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SCALING FACTOR EFFECT ON NEURAL NETWORKS
RETRAINING PROCEDURE

I. NASTAC, R. MATEI"

Scopul principal al acestui articol este de a stabili modalitatea in care o
structurd functionald a unei retele neuronale artificiale poate fi reantrenata intr-o
manierd eficientd atunci cdnd apar modificari ale functiei generale de intrare-
iegire. Pentru indeplinirea acestui deziderat s-a utilizat o aga numitd memorie
anterioard, scalatd cu o valoare convenabild. Evaluarea efortului de calcul implicat
in reantrenarea retelelor aratd ca o bund alegere a factorului de scalare poate
reduce in mod substantial numdrul efectiv de cicli de antrenare, independent de
metoda de invatare utilizatd.

The main purpose of this paper is to establish how a viable Artificial Neural
Networks (ANN) structure at a previous moment of time could be retrained in an
efficient manner in order to support modifications of the input-output function. To
be able to fulfill our goal, we use an anterior memory, scaled with a certain
convenient value. The evaluation of the computing effort involved in the retraining
of an ANN shows us that a good choice for the scaling factor can substantially
reduce the number of training cycles independent of the learning methods.

Keywords: retraining procedure, weights, scaling factor, number of training
cycles, dissimilarity error.

Introduction

The artificial neural networks (ANNSs) ability to extract significant
information from an initial set of data allows both an interpolation in the a priori
defined points, as well as an extrapolation outside the range bordered by the
extreme points of the training set.

It is well known that the training process of an ANN requires a large
number of processing cycles [3], which can occasionally reach and even
outnumber hundreds of thousands. The necessary time for the learning process is
directly proportional to the complexity of the application implemented by ANN
[2] [5] [8]- At a first glance, this would imply that a small change in the initial
project (e.g. some re-evaluation of the ANN performance at time point when a
certain amount of experience has been accumulated) might require the repetition
of the entire training phase, including all the shortcomings deriving from that, i.e.
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a long processing time, the possible occurrence of an undesired local minimum of
the performance function, etc. Therefore, in this paper we propose a new approach
to overcome this disadvantage. The main purpose is to establish an efficient
method to re-train a viable ANN structure at a certain moment of time such that it
will support variations of the initial input-output function.

To solve this problem we use an anterior memory “scaled” with a certain
convenient value. A remembering process of the old knowledge achieved in the
first learning phase is used as reference. This way, we are able to evaluate the
computing effort involved in the retraining of an ANN.

The structure of this paper is as follows. Section 1 presents the problem
concerning the extraction of the useful information from an ANN in order to
reduce the re-designing effort. In next section we introduce the retraining
procedure and explain the working strategy. The main features of our
experimental results are given in Section 3, where we discuss specific aspects.
Our conclusions are formulated in the final section of the paper.

1. Basic considerations

Usually, feedforward ANNs are well suited to implement different kinds
of input-output functions. The number of hidden layers and the number of the
neurons for each layer are dependent on the complexity of these functions. After
we have established a primary architecture during the first training phase of an
ANN, the weights are initialized to small uniformly distributed values (e.g. in the
interval (0,0.1)). The values have to be chosen small because during the training
process the weights strive statistically to grow and if the learning process is a long
one, the excessive growth of the weights may paralyze the learning process [7]. It
then follows that the learning algorithm will influence the network insignificantly.
The explanation resides in the fact that larger weights values will force large
outputs balanced sum concluding towards asymptotic values of the transfer
function (e.g. sigmoid function). Experiments proved that, besides the small
values of the initial weights, choosing a small learning rate would increase the
chance to avoid the paralysis state [4]. The value of the learning rate is relative
and one cannot assume that a certain small value of the learning rate for one
particular experiment is small enough for another.

