U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 2, 2011 ISSN 1454-234x

DESIGN PRINCIPLES FOR BUILDING NETWORKING
APPLICATIONS USING GENERAL PURPOSE MULTICORE
PROCESSORS AND PACKET PROCESSING
ACCELERATORS

Cristian F. DUMITRESCU*

Utilizarea procesoarelor multicore cu arhitectura de uz general pentru
implementarea aplicatiilor de procesare a traficului din cadrul unei retele de
comunicatii nu este o temd usor de rezolvat. Lucrarea de fatd examineazad unele din
problemele cheie care intervin in proiectarea unui astfel de sistem §i exploreaza
spatiul de solutii aflat la dispozitie pentru a stabili un set de principii ce trebuie
respectate in activitatea de proiectare. Deoarece una dintre cerintele arhitecturale
cheie pentru orice procesor utilizat la procesarea de pachete este o foarte bund
programabilitate, lucrarea propune mai multe modele de programare care sd facd
posibila procesarea de pachete intr-un mediu multicore. Rezultatele analizei sunt
folosite pentru a ilustra modul in care aplicatia de rutare a pachetelor IPv4, curent
folosita in industrie pentru masurarea performantei de calcul, poate fi implementata
pe un procesor multicore de uz general echipat cu acceleratoare pentru procesarea
de pachete.

Using general purpose multicore processors to build networking applications
is not an easy task. This paper examines the key design issues and explores the
solution space to identify a set of design principles to address this challenge. As
high programmability is one of the key requirements for any packet processing
architecture, several programming models are proposed to enable the packet
processing workload in the multicore environment. The findings are used to
illustrate how the industry standard benchmarking application of IPv4 forwarding
can be efficiently implemented on a general purpose multicore processor equipped
with packet processing accelerators.

Keywords: networking, packet processing, multicore processors, accelerators,
programming model

1. Introduction

With the advent of the latest generation of multi-core processors it has
become feasible from the performance as well as from the power consumption
point of view to build complete packet processing applications using general
purpose architecture processors rather than network processors (NPUs) or
dedicated Application Specific Integrated Circuits (ASICs).

! PhD Student, Faculty of Electronics, Telecommunications and Information Technology,
University POLITEHNICA of Bucharest, Romania, e-mail: cristian.dumitrescu@intel.com

242 Cristian F. Dumitrescu

Architects and developers in the industry are now considering these
processors as an attractive choice for implementing a wide range of networking
applications, as performance levels that could previously be obtained only with
NPUs or ASICs are now achievable with multicore processors, but without
incurring the disadvantages of the former.

There are several papers that are looking at various hardware and software
mechanisms to enabling packet processing on NPU architectures [1], [2], [3]. This
paper examines the usage of general purpose multicore processors to build packet
processing applications. As high programmability is one of the main reasons for
using general purpose architectures for applications previously reserved for NPUs
and ASICs, several programming models are proposed here to facilitate the packet
processing workload in this environment. One of them, the request-based model,
is then used to illustrate how the industry standard benchmarking application of
IPv4 forwarding can be efficiently implemented on a general purpose multicore
processor equipped with packet processing accelerators.

2. Why multicore?

Ideally, a single core processor should be powerful enough to handle all
the application processing. However, a single core cannot keep up with the
constant demand for ever increased computing performance.

The impact of improving the core internal architecture or moving to the
latest manufacturing process is limited. Higher clock frequencies also result in
considerably higher energy consumption and further increase in the
processor-memory frequency gap.

The way to go forward to continue delivering more energy efficient
computing power is to make use of the advantages of parallel processing. In fact,
the latest multicore processors deliver significantly more performance while
consuming less energy. This approach is definitely the way to go forward for
applications like packet processing.

3. Why general purpose architecture processors?

Good programmability is one of the critical requirements for any processor
architecture to be successful. Historically, the poor programmability of the NPUs
is one of the main reasons these architectures were not successful long term.

