 ,

and the partial differential equations (PDE) (of evolution)

h(t, x(t), xγ(t)) = 0, t ∈ Ωt0,t1 .

On the set C∞(Ωt0,t1 ,M) of all functions x : Ωt0,t1 → M of C∞-class, we set
the norm

‖x‖ = ‖x‖∞ +
p∑

α=1

‖xα‖∞.

Denote by

F(Ωt0,t1) =
{

x ∈ C∞(Ωt0,t1 ,M) |x(t0) = x0, x(t1) = x1, or x(t)|∂Ωt0,t1
= given,

g(t, x(t), xγ(t)) <= 0, h(t, x(t), xγ(t)) = 0, t ∈ Ωt0,t1

}

the set of all feasible solutions of the problem (MFP).
The aim of this work is to introduce and study sufficient efficiency conditions

for the variational problem

(MFP)





min
x(·)

(
F 1(x(·))
K1(x(·)) , . . . ,

F r(x(·))
Kr(x(·))

)
,

subject to x(·) ∈ F(Ωt0,t1).

The authors of this paper and Ştefan Mititelu have introduced and studied
such variational problems. More exactly, they have given necessary conditions for
the efficiency of a feasible solution of the problem (MFP) and studied some types of
dualities [7], [8].

Definition 1.1. A feasible solution x◦(·) ∈ F(Ωt0,t1) is called efficient for the pro-
gram (MFP) if and only if for any feasible solution x(·) ∈ F(Ωt0,t1), the inequality
F (x(·))
K(x(·))

<=
F (x◦(·))
K(x◦(·)) implies the equality

F (x(·))
K(x(·)) =

F (x◦(·))
K(x◦(·)) .
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Definition 1.2. Let x◦ be an optimal solution of the problem (MFP). Suppose
there are in Rr the vectors Λ1◦ and Λ2◦ having all components nonnegative but al
least one positive and the smooth matrix functions µ◦α and ν◦α such that

< Λ1◦,
∂fα

∂x
(t, x◦(t), x◦γ(t)) > − < Λ2◦,

∂kα

∂x
(t, x◦(t), x◦γ(t)) >

+ < µ◦α(t),
∂g

∂x
(t, x◦(t), x◦γ(t)) > + < ν◦α(t),

∂h

∂x
(t, x◦(t), x◦γ(t)) >

−Dγ

(
< Λ1◦,

∂fα

∂xγ
(t, x◦(t), x◦γ(t)) > − < Λ2◦,

∂kα

∂xγ
(t, x◦(t), x◦γ(t)) >

+ < µ◦α(t, x◦(t), x◦γ(t)),
∂g

∂xγ
(t, x◦(t), x◦γ(t)) >

+ < ν◦α(t),
∂h

∂xγ
(t, x◦(t), x◦γ(t)) >

)
= 0,

t ∈ Ωt0,t1 , α = 1, p (Euler− Lagrange PDEs).

Then x◦(·) is called normal optimal solution of problem (MFP).

Let ρ be a real number and b : C∞(Ωt0,t1 ,M)×C∞(Ωt0,t1 , M) → [0,∞) a func-
tional. To any closed 1-form a = (aα) we associate the path independent curvilinear
functional

A(x(·)) =
∫

γt0,t1

aα(t, x(t), xγ(t)) dtα.

The following definition of the quasiinvexity [5], [7], [8], helps us to state the
results included in our main section.

Definition 1.3. The functional A is called [strictly] (ρ, b)-quasiinvex at the point
x◦(·) if there is a vector function η : J1(Ωt0,t1 ,M)× J1(Ωt0,t1 ,M) → Rn, such that

η(t, x◦(t), x◦γ(t), x◦(t), x◦γ(t)) = 0,

and the functional θ : C∞(Ωt0,t1 ,M) × C∞(Ωt0,t1 ,M) → Rn, such that for any x(·)
[x(·) 6= x◦(·)], the following implication holds

(A(x(·)) <= A(x◦(·))) ⇒
(

b(x((·), x◦(·))
∫

γt0,t1

[
< η(t, x(t), xγ(t), x◦(t), x◦γ(t)),

∂aα

∂x
(t, x◦(t), x◦γ(t)) > + < Dγη(t, x(t), xγ(t), x◦(t), x◦γ(t)),

∂aα

∂xγ
(t, x◦(t), x◦γ(t)) >

]
dtα[<] <= − ρb(x(·), x◦(·))‖θ(x(·), x◦(·))‖2

)
.