Therefore, after having established the architecture and an initialization
process, the ANN will be in some arbitrary state of the continuous or discrete
weights space. As the information theory states [1], we can assign a value of
uncertainty to the network. The information extracted is growingly important as
the uncertainty of the state of a system is higher. The uncertainty rate of a physical
system results not only from the number of the possible states that the system
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could reach during its evolution, but also from the probability value associated
with these states.

Let us consider an arbitrary weight w; in the network structure as a random
discrete variable that could take any of the values Wji (i=1..n) with the probability
p(w/). We can define the entropy of this particular weight as follows:

H(w;) ==Y pw)lg(p(wh)), (1)
i=1

If w; is a continuous random variable with the f{w;) probability density, the
weight entropy can be rewritten as :

+00
Hw)) =~ [ fw)lg(f (w)Ax)dw @)

Here, f(w;)Ax represents the probability to fall into one of the Ax segments
of the abscissa of the probability density function f{w;).
The amount of information necessary to find out the final state of the
weight is equal to its entropy:
Iw.:H(Wj)a (3)

J

For practical reasons, we deal with the entropies of some mutually
conditioned random variables (weights). The general entropy of the neural
networks could then be written as:

Hyy = HW,wo,eowy)=HW)+H(wy | W) +...+ Hwy | Wi, wy,..., wy_1) (4)

Computing the ANN entropy formula efficiently is a hard task, if not
impossible, when some highly dimensionally structures are involved.

The theory [1] tells us that the weights initialization with random
distributed values leads to the idea that the weights space entropy has a maximum
value before the effective learning process begins. By choosing some uniform
probability distribution we could increase the chances to find the optimum
solution through some learning technique. On the other hand, in this case,
searching is not efficient as far as the number of required training cycles is
concerned. This is an unavoidable phenomenon when one first tries to design an
ANN.

Let us suppose that after a while the input-output function of the ANN has
to be reconsidered. If we restart from scratch, we will train the network exactly in
the same way as in the first phase. Therefore, the computing effort remains the
same. As an alternative, we can try to use some of the previous knowledge
acquired in the first phase, while designing the network, in order to reduce the re-
designing effort. The question is how to extract the useful information from the
first project and use it in an efficient way in the retraining phase of the network.
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If we define the initial system as X and the re-designed system as Y, then
the quantity of the information over the system Y obtained through the system X
is:
Iy y=HXY)-H(Y|X), (5)
This result can be seen as diminishing the entropy of the system Y.
Although theoretically clear, obtaining H(Y|X) in practice represents a great
challenge. Since any ANN is a highly parallel system, the computing engine of
the system cannot be found by using a sequential algorithm. To our knowledge, so
far, the network itself is the only one that can administer its own information from
its weights. Interpreting the network weights in another way was considered
irrelevant until now.

2. Retraining procedure

In this section, we will describe our practical information extracting
mechanism directly from the weights of a reference ANN which was already
trained and it is perfectly functional at the present time. We use this information
to train a structurally identical ANN, or even the same network that has some
variations of the global transformation input-output function.

Our proposed procedure reduces the reference network weights by a
scaling factor y (0<y <1). These reduced weights are used as initial weights for
the training sequence of the second network. At the end we compare the network
convergence speed (i.e., the number of cycles required until an imposed error is
reached) obtained in both cases. Note that, before the training phase, the reference
network had its weights initialized to random uniformly distributed values. In case
we systematically achieve some smaller convergence speed for the second
network, the global training time will then decrease as a consequence, hence our
mechanism proves beneficial.

The retraining mechanism will be analyzed in the following cases: same
function with same training set (identical with the one used in the first training
phase, which preceded the scale reduction process), same function with different
training set, and different function with a new training set.

In order to properly evaluate the proposed procedure, we will test its
effects on four training models: BP (back-propagation), momentum, ALR
(Adaptive Learning Rate) and the ALR-momentum combination [2]. This way,
we try to emphasize that our procedure has similar results regardless of the
learning algorithm used.