To provide functional scalability, the data plane implementation needs to
be scalable through software, as the support for additional networking protocols
can be implemented much easier/faster in software than in hardware.

The processor should provide good performance for packet processing, but
in the same time it also needs to offer the same degree of programmability as the
general purpose architectures. Therefore, the processor cores need to have a
general purpose rather than specialized architecture and instruction set. Examples

Design principles for building networking applications using general purpose multicore (...) 243

of general purpose multicore processor architectures currently available are:
Intel® 64, AMDG64®, Power Architecture®, MIPS64® or ARMV7®.

The topics of core partitioning between the control plane and the data
plane and role of the operating system in a general purpose multicore processor
used for packet processing are explored at length in [4].

4. Why using packet processing accelerators?

Apart from the operations commonly performed by any application, the
packet processing workload also involves some specific operations that cannot be
efficiently implemented with the general purpose architecture processor cores.
Typically, such operations are either compute intensive (e.g. encryption) or 1/O
intensive (e.g. external memory intensive operations). In order to meet the packet
budget, these operations have to be offloaded from the processor cores to
specialized hardware blocks called accelerators.

Each accelerator has one of the following roles:

e Reduce the latency of the offloaded operation. Typical example:
encryption. By using a specialized accelerator block for this operation it
becomes possible to encrypt/decrypt a packet in significantly less clock
cycles than a general purpose core;

e Hide the latency of the offloaded operation from the cores. Typical
example: external memory intensive operations. The latency of the
operation cannot be significantly reduced by using an accelerator block
instead of a core, but the operation is still offloaded to the accelerator in
order to enable the cores to do something useful instead of blocking, i.e.
process other packets meanwhile, and come back to the same packet once
the accelerator work is completed and the result of the operation is
available.

5. Building packet processing accelerators

Depending on the specifics of each task, the associated accelerator can be
implemented either as a hardwired block or as a programmable block that might
optionally drive some task specific hardwired logic.

The main advantage of latter approach is the fact that the same accelerator
design can be reused to implement different tasks. The instruction set can be
customized for each accelerator, e.g. by removing those instructions that are not
necessary for the current task.

The programmable accelerator design should be optimized for
multi-threading. Having several hardware threads with hardware supported
contexts (allowing zero thread switching overhead) is usually a useful feature to
have for such an accelerator. This becomes particularly important for those
accelerators implementing memory-intensive operations.

244 Cristian F. Dumitrescu

Unlike the processor cores, the accelerator instruction set should contain
special purpose instructions supporting the specific task, like: instructions
optimized for bit field manipulation, linked list manipulation, etc.

Unlike the processor cores, the accelerators are generally programmed
directly in their assembly language, as the compiler overhead is usually not
affordable. This is acceptable from the software development productivity point
of view, as each accelerator should only be programmed once (firmware) for each
task. The fact that an accelerator is programmed instead of hardcoded should be
transparent to the software running on the processor cores.

The programmable accelerator design removes the need to build another
custom accelerator from scratch for every acceleration task. Most of the hardwired
accelerators can be replaced by an array of on-chip programmable accelerators,
with the function of each accelerator decided at initialization time by loading the
appropriate code image into its instruction memory. Moreover, the processor can
be equipped with more programmable accelerators than initially needed in order
to accommodate future improvements in the application.

6. Data plane programming models.

The pipeline model

In this model, each stage of the data plane pipeline is mapped to a different
processor core or accelerator, with the packet being sent from one stage to the
next one in the pipeline. Each block has its fixed place in the pipeline and owns a
specific stage that it applies on a single packet at a time.

As each stage is processing a different packet, the packet budget per stage
is the overall packet budget (determined by the rate of input packets) multiplied
with the number of pipeline stages.

It is often the case that some stages require more processing cycles than
can be achieved with just a single instance of the specific functional block. The
way to work around this problem is to either break this stage into several stages or
use the cluster model internally for this stage.

