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A MESHLESS LOCAL DISCRETE GALERKIN (MLDG) METHOD FOR

SOLVING NONLINEAR WEAKLY SINGULAR INTEGRAL EQUATIONS

Pouria Assari1, Mehdi Dehghan2

This article describes a numerical method for solving nonlinear Fredholm

integral equations of the second kind with weakly singular kernels. The scheme estimates
the solution by the discrete Galerkin method based on the use of moving least squares
(MLS) as a local approximation. In order to approximate the singular integrals appeared
in the method, we introduced an accurate special quadrature formula. The proposed

scheme is constructed on a set of scattered data and does not require any background
mesh, so it is meshless. The method can be easily implemented and its algorithm is
simple and effective to solve weakly singular integral equations. The error analysis of

the method is provided. Finally, numerical examples are included to show the validity
and efficiency of the new technique and confirm the theoretical error estimates.
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1. Introduction

The most usual basic meshfree methods are known in the literature as radial basis
functions (RBFs) and the moving least squares (MLS) methods. The MLS scheme as a
general case of Shepard’s method has been introduced by Lancaster and Salkauskas [16].
This method is an effective technique for the approximation of an unknown function that
involves a locally weighted least squares polynomial fitting. The MLS approach is recog-
nized as a meshless method because it is based on a set of scattered points and consequently
does not need any domain elements for approximation. This meshless technique has signif-
icant importance applications in different problems of the numerical mathematics such as
integral equations. The MLS-based meshless methods have been used for solving linear in-
tegral equations with logarithmic kernels [3], boundary integral equations [18, 17], Fredholm
integro-differential equations [10] and two-dimensional integral equations on non-rectangular
domains [4].

Consider the following nonlinear weakly singular Fredholm integral equation of the
second kind

u(x)− λ

∫ b

a

H(x, y)φ(x, y, u(y))dy = f(x), a ≤ x ≤ b, λ ̸= 0, (1)

where the known function H(x, y) has an infinite singularity in x, y ∈ [a, b], x = y and the
most important examples are ln |x− y|, |x− y|α for some −1 < α < 0 and variants of them,
φ is a given several times continuously differentiable function, f is a known function, u is the
unknown function which must be determined and λ is a constant. These types of integral
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equations often arise in practical applications such as investigation of electrostatic and low
frequency electromagnetic problems [20], methods for computing the conformal mapping of
a given domain [23], solution of electromagnetic scattering problems [2], determination of
propagation of acoustical and elastically waves [7] and the reformulation of some exterior
boundary value problems [24].

The projection and discrete projection methods are the commonly used approaches
for the numerical solutions of nonlinear weakly singular Fredholm integral equations. The
discrete Petrov-Galerkin methods [9], piecewise polynomial collocation and Galerkin meth-
ods [22], Sinc-collocation methods [21], hybrid collocation methods [8], high-order colloca-
tion methods [11], iterated fast multiscale Galerkin methods [19], Galerkin-wavelet methods
[1, 12] and Bubnov-Galerkin methods [14] have been used to solve these types of integral
equations. Author of [24] has investigated Adomian decomposition methods for solving
weakly singular Fredholm integral equations of the second kind.

The main purpose of this article is to present a numerical method for solving the
weakly singular integral equation (1) by the discrete Galerkin method with the shape func-
tions of MLS approximation constructed on a set of disordered data as basis. Since the
singular integrals appeared in the proposed method cannot be estimated by classical in-
tegration schemes, we apply a quadrature formula established based on the non-uniform
composite Gauss-Legendre integration rule. The new technique does not require any do-
main elements, so it is a meshless method. The presented scheme developed in the current
paper is simple, computationally attractive and more flexible for most classes of integral
equations such as weakly singular Volterra integral equations and weakly singular integro-
differential equations. We also obtain the error bound and the convergence rate for the
proposed method.

The outline of the paper is as follows. In Section 2, we review some basic formulations
and properties of the MLS approximation. In Sections 3, we present a computational method
for solving the integral equation (1) by combining MLS and the discrete Galerkin methods.
In Section 4, we provide the error analysis for the proposed method. Numerical examples
are given in Section 5. Finally, we conclude the article in Section 6.