To ease the testing work, we establish some preliminary conditions
without restraining the generality of the results. Thus, the tested feedforward
neural networks start running with one input - one output and continue with
increased number of inputs. If the ANN has more outputs, then each of them leads
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to a hyper-surface in a s+1 dimensional space, where s represents the number of
the inputs. As the training techniques are fairly similar for the ANNs with an
arbitrary number of inputs and outputs, it implies that the achieved results will be
true even in the general case of a highly dimensional ANN.

We limited the training set to a relative uniform distribution of data.
However according to [2] and [6] we tried to pick more data from the case of
continuous functions where the derivative had higher values.

All the above conditions do not restrain the generality of the method,
instead they try to comply with the limited computing resources available and also
help the understanding by providing intuitive results.

In order to find the necessary training cycles and the learning error, we
have considered the following pre-defined two-dimensional functions:

S i[b,c]—[d,e] (6)
or multi-dimensional functions:
filb,c]x...x[b,,c.]—>[d,e] @)

After training, the function 4 generated by the ANN will be closer to the
desired function f.

Next, we propose the, so called, dissimilarity error E; as a means to
evaluate the resemblance between the graphical representations of f'and 4 (or f
and another function g). This error is defined as:

1S (x)= 8|
Ey(f,9,v) =L - ®)

In the previous equation, X represents the sum of the modules of the
differences between these two functions measured in v equidistant points.

For network training purposes, we chose a finite number n of pairs (x;,
fix), i=l.n, from the function’s graph. Although we could have taken
equidistant points on the abscissa, we can also accept some slight variations, to be
closer to the real situations where we do not know the exact interval of the values
for the function f. In case we know the function f entirely, we really do not need
an ANN to simulate the function but only a memory instead, with the whole set of
values that provide us with f(x), for any x. If, on the contrary we only know
partially the function f, then the ANN is the right choice because of its
interpolation and extrapolation capabilities.

The approximation error £, used in the training sequence is given by the
following formula:

> (f(x))-9(x )
E, =1 )

a
n
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where 7 is the number of input-output learning pairs.

After selecting the pairs (x, f{x)), we can effectively train the network with
its weights previously initialized to small random values. The learning phase stops
when the approximation error E, falls below a fixed error limit E;. After that, we
note the number of training cycles such that the condition £, < E; is satisfied.

Our main intent is to reduce the number of the learning cycles. The
retraining procedure needs the completion of two major steps. Firstly, we have to
get the set of weights by inheriting them from the reference ANN, and secondly
we have to reduce these weights by a scale factor y (e.g. in range (0.1,0.9)). The
newly obtained weights represent the base for the new learning process. In order
to decide the optimum scale factor and the consequences of the scale reduction
procedure itself, the retraining phase should be performed for more than one value
of y. Then, for different training models, we will observe how the number of
training cycles varies with y. This factor will finally reach an optimum value y,; ,
the one that causes a minimum number of training cycles.

Once we have established the retraining principle, the only thing that
remains is to test its practical utility. Therefore we build an efficient benchmark
algorithm of the retraining procedure as follows:

1) Decide the initial function /" and the training set.

2) Choose the network architecture.

3) Select the training procedure.

4) Initialize the network weights with small uniformly distributed values.

5) Train and then hold the initial training cycles number Va1

6) Assign L values to scale factor y.

7) Reduce by each y the weights obtained at step 5.

8) Repeat learning procedure for each set of weights and memorize the
corresponding training cycles number V().

9) Repeat step 8 for another training set of function f or for the case of function g
with a similar graph.

As an observation, we mention that the set of values for the functions f, g
and ¢ could be easily extended to other larger interval of values. The neural
function ¢ is reshaping itself after each training cycle. We initially chose
networks which implement two-dimensional functions just to simplify the
simulation and to lower the burden of interpreting the results. The generalization
is straightforward, due to the fact that any effective algorithm remains the same
for an arbitrary number of inputs and/or outputs.
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3. Results and discussion

In this section we will illustrate our results, the working mode and the
influence of the retraining sequence over an ANN, by considering different
families of functions and network architectures.