The pipeline model offers a simple method to map the data plane pipeline
to the available set of processor cores and accelerators. The lowlights of the model
are:

e Potential waste of computing resources due to their fragmentation when
the computing headroom left unused for some of the blocks is significant;

e Potential impact to the memory bandwidth due to the packet descriptors
having to be copied from one stage to the next one throughout the pipeline.

Design principles for building networking applications using general purpose multicore (...) 245

Block 1

\ 4

Block 2

Fig. 1. The pipeline model

The cluster model

Block N

This model combines several instances of the same functional block, either
processor core or accelerator, into a cluster with each cluster member applying the
same processing on a different packet. As opposed to the pipeline model, each
input packet is completely handled by a single functional block, which is why this
model is also called the run-to-completion model.

As each cluster member is processing a different packet, the packet budget
per member is the packet budget of the cluster (determined by the rate of input

packets) multiplied with the number of cluster members.

From the outside, the number of cluster members is transparent and
therefore the cluster looks like a single super-block. However, the cluster model is
not free of potential problems:

e The input and output streams of packets are shared by all the cluster
members, therefore synchronization between the members is required to
serialize their access to the packet streams;

e A mechanism for preserving the packet order within the same connection
has to be put in place.

i —» Block1
i »| Block 2
i —»| Block N

Fig. 2. The cluster model

246 Cristian F. Dumitrescu

The hybrid model

The hybrid model combines the advantages of both models by mapping
the data plane processing to a pipeline of interconnected clusters. One flavor of
the hybrid model is the request-based model presented next.

el | | Rl |

o
c
(2]
—+
@D
=
[y
@)
c
(2]
—+
@D
=
=

Fig. 3. The hybrid mode

The request-based model

This model assumes that the processor cores are connected with the
accelerators through queues of request/response messages and with the network
interfaces through send/receive queues of packet descriptors. In this model, the
processor cores are acting as routers of packets from one network interface or
accelerator to the next network interface or accelerator in line.

Each processor core is assigned one or more input queues which can be
either packet reception queues from the network interfaces or response message
queues from the accelerators. All the packets from the same input queue suffer the
same processing, which is a characteristic of each input queue. After applying the
processing associated with the input queue the packet was read from, the
processor core sends the packet to the next accelerator (for further processing) or
network interface (for transmission) in line, and then it goes back to scanning its
input queues for the next packet to process.

This model organizes the processor cores as a cluster serving a number of
input queues and writing packets to several output queues. The packet descriptors
have to be stored in a shared memory space to make them available to all the
processor cores and accelerators, unless the packet descriptor is small enough to
fit the request — response messages that are passed between the internal blocks. If
an input queue is scanned by more than one core, a mechanism has to be put in
place to enforce the preservation of the packet order for the packets that are part of
the same traffic flow/connection.

7. Case study: Implementation of the IPv4 forwarding benchmark
application

This section illustrates how the design principles presented in this paper
can be used to implement the industry de-facto standard benchmarking application
of IPv4 forwarding on a multicore processor with on-chip accelerators for packet
processing.

Design principles for building networking applications using general purpose multicore (...) 247

This application performs the routing of IPv4 packets according to the IP
Classless Inter-domain Routing (CIDR) mechanism [5] in a system with multiple
Ethernet interfaces, either Gigabit Ethernet (GbE) or 10 Gigabit Ethernet
(10GbE). For each input packet, the output interface is determined by searching
through the IPv4 routing table to find the best matching route for the current
packet. The search algorithm is Longest Prefix Match (LPM) and the lookup key
is the destination IP address read from the IPv4 header of the packet. On lookup
hit, the lookup result is the index of the output interface the packet should be sent
to.

The packets with a valid route are further subjected to a lookup into the
Address Resolution Protocol (ARP) table [6]. The search algorithm is exact match
and the lookup key is the same destination IP address. On lookup hit, the lookup
result is the destination MAC address that should be stored in the output packet.