2. The MLS approximation

The aim of the moving least squares (MLS) method is to approximate the function
u(x) in the closed domain D ⊂ Rd for every point x ∈ D in a weighted least square sense.
We consider the data values of the function u(x) at certain data sites X = {x1, ...,xN}. For
x ∈ D, the value su,X(x) of the MLS approximation is taken by the solution of [16]

min

{
N∑
i=1

[u(xi)− p(xi)]
2w(x,xi) : p ∈ Πq(Rd)

}
, (2)

where w : D×D → [0,∞) is a continuous weight function and Πq(Rd) is the linear space of
polynomials of total degree less than or equal to q in d variables with the basis {p1, ..., pQ}
[25]. We are mainly interested in local continuous weight function w which gets smaller as
its arguments move away from each other. Therefore, we can assume that

w(x,y) = ϕ(
∥x− y∥2

δ
), δ > 0, (3)

where the univariate function ϕ is nonnegative which ϕ(r) = 0 for r ≥ 1 [25].
In the following theorem, we will find a direct approach to obtain the solution of problem
(2), but prior to that, the definition of unisolvent set is required.

Definition 2.1. [13] A set of points X = {x1, ...,xN} ⊂ Rd is called as q-unisolvent if the
only polynomial of total degree at most q, interpolating zero data on X is the zero polynomial.
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Theorem 2.1. [16, 25] Suppose that the set X = {x1, ...,xN} is q-unisolvent, then the
problem (2) is uniquely solvable and the solution su,X(x) for every x ∈ D can be represented
as

su,X(x) =
N∑
i=1

ψi(x)u(xi), (4)

where the basis functions ψi(x) are called as shape functions corresponding to X and deter-
mined by

ψi(x) = w(x,xi)

Q∑
k=0

zkpk(xi), (5)

in which the zk are the unique solution of

Q∑
k=0

zk

N∑
i=1

w(x,xi)pk(xi)pl(xi) = pl(x), 0 ≤ l ≤ Q. (6)

The Gaussian weight function is applied in the present work which is defined as follows:

w(x,xj) =

{
exp[−(dj/α)

2]−exp[−(δ/α)2]
1−exp[−(δ/α)2] , 0 ≤ dj ≤ δ,

0, dj > δ,
(7)

where dj =∥ x−xj ∥2 (the Euclidean distance between x and xj ), α is a constant controlling
the shape of the weight function w and δ is the size of the support domain.
Now, we proceed by discussing on the convergence of the MLS method in terms of the fill
distance parameter hX,D.
We restrict ourselves to the domains satisfying an interior cone condition with angle θ ∈
(0, π/2) and radius r > 0 (for more details, see [13, 25]). In the following, we present some
definitions which are important to measure the quality of data points and to estimate the
convergence rates of the MLS method.

Definition 2.2. [13] The fill distance of a set of points X = {x1, ...,xN} ⊆ D for a bounded
domain D is defined by

hX,D = sup
x∈D

min
0≤j≤N

∥x− xj∥2.

Definition 2.3. [13] The separation distance of X = {x1, ...,xN} is defined by

qX =
1

2
min
i ̸=j

∥xi − xj∥2.

The set X is said to be quasi-uniform with respect to a constant c > 0 if

qX ≤ hX,D ≤ cqX .

We can ready to represent the following theorem about the error bound for approximating
a function using the MLS scheme for every x ∈ D.

Theorem 2.2. [25] Let D∗ be the closure of ∪x∈DB(x, 2r) and h0 = r/τ where τ =
16(1+sin θ)2q2

3 sin2 θ
, then there exists a constant C > 0 that can be computed explicitly such that for

all u ∈ Cq+1(D∗) and all quasi-uniform X ⊂ D with hX,D ≤ h0, the approximation error is
bounded as follows:

∥u− su,X∥L∞(D) ≤ Chq+1
X,D|u|Cq+1(D∗). (8)

The semi-norm on the right-hand side is defined by [25]

|u|Cq+1(D∗) = max
|α|=q+1

∥Dαu∥L∞(D∗).