In order to find some sufficient efficiency conditions for the problem (MFP),
we need the following [7]

Theorem 1.1 (Necessary efficiency conditions). Let the function x◦(·) ∈ F(Ωt0,t1)
be a normal efficient solution of problem (MFP). Then there exist Λ1◦, Λ2◦ ∈ Rr
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and the smooth functions µ◦ : Ωt0,t1 → Rmsp, ν◦ : Ωt0,t1 → Rqsp, such that we have

(MFP)◦





< Λ1◦,
∂fα

∂x
(t, x◦(t), x◦γ(t)) > − < Λ2◦,

∂kα

∂x
(t, x◦(t), x◦γ(t)) >

+ < µ◦α(t),
∂g

∂x
(t, x◦(t), x◦γ(t)) > + < ν◦α(t),

∂h

∂x
(t, x◦(t), x◦γ(t)) >

−Dγ

(
< Λ1◦,

∂fα

∂xγ
(t, x◦(t), x◦γ(t)) > − < Λ2◦,

∂kα

∂xγ
(t, x◦(t), x◦γ(t)) >

+ < µ◦α(t, x◦(t), x◦γ(t)),
∂g

∂xγ
(t, x◦(t), x◦γ(t)) >

+ < ν◦α(t),
∂h

∂xγ
(t, x◦(t), x◦γ(t)) >

)
= 0,

t ∈ Ωt0,t1 , α = 1, p (Euler− Lagrange PDEs)

< µ◦α(t), g(t, x◦(t), x◦γ(t)) >= 0, t ∈ Ωt0,t1 , α = 1, p,

µ◦α(t) >= 0, t ∈ Ωt0,t1 , α = 1, p,

Λ1◦ ≥ 0, < e,Λ1◦ >= 1, e = (1, . . . , 1) ∈ Rr.

2. Efficiency sufficient conditions

We shall establish efficiency sufficient conditions for the problem (MFP).

Theorem 2.1. Let us consider the vectors Λ1◦, Λ2◦ from Rr and the functions
x◦(·), µ◦(·), ν◦(·) which satisfy the conditions (MFP)◦. Suppose that the following
properties hold:

a) the functional

< Λ1◦, F (x(·)) > − < Λ2◦,K(x(·)) > =
∫

γt0,t1

[
< Λ1◦, fα(t, x(t), xγ(t)) >

− < Λ2◦, kα(t, x(t), xγ(t)) >
]
dtα

is (ρ1, b)-quasiinvex at the point x◦(·) with respect to η and θ;

b) the functional
∫

γt0,t1

< µ◦α(t), g(t, x(t), xγ(t)) > dtα is (ρ2, b) -quasiinvex at

the point x◦(·) with respect to η and θ;

c) the functional
∫

γt0,t1

< ν◦α(t), h(t, x(t), xγ(t)) > dtα is (ρ3, b)-quasiinvex at

the point x◦(·) with respect to η and θ;

d) one of the integrals of a)-c) is strictly (ρ1, b), (ρ2, b) or (ρ3, b)-quasiinvex at
the point x◦(·) with respect to η and θ;

e) ρ1 + ρ2 + ρ3 ≥ 0;
f) Λ1◦

` F `(x◦(·))− Λ2◦
` K`(x◦(·)) = 0, for each ` = 1, r.

Then the point x◦(·) is an efficient solution of problem (MFP).
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Proof. Let us suppose that the point x◦(·) is not an efficient solution for problem
(MFP). Then, there is a feasible solution x(·) for problem (MFP), such that

F `(x(·))
K`(x(·)) ≤

F `(x◦(·))
K`(x◦(·)) , ` = 1, r,

the case x(·) = x◦(·) being excluded. That is

Λ1◦
` F `(x(·))− Λ2◦

` K`(x(·)) ≤ Λ1◦
` F `(x◦(·))− Λ2◦

` K`(x◦(·)), ` = 1, r.