The internal architecture of the application is presented in Fig. 4.

Port :I:D\ :I:D—I_y Port
»> 0 0O p
RX > Core 0 :I:D_I_> ™
Port E :I:D—I_' Port
» 1 1 P
RX ’—f]]]—r TX
Table
Lookup
Port _i :I:D_I_' Port
» 2 2 P
RX E IDI TX
Port Core 1]:Dl Port
» 3 3 p
RX IDI TX

Fig. 4. IPv4 forwarding implemented with the request-based programming model

In this example, there are four 10GbE network interfaces, two processor
cores and one accelerator for table lookup, but in general the number of network

248 Cristian F. Dumitrescu

interfaces, processor cores and accelerator instances that are needed to sustain the
rate of input traffic required by the application is determined during the design
process.

Each network interface performs the load balancing of the input traffic for
the processor cores. The communication between the network interfaces and the
processor cores is done through queues of packet descriptors that are written by
the network interfaces and read by the cores. Each network interface is connected
with each processor core through a separate queue. Similarly, each processor core
has its own pair of request-response queues with the table lookup accelerator.

The load balancing logic implemented by each network interface needs to
meet several constraints. The first one is to make sure that the input traffic is
evenly distributed between its output queues. The second one is to enforce the
packet order within each traffic flow. For this application, a traffic flow is
uniquely identified by the DiffServ 5-tuple of the following fields read from the
input packet: source IP address, destination IP address, transport layer protocol,
transport layer source port, transport layer destination port. Examples of
commonly used transport layer protocols are User Datagram Protocol (UDP) and
Transmission Control Protocol (TCP).

All the input packets with the same 5-tuple are considered to be part of the
same traffic flow and therefore the order they exit the processor should match the
order they entered the processor. Usually, for Quality of Service (QoS) reasons,
all the packets that are part of the same traffic flow follow the same path through
the network from source to destination, as set up by the control plane when the
traffic flow is initiated. Therefore, all the packets that are part of the same traffic
flow enter the processor through the same input interface and are sent out through
the same output interface, which simplifies the packet ordering problem by
narrowing down its scope to a single receive side interface and a single
transmission side interface. Similarly, packet reordering is allowed for packets
that are not part of the same traffic flow.

One way to implement the load balancing logic to meet both conditions
specified above is to derive the index of the output queue for the current input
packet by applying a hash function on the 5-tuple read from the packet and then
applying the modulo operator with the number of output queues per interface. The
uniform distribution of the hash function ensures that the traffic is spread evenly
to the output queues [7], [8], [9]. The use of the 5-tuple as the hash key makes
sure that all the packets that are part of the same traffic flow are reaching the same
queue. As each queue is read by a single core, the packets from the same traffic
flow are processed in the order of their arrival.

The data plane programming model used by this application is request
based, which is a flavor of the hybrid model. The packets traverse the following

Design principles for building networking applications using general purpose multicore (...) 249

pipeline: network interface reception = processor core cluster - table lookup
accelerator cluster - processor core cluster - network interface transmission.

Table 1

Packet budget and processor internal configuration for minimum packet size traffic

distribution (all packets are 64 bytes) and processor frequency of 1 GHz

4x 8x 16x 4x 8x 16x

GbE GbE GbE 10GbE | 10GbE | 10GbE
Input rate (Gbps) 4 8 16 40 80 160
Input rate (Mpps) 5.95 11.90 23.81 59.52 | 119.05 | 238.10
Packet budget (ns) 168 84 42 16.80 8.40 4.20
Packet budget (cycles at 1GHz) 168 84 42 16.80 8.40 4.20
Processor core cycles per packet 100 100 100 100 100 100
Number of processor cores 1 2 3 6 12 24
Accelerator cycles per packet 160 160 160 160 160 160
Number of accelerator instances 1 2 4 10 20 39