86 Pouria Assari, Mehdi Dehghan

3. Solution of weakly singular integral equations

In this section, we utilize the moving least squares (MLS) method to the numerical
solution of the following weakly singular Fredholm integral equation of the second kind:

u(x)− λ

∫ b

a

H(x, y)φ(x, y, u(y))dy = f(x), a ≤ x ≤ b, λ ∈ R, (9)

where the weakly singular function H(x, y) and the right hand side function f ∈ L2[a, b] are
given, u is an unknown function to be determined and the given function φ is sufficiently
smooth and nonlinear corresponding to the variable u. We assume thatH(x, y) is continuous
for all x, y ∈ [a, b], x ̸= y, and there exist positive constants ξ and α ∈ (0, ℓ] such that for
all x, y ∈ [a, b], x ̸= y, we have

|H(x, y)| ≤ ξ|x− y|α−ℓ. (10)

In other words, the discontinuous functions H(x, y) have an infinite singularity [5] and the
most important examples are ln |x− y|, |x− y|α for some −1 < α < 0 and variants of them.
To apply the MLS method, we require N nodal points in the interval [a, b]. Since the interval
[a, b] should be transferred to the interval [0, 1] by a simple change of variables, without loss
of generality, we can assume that a = 0 and b = 1. The distribution of these nodes could
be selected regularly or randomly as 0 < x1 < x2 < ... < xN < 1. Therefore the unknown
function u(x) can be approximated by the MLS method as

u(x) ≈ uN (x) =
N∑
i=1

ciψi(x) = CtΨ(x), x ∈ [0, 1], (11)

where

Ψ(x) = [ψ1(x), ..., ψN (x)]t, C = [c1, ..., cN ]t.

Replacing the expansions (11) with u(x) in the integral equation (9) yields

CtΨ(x)− λ

∫ 1

0

H(x, y)φ(x, y, CtΨ(y))dy = f(x). (12)

By taking inner product ⟨.,Ψt(x)⟩ upon both sides of (12), we have

Ct ⟨Ψ(x),Ψt(x)
⟩
− λ

⟨∫ 1

0

H(x, y)φ
(
x, y, CtΨ(y)

)
dy,Ψt(x)

⟩
=
⟨
f(x),Ψt(x)

⟩
. (13)

The discrete Galerkin method results from the numerical integration of all integrals in the
nonlinear system (13) associated with the Galerkin method [5]. To approximate the inner
products ⟨f, ψj⟩ and ⟨ψj , ψi⟩, we use the composite qk-point Gauss-Legendre rule with M
uniform subdivisions relative to the coefficients {vℓ} and weights {wℓ} in interval [−1, 1] as

⟨f, ψj⟩ =
∫ 1

0

f(x)ψj(x)dx =
∆x

2

qk∑
ℓ=1

wℓ

M∑
q=1

f(τ qℓ )ψj(τ
q
ℓ ) + O(

1

M2qk
), (14)

and

⟨ψj , ψi⟩ =
∫ 1

0

ψi(x)ψj(x)dx =
∆x

2

qk∑
ℓ=1

wℓ

M∑
q=1

ψi(τ
q
ℓ )ψj(τ

q
ℓ ) + O(

1

M2qk
), (15)

where ∆x = 1
M and τ qℓ = ∆x

2 vℓ + (q − 1
2 )∆x.

Since H(x, y) is a weakly singular function along the diagonal x = y, the double integrals in
the nonlinear system (13) cannot be computed by the classical numerical integration rule.
Thus a particular quadrature formula is required. For approximating these integrals, we
use the composite qk-point Gauss-Legendre rule with M non-uniform subdivisions [12]. But
this quadrature rule can not be applied for approximating them, because these formulae are
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utilized when the singularities occur on the vertical axis. The following change of variables
for the integrals are most useful [12, 15]:

t = y − x and s = y + x.

In fact, with the change of variables, the unit square [0, 1] × [0, 1] is transformed to the
diamond {(t, s) : |t|+ |s− 1| ≤ 1}, and so∫ 1

0

∫ 1

0

H(x, y)φ

(
x, y,

N∑
i=1

ciψi(y)

)
ψj(x)dydx =

∫ 1

−1

h(t)dt, (16)

where

h(t) =

∫ β(t)

α(t)

K

(
t, s,

N∑
i=1

ciψi(
s+ t

2
)

)
ψj

(
s− t

2

)
ds, (17)

with

K

(
t, s,

N∑
i=1

ciψi(
s+ t

2
)

)
= H

(
s− t

2
,
s+ t

2

)
φ

(
s− t

2
,
s+ t

2
,

N∑
i=1

ciψi(
s+ t

2
)

)
,

α(t) = max{−t, t} and β(t) = min{2− t, 2 + t}.
The integrand of h(t) has a weakly singularity only at t = 0 and is sufficiently smooth for
every s. Consequently h(t) satisfies the condition

|h(2qk)(t)| ≤ Ct−ϵ−2qk , for all t ∈ (0, 1), (18)

for any positive integer k and for any small positive number ϵ [12], so by the composite
qk-point Gauss-Legendre rule with M non-uniform subdivisions [12], we have∫ 1