Making the sum after ` = 1, r, we get

< Λ1◦, F (x(·)) > − < Λ2◦,K(x(·)) > ≤ < Λ1◦, F (x◦(·)) > − < Λ2◦,K(x◦(·)) > .

According to condition a), it follows

b(x(·), x◦(·))
∫

γt0,t1

[
< η(t, x(t), xγ(t), x◦(t), x◦γ(t)), < Λ1◦,

∂fα

∂x
(t, x◦(t), x◦γ(t)) >

− < Λ2◦,
∂kα

∂x
(t, x◦(t), x◦γ(t)) >> + < Dγη(t, x(t), xγ(t), x◦(t), x◦γ(t)),

< Λ1◦,
∂fα

∂xγ
(t, x(t), xγ(t)) > − < Λ2◦,

∂kα

∂xγ
(t, x◦(t), x◦γ(t)) >>

]
dtα

<= − ρ1b(x(·), x◦(·))‖θ(x(·), x◦(·))‖2.
(1)

Applying property b), the inequality
∫

γt0,t1

< µ◦α(t), g(t, x(t), xγ(t)) > dtα <=

∫

γt0,t1

< µ◦α(t), g(t, x◦(t), x◦γ(t)) > dtα

leads us to

b(x(·), x◦(·))
∫

γt0,t1

(
< η(t, x(t), xγ(t), x◦(t), x◦γ(t)), < µ◦α(t),

∂g

∂x
(t, x◦(t), x◦γ(t)) >>

+ < Dγη(t, x(t), xγ(t), x◦(t), x◦γ(t)), < µ◦α(t),
∂g

∂xγ
(t, x◦(t), x◦γ(t)) >>

)
dtα

<= − ρ2b(x(·), x◦(·))‖θ(x(·), x◦(·))‖2.
(2)

Taking into account condition c), the equality
∫

γt0,t1

< ν◦α(t), h(t, x(t), xγ(t)) > dtα =
∫

γt0,t1

< ν◦α(t), h(t, x◦(t), x◦γ(t)) > dtα

implies

b(x(·), x◦(·))
∫

γt0,t1

(
< η(t, x(t), xγ(t), x◦(t), x◦γ(t)), < ν◦α(t),

∂h

∂x
(t, x◦(t), x◦γ(t)) >>

+ < Dγη(t, x(t), xγ(t), x◦(t), x◦γ(t)), < ν◦α(t),
∂h

∂xγ
(t, x◦(t), x◦γ(t)) >>

)
dtα

<= − ρ3b(x(·), x◦(·))‖θ(x(·), x◦(·))‖2.
(3)
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Summing side by side relations (1), (2), (3) and using condition d), it follows

b(x(·), x◦(·))
∫

γt0,t1

< η(t, x(t), xγ(t), x◦(t), x◦γ(t)), < Λ1◦,
∂fα

∂x
(t, x◦(t), x◦γ(t)) >

− < Λ2◦,
∂kα

∂x
(t, x◦(t), x◦γ(t)) > + < µ◦α(t),

∂g

∂x
(t, x◦(t), x◦γ(t)) >

+ < ν◦α(t),
∂h

∂x
(t, x◦(t), x◦γ(t)) >> dtα + b(x(·), x◦(·))

∫

γt0,t1

< Dγη(t, x(t),

xγ(t), x◦(t), x◦γ(t)), < Λ1◦,
∂fα

∂xγ
(t, x◦(t), x◦γ(t)) > − < Λ2◦,

∂kα

∂xγ
(t, x◦(t), x◦γ(t)) >

+ < µ◦α(t),
∂g

∂xγ
(t, x◦(t), x◦γ(t)) > + < ν◦α(t),

∂h

∂xγ
(t, x◦(t), x◦γ(t)) >> dtα

< − (ρ1 + ρ2 + ρ3) b(x(·), x◦(·))‖θ(x(·), x◦(·))‖2.