Table 2

Packet budget and processor internal configuration for Cisco IMIX traffic distribution
(average packet size of 354 bytes) and processor frequency of 1 GHz

4x 8x 16x 4x 8x 16x

GbE GbE GhE 10GbE | 10GbE | 10GhE
Input rate (Gbps) 4 8 16 40 80 160
Input rate (Mpps) 1.34 2.67 5.35 13.37 26.74 53.48
Packet budget (ns) 748 374 187 74.80 37.40 18.70
Packet budget (cycles at 1GHz) 748 374 187 74.80 37.40 18.70
Processor core cycles per packet 100 100 100 100 100 100
Number of processor cores 1 1 1 2 3 6
Accelerator cycles per packet 160 160 160 160 160 160
Number of accelerator instances 1 1 1 3 5 9

The number of members in the processor core cluster and table lookup
accelerator cluster is determined based on the packet budget and the amount of
processing performed per packet, as illustrated in 7able 1 and Table 2. For example,
let us discuss the case of the IPv4 forwarding application with four 10GbE
interfaces and Cisco IMIX traffic distribution. This distribution includes 7 small
packets (64 bytes), 4 medium sized packets (570 bytes) and a single large packet
(1518 bytes), which results in an average packet size of 354 bytes. For four
10GbE interfaces, this average packet size results in an input rate of 13.37 million

250 Cristian F. Dumitrescu

packets per second (Mpps) and equivalently a packet budget of 74.8 ns or 74.8
cycles for a processor frequency of 1 GHz. Considering that a single processor
core needs about 100 cycles to process a packet and a single instance of the table
lookup accelerator can handle a packet in about 160 cycles, this packet budget can
be met with 2 processor cores and 3 instances of the table lookup accelerator.

8. Conclusions

High programmability is one of the most important requirements driving
the design of the multicore processors for packet processing. Using general
purpose architectures for the processing cores to meet this requirement is feasible
as long as the processor is equipped with a set of specialized accelerators to
address those operations that cannot be efficiently implemented by the cores.

To fully utilize the power of the cores and accelerators for packet
processing workloads, the programming model requires special attention. Several
programming models are proposed in this paper: the pipeline model, the cluster
model, the hybrid model and the request-based model. The latter is a flavor of the
hybrid model, as it combines both the pipeline and the cluster models to build the
application.

The request-based model is used to illustrate the implementation of the
de-facto industry standard benchmarking application of IPv4 forwarding on a
general purpose multicore processor with packet processing accelerators.

REFERENCES

[1] M.A. Franklin, P. Crowley, H. Hadimioglu, P.Z. Onufiyc, "Network Processor Design. Issues
and Practices", Morgan Kaufmann Publishers, San Francisco, 2005

[2] T. Wolf, N. Weng, C.-H. Tai, "Runtime Support for Multicore Packet Processing Systems", in
IEEE Network, July/August 2007, pp. 29-37

[3] T.L. Riche, J. Mudigonda, H.M. Vin, "Experimental evaluation of load balancers in packet
processing systems”, in Workshop on Building Block Engine Architectures for Computers
and Networks, 2004

[4] C.F. Dumitrescu, “Design Patterns for Packet Processing Applications on Multi-core Intel
Architecture Processors”, Intel Design Center, http://edc.intel.com/Link.aspx?id=1187

[5] RFC 4623 “Classless Inter-domain Routing (CIDR): The Internet Address Assignment and
Aggregation Plan”, www.ietf.org

[6] RFC 826 “An Ethernet Address Resolution Protocol”, www.ietf.org

[7] Bob Jenkins hash function for table lookup (jhash), http://burtleburtle.net/bob/c/lookup3.c

[8] Paul Hsieh hash function (SuperFastHash), http://www.azillionmonkeys.com/ged/hash.html

[9] Fowler, Noll, Vo (FNV) hash function, http://www.isthe.com/chongo/tech/comp/fnv