−1

h(t)dt =

∫ 1

0

[h(t) + h(−t)] dt =
qk∑
ℓ=1

wℓ

M∑
q=1

∆tq
2

[h(θqℓ ) + h(−θqℓ )] + O(
1

M2qk
). (19)

To approximate h(t), we utilize the common mN -point numerical integration scheme over
[−1, 1] withM uniform subdivisions relative to the coefficients {vr} and weights {wr}. Thus,
we obtain

h(t) =
∆s

2

qk∑
r=1

wr

M∑
p=1

K

(
t, ηpr ,

N∑
i=1

ciψi(
ηpr + t

2
)

)
ψj

(
ηpr − t

2

)
+ O(

1

M2qk
), (20)

where ∆s = β(t)−α(t)
Mt

with Mt = 1 + [M(β(t)− α(t))] and ηpr = ∆s
2 vr + (p− 1

2 )∆s.

Now, using the quadrature formulae (14), (15) and (19) to approximate the integrals in the
system (13), the following nonlinear system of algebraic equations for unknowns {c1, . . . , cN}
is obtained:

∆x

2

qk∑
ℓ=1

wℓ

M∑
q=1

[ĉjψi(τ
q
ℓ )− f(τ qℓ )]ψj(τ

q
ℓ ) = λ

qk∑
ℓ=1

wℓ

M∑
q=1

∆tq
2

[
ĥ(θqℓ ) + ĥ(−θqℓ )

]
, (21)

where

ĥ(θqℓ ) =
∆s

2

qk∑
r=1

wr

M∑
p=1

K

θqℓ , ηpr , 2k−1M∑
i=1

ĉiψi(
ηpr + θqℓ

2
)

ψj

(
ηpr − θqℓ

2

)
.

Thus, the values of u(x) at any point x ∈ [0, 1] can be approximated by

ûN (x) =
N∑
i=1

ĉiψi(x).
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4. Error analysis

This section includes the error estimate and the rate of convergence of the presented
method. We define PN : L2[a, b] → VN as a Galerkin projection operator by

PNu(x) =
N∑
i=1

ciψi(x), x ∈ [a, b], (22)

where the space VN = span{ψ1, ..., ψN} ⊂ L2[a, b] with the dimension dN and the coefficients
{c1, ..., cN} determined by solving the linear system

⟨u, ψj⟩ =
N∑
i=1

ci ⟨ψi, ψj⟩ j = 1, ..., N. (23)

The weakly singular operator T : L2[a, b] → L2[a, b] is introduced as

Tu(x) = λ

∫ b

a

H(x, y)φ(x, y, u(y))dy + f(x). (24)

The weakly singular integral operator (24) is compact on L2[a, b] [5].
Utilizing the operator (24), we can rewrite the integral equation (9) as

u = Tu, (25)

and so solving the nonlinear integral equation (9) is equivalent to finding the fixed points of
T .
Based on the qN -point Gauss-Legendre rule with M subdivisions, we introduce the discrete
semi-definite inner product as

⟨f, g⟩qN =

qN∑
k=1

w̄k

M∑
q=1

f(ωq
N )g(ωq

N ), f, g ∈ L2[a, b]. (26)

Therefore, we can introduce the discrete projection operator as follows:

QNu(x) =

N∑
k=1

ckψk(x), x ∈ [a, b], (27)

where the coefficients {c1, ..., cN} determined by solving the linear system

⟨u, ψj⟩qN =

N∑
k=1

ck ⟨ψk, ψj⟩qN j = 1, ..., N. (28)

Now, we present the following theorem about the discrete projection operator with the MLS
shape functions as the basis.

Lemma 4.1. [4] Having in mind the assumptions of Theorem 2.2, suppose that QN , N ≥ 1
are the discrete orthogonal projections for the shape functions of the MLS approximation cor-
responding to nodal points X = {x1, ..., xN} ⊂ [a, b]. If u ∈ Cq+1[a, b]∗ then QNu converges
to u as N → ∞ and moreover

∥QNu− u∥∞ ≤ (1 +m)Chq+1
X,D|u|Cq+1[a,b]∗ , (29)

where m is a constant.