This inequality implies that b(x(·), x◦(·)) > 0, therefore we obtain
∫

γt0,t1

< η(t, x(t), xγ(t), x◦(t), x◦γ(t)), < Λ1◦,
∂fα

∂x
(t, x◦(t), x◦γ(t)) >

− < Λ2◦,
∂kα

∂x
(t, x◦(t), x◦γ(t)) > + < µ◦α(t),

∂g

∂x
(t, x◦(t), x◦γ(t)) >

+ < ν◦α(t),
∂h

∂x
(t, x◦(t), x◦γ(t)) >> dtα

+
∫

γt0,t1

< Dγη(t, x(t), xγ(t), x◦(t), x◦γ(t)), < Λ1◦,
∂fα

∂xγ
(t, x◦(t), x◦γ(t)) >

− < Λ2◦,
∂kα

∂xγ
(t, x◦(t), x◦γ(t)) > + < µ◦α(t),

∂g

∂xγ
(t, x◦(t), x◦γ(t)) >

+ < ν◦α(t),
∂h

∂xγ
(t, x◦(t), x◦γ(t)) >> dtα

< − (ρ1 + ρ2 + ρ3) ‖θ(x(·), x◦(·))‖2.

According to [13], §9, we have the following

Lemma 2.1. A total divergence is equal to a total derivative.

Integrating by parts the second integral and using Lemma 2.1, the previous
inequality leads us to a contradiction, that is

0 < − (ρ1 + ρ2 + ρ3) ‖θ(x(·), x◦(·))‖2.

Therefore, the point x◦(·) is an efficient solution for problem (MFP). ¤

Replacing the integrals from hypotheses b), c), of Theorem 2.1 by the integral
∫

γt0,t1

[
< µ◦α(t), g(t, x(t), xγ(t)) > + < ν◦α(t), h(t, x(t), xγ(t)) >

]
dtα,
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the following statement is obtained.

Corollary 2.1. Let x◦(·) be a feasible solution of problem (MFP), µ◦(·), ν◦(·) be
functions and Λ1◦, Λ2◦ vectors from Rr such that the relations (MFP)◦ are satisfied.
Suppose that the following conditions are fulfilled:

a) the functional

< Λ1◦, F (x(·)) > − < Λ2◦,K(x(·)) > =
∫

γt0,t1

[
< Λ1◦, fα(t, x(t), xγ(t)) >

− < Λ2◦, kα(t, x(t), xγ(t)) >
]
dtα

is (ρ1, b)-quasiinvex at the point x◦(·) with respect to η and θ;

b) the functional∫

γt0,t1

(< µ◦α(t), g(t, x(t), xγ(t)) > + < ν◦α(t), h(t, x(t), xγ(t)) >)dtα

is (ρ2, b)-quasiinvex at the point x◦(·) with respect to η and θ;

c) one of the integrals from a) or b) is strictly-quasiinvex at the point x◦(·);
d) ρ1 + ρ2 ≥ 0;
e) Λ1◦

` F `(x◦(·))− Λ2◦
` K`(x◦(·)) = 0, for each ` = 1, r.

Then, the point x◦(·) is an efficient solution of problem (MFP).

For other developments of optimization problems of path independent curvi-
linear integrals with PDE constraints or with isoperimetric constraints as multiple
integrals or path independent curvilinear integrals, see [2] ÷ [6] and [9] ÷ [16]. For
a computer aided study of PDE and/or PDI optimization problems using Maple,
see [1] and [14].

3. Conclusions

We considered the minimizing fractional program (MFP), where the objective
is a vector of functionals quotients of paths integrals and the constraints are partial
differential inequations (PDI) and equations (PDE). In this work, we introduced
and studied sufficient conditions for the efficiency of a feasible solution of problem
(MFP). The present study completes previous results obtained with Ştefan Mititelu
and included in papers [7] and [8].

R EF E RE N CE S
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[7] Ariana Pitea, C. Udrişte and Şt. Mititelu, PDI&PDE-constrained optimization problems with

curvilinear functional quotients as objective vectors, Balkan J. Geom. Appl., 14(2009), No. 2,

75-88.
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