Furthermore, a sequence of qN -point Gauss-Legendre rule with M subdivisions operators
TN on L2[a, b] is introduced by

TNu(x) =

qN∑
r=1

w̄r

M∑
p=1

H(x, θkr
p)φ(x, θpr , u(θ

p
r )) + f(x), N ≥ 1. (30)
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Note that {TN} is a collectively compact family which is pointwise convergent on L2[0, 1]
[12] and furthermore for every u ∈ C2qN [0, 1], we have [5, 12]

∥Tu− TNu∥∞ ≤ CN

M2qN
sup

0≤x≤1
|u(2qN )(x)|. (31)

Now, we can rewrite the system (21) as

QNTN ûN = ûN . (32)

Define the iterated solution by

ūN = Tk(ûN ) ⇒ QN ūN = ûN . (33)

To establish the error analysis of the presented method, we present the convergence theorem
of iterated Galerkin method from [6] as follows:

Theorem 4.1. [6] Let u0 be a solution of the nonlinear integral equation (9) and assume
that 1 is not an eigenvalue of T ′(u0), where T

′(u0) denotes the Frechet derivative of T at
u0. There are ε, N̄ > 0 such that for every N > N̄ , TNQN has a unique fixed point ūN in
B(u0, ε). Also, there is a constant C > 0 such that

∥ūN − u0∥∞ ≤ γ1∥Tu0 − TNQNu0∥∞, N > N̄. (34)

Now, we are ready to present the convergence theorem of the presented method.

Theorem 4.2. Suppose that u0 ∈ Cq+1[0, 1]∗ ∩ C2qN [0, 1] is the exact solution of the non-
linear integral equation (9). Then based on the assumption of Lemma 4.1 and Theorem 4.1,
for sufficiently large N the proposed method has a unique solution ûN on a ball around u0
and

∥ûN − u0∥∞ ≤ (1 +mγ1γ2)(1 +m)Chq+1
X,D|u0|Cq+1[0,1]∗ +

CNmγ1
M2qN

sup
0≤x≤1

|u(2qN )
0 (x)|,

where γ1, γ2,m,CN and C are constants.

Proof. This can be immediately obtained from Theorem 4.1 that there exists a unique
iterated solution ūN ∈ B(u0, ε) such that

∥ūN − u0∥∞ ≤ γ1∥Tu0 − TNQNu0∥∞
≤ γ1[∥Tu0 − TNu0∥∞ + ∥Tk(u0 − QNu0)∥∞]. (35)

From the pointwise convergence of TN , and the principle of uniform boundedness [5], we
can assume that ∥TN∥ ≤ γ2, so

∥ūN − u0∥∞ ≤ γ1∥Tu0 − TNu0∥∞ + γ1γ2∥u0 − QNu0∥∞. (36)

If ûN = QN ūN then ûN is a unique solution for the presented method. Consider the
decomposition

u0 − ûN = u0 − QN ūN = (u0 − QNu0) + QN (u0 − ūN ). (37)

By the inequality (36), we obtain

∥ûN − u0∥∞ ≤ ∥u0 − QNu0∥∞ + ∥QN∥∥u0 − ūN∥∞.
≤ (1 +mγ1γ2)∥u0 − QNu0∥∞ +mγ1∥Tu0 − TNu0∥∞. (38)

Applying the error bounds (29) and (31), we have

∥ûN − u0∥∞ ≤ (1 +mγ1γ2)(1 +m)Chq+1
X,D|u0|Cq+1[0,1]∗ +

CNmγ1
M2qN

sup
0≤x≤1

|u(2qN )
0 (x)|.

Since ∥ûN − u0∥∞ → 0 where N → ∞, justified by the quasi-uniform condition on X, there

is a constant N̂ > 0 such that for every N ≥ N̂ , ∥ûN − u0∥∞ < ε̂. This completes the
proof. �
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Table 1. Some numerical results for Example 5.1

N h ∥eN∥2 ∥eN∥∞
q = 1 q = 2 q = 1 Ratio q = 2 Ratio

5 0.250 2.17× 10−3 6.11× 10−4 4.19× 10−3 − 1.30× 10−3 −
9 0.125 4.78× 10−4 7.31× 10−5 1.12× 10−3 1.90 2.14× 10−4 2.60
17 0.062 1.05× 10−4 7.70× 10−6 2.88× 10−4 1.95 3.11× 10−5 2.78

33 0.031 2.38× 10−5 7.47× 10−7 7.32× 10−5 1.97 4.21× 10−6 2.88
69 0.016 5.60× 10−6 6.85× 10−8 1.84× 10−5 1.98 5.42× 10−7 2.96
129 0.008 1.35× 10−6 6.77× 10−9 4.45× 10−6 2.05 6.80× 10−8 2.99

Figure 1. Absolute error distributions of Example 5.1

5. Numerical examples

In order to show the effectiveness of the new method two nonlinear integral equations
with weakly singular kernels are solved. In computations, we put h = 1

N−1 , α = 0.6 × h
and δ = 2 × h and 3 × h for the linear and quadratic cases, respectively. Here, we employ
the composite Gauss-Legendre quadrature rule with M = 10 and qN = 10 for the numerical
integration. As we expected from Theorem 4.2, for qN sufficiently large, the ratio of error
remains approximately constant for the linear case (≈ 2) and for the quadratic case (≈ 3)
so, the numerical results confirm the theoretical error estimates. All routines are written in
MAPLE software and run on a Laptop with 2.10 GHz of Core 2 CPU and 4 GB of RAM.
The FSOLVE command is used to solve the nonlinear system of algebraic equations.

Example 5.1. Consider the weakly singular integral equations kernels

u(x) +

∫ 1

0

{
y2 + y√
1 + x

ln |x− y|+ x

y + 1

}
u2(y)dy = f(x), 0 ≤ x ≤ 1, (39)

where

f(x) =
15x− 6x3 ln

(
1−x
x

)
− 6x2 + 6 ln(1− x)− 2

18
√
1 + x

+ (x2 + 1)

(
3

2
− 2 ln(2)

)
,

with the exact solution uex(x) = x√
1+x

. The numerical results in terms of ∥eN∥2 and

∥eN∥∞ at different numbers of N and the rate of convergence for the linear and quadratic
basis functions are presented in Tables 1. The obtained errors for different numbers of N
are drawn in the logarithmic mode in Figure 1.

Example 5.2. In this example, we solve the following integral equation:

u(x)− 15

∫ 1

0

{
y(x+ 1)√
|x− y|

+ ex+y

}
eu(y)dy = f(x), 0 ≤ x ≤ 1, (40)
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Table 2. Some numerical results for Example 5.1

N h ∥eN∥2 ∥eN∥∞
q = 1 q = 2 q = 1 Ratio q = 2 Ratio

5 0.250 2.24× 10−3 5.79× 10−4 4.25× 10−3 − 1.22× 10−3 −
9 0.125 4.92× 10−4 6.73× 10−5 1.12× 10−3 1.91 1.96× 10−4 2.64
17 0.062 1.08× 10−4 6.98× 10−6 2.89× 10−4 1.96 2.81× 10−5 2.80
33 0.031 2.47× 10−5 6.72× 10−7 7.33× 10−5 1.98 3.79× 10−6 2.89

69 0.016 5.84× 10−6 6.13× 10−8 1.14× 10−5 1.98 4.39× 10−7 2.96
129 0.008 1.41× 10−6 6.17× 10−9 4.56× 10−6 2.01 6.08× 10−8 2.99

Figure 2. Absolute error distributions of Example 5.2

where

f(x) = ln(x+ 1)− 16

7
x

9
2 − 44

7
x

7
2 − 4x

5
2 − (1− x)

3
2

(
16

7
x3 − 68

7
x2 − 124

7
x− 72

7

)
− 15ex+1,

with the exact solution uex(x) = ln(1+x). Table 2 shows ∥e∥∞, ∥e∥2 and the values of ratio
at different numbers of N for for linear (q = 1) and quadratic (q = 2) basis functions. The
obtained errors for different numbers of N are drawn in the logarithmic mode in Figure 2.

6. Conclusions

In this paper, we have studied a computational method for solving Fredholm integral
equations of the second kind with weakly singular kernels. The method has been established
on the discrete Galerkin method with the shape functions of the moving least squares (MLS)
approximation constructed on scattered points as basis. The singular integrals in the scheme
have been computed utilizing the composite non-uniform Gauss-Legendre integration rule.
The proposed method is meshless, since it does not require any cell structures. We also have
investigated the error estimate of the new approach and found that the rate of convergence
of proposed method is of O(hq). The convergence accuracy has been examined in two weakly
singular integral equations.

REFERENCES

[1] H. Adibi and P. Assari. On the numerical solution of weakly singular Fredholm integral equations of
the second kind using Legendre wavelets. J. Vib. Control., 17(5):689–698, 2011.

[2] M. G. Andreasen. Comments on scattering by conducting rectangular cylinders. IEEE Trans. Antennas

and Propagation, 12(2):235–236, 1964.
[3] P. Assari, H. Adibi and M. Dehghan. A meshless discrete Galerkin (MDG) method for the numerical

solution of integral equations with logarithmic kernels. J. Comput. Appl. Math., 267:160–181, 2014.



92 Pouria Assari, Mehdi Dehghan

[4] P. Assari, H. Adibi and M. Dehghan. A meshless method based on the moving least squares (MLS)
approximation for the numerical solution of two-dimensional nonlinear integral equations of the second

kind on non-rectangular domains. Numer. Algor., 67(2):423–455, 2014.
[5] K.E. Atkinson. The Numerical Solution of Integral Equations of the Second Kind. Cambridge University

Press, Cambridge, 1997.

[6] K.E. Atkinson and A. Bogomolny. The discrete Galerkin method for integral equations. Math. Comp.,
48, 1987.

[7] R. P. Banaughf and W. Goldsmith. Diffraction of steady elastic waves by surfaces of arbitrary shape.
Jour. Aeoust. See. Amer., 30(4):589–597, 1963.

[8] Y. Cao, M. Huang, L. Liu and Y. Xu. Hybrid collocation methods for Fredholm integral equations with
weakly singular kernels. Appl. Numer. Math., 57:549–561, 2007.

[9] W. Chen and W. Lin. Galerkin trigonometric wavelet methods for the natural boundary integral equa-
tions. Appl. Math. Comput., 121(1):75–92, 2001.

[10] M. Dehghan and R. Salehi. The numerical solution of the non-linear integro-differential equations based
on the meshless method. J. Comput. Appl. Math., 236(9):2367–2377, 2012.

[11] V. Dominguez. High-order collocation and quadrature methods for some logarithmic kernel integral
equations on open arcs. J. Comput. Appl. Math., 161(1):145–159, 2003.

[12] W. Fang, Y. Wang and Y. Xu. An implementation of fast wavelet Galerkin methods for integral equa-
tions of the second kind. J. Sci. Comput., 20(2):277–302, 2004.

[13] G. E. Fasshauer. Meshfree methods. In Handbook of Theoretical and Computational Nanotechnology.

American Scientific Publishers, 2005.
[14] A.A. Gusenkova and N.B. Pleshchinskii. Integral equations with logarithmic singularities in the kernels

of boundary-value problems of plane elasticity theory for regions with a defect. J. Appl. Maths. Mechs.,
64(3):435–441, 2000.

[15] H. Kaneko and Y. Xu. Gauss-type quadratures for weakly singular integrals and their application to
Fredholm integral equations of the second kind. Math. Comp., 62(206):739–753, 1994.

[16] P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares methods. Math. Comput.,
37(155):141–158, 1981.

[17] X. Li. Meshless Galerkin algorithms for boundary integral equations with moving least square approx-
imations. Appl. Numer. Math., 61(12):1237–1256, 2011.

[18] X. Li and J. Zhu. A Galerkin boundary node method and its convergence analysis. J. Comput. Appl.
Math., 230(1):314–328, 2009.

[19] G. Long, G. Nelakanti and X. Zhang. Iterated fast multiscale galerkin methods for Fredholm integral
equations of second kind with weakly singular kernels. Appl. Numer. Math., 62(3):201–211, 2012.

[20] K. Mei and J. Van Bladel. Low-frequency scattering by rectangular cylinders. IEEE Trans. Antennas
and Propagation, 11(1):52–56, 1963.

[21] T. Okayama, T. Matsuo and M. Sugihara. Sinc-collocation methods for weakly singular Fredholm
integral equations of the second kind. J. Comput. Appl. Math., 234(4):1211–1227, 2010.

[22] A. Pedas and G. Vainikko. Superconvergence of piecewise polynomial collocations for nonlinear weakly

singular integral equations. J. Integral Equations Appl., 9(4):379–406, 1997.
[23] G.T. Symm. An integral equation method in conformal mapping. Numer. Math., 9(3):250–258, 1966.
[24] A.M. Wazwaz. Linear and Nonlinear Integral equations: Methods and Applications. Higher Education

Press and Springer Verlag, Heidelberg, 2011.

[25] H. Wendland. Scattered Data Approximation. Cambridge University Press, 2005.