First, for one input - one output case, choosing the arbitrary initial function
f(where f:[-1,1]—[-1,1]), we used the graph showed in Fig. 1.

@ Training points for function f
e Graph of function f

A Training points for function g
Graph of function g

0.80 -

f(x)

0.40 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1

Fig. 1. The graphs of functions f'and g

This function was copied by a neural network with one input — one output
following the training set from 54 points that could be seen on the graph. In
addition, we used another function g that had a shape near to function f (see Fig.
1). To verify the robustness of the algorithm we chose a number of 50 pairs for
function g by comparison with 54 in the case of function f.

The dissimilarity error between f and g, measured for 100 points was
Ei(f,2,100)=0.045. This means that the approximate area between these two
curves has the value of E;(c-b)=0.045-2=0.09. We can easily observe that the
functions are very similar. On the same graph f, we selected a different training set
built of 54 points ((x,f(x ")), i=1..54).

The used network architecture has two hidden layers, each of them with 5
neural cells. Selecting the BP model, we trained the network starting from
randomly and uniformly distributed weights. We observed that 2228 learning
cycles were necessary. Then, the training process was resumed for a number of
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L=9 values of the scaling factor y (1=0.1, %»=0.2, ... %=0.9), in order to learn the
function f'using the training set (x; f(x;)), i=1..54. The results can be seen in Fig.
2a, which graphically represents the number of training cycles for each retraining
with 5. We marked with a horizontal line the number of cycles necessary in the
first training process, before scaling.

3000 ~ 1 3000

2500 |- 2500

2000

1500 -

Training Cycles Number
Training Cycles Number

500 =

Fig. 2. Retraining procedure through BP method for the same function f'with the same points (a)
and the retraining procedure through momentum method for the different function g (b)

By using the training set (x’;, f{x’;)), i=1..54 in order to learn the function f,
we obtain a similar graph with that of Fig. 2a. The number of retraining cycles
decreases progressively with the increase of . We observed that the variations
are very small when using different points for the retraining process.

In order to see whether the obtainable data is useful to learn a new
function like g, we repeated the retraining procedure starting from the initial
weights, scaled using the training set (50 points pairs) of the function g. The
resulted graph looks also similar as the one presented in Fig.2a, but from value
greater than 0.7 we notice a constant increase on the graph. In all these graphs, for
y > 0.2, we stay below the threshold of the initial training cycles’ number.
Obviously we are interested in those values of » for which the number of
retraining cycles is below the horizontal line because in those cases the training
procedure behaves much better. For higher values of the y (over 0.7), we could be
suspicious because an over-learning phenomenon is likely to appear and, in this
case, the network has difficulties in making generalizations.

Under the same conditions choosing any one, from among the momentum,
ALR or ALR-momentum training methods, we noticed a general decreasing
behavior of the training cycles number in accordance with the increase of the
scaling factor y, with the significance that in some situations (see Fig. 2b) we
could notice an important increasing behavior once y>0.7.
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As a remark, regardless of the training procedure, using a neural network
with a single hidden layer of 10 neural cells the observed values during the
simulations were pretty much alike (maybe slightly increased) in comparison with
previous presented situations for two hidden layers neural networks.

Maintaining the same initial conditions, we tested the effect of the hidden
layers number. Hence, we changed the architecture by using another one with
three hidden layers (each layer with 5 neural cells). Starting again the scaling
procedure for each of the used training methods, we noticed that the over-learning
phenomenon vanished in the BP case for different function, but appears in the
ALR case. For the momentum and ALR-momentum models there are no major
changes, concluding that, in general, the results of the retraining procedure are
independent from the number of hidden layers.

Training Cycles Mumber

Fig. 3. Significant differences between the graphs of the functions fand g (a)
and the retraining procedure for the function g in this case (b)

However, our method may not always provide spectacular results
concerning the decrease of the training cycle number. Thus, it is possible that the
retraining procedure is not efficient at limit situations. For example, in Fig. 3a
when the graph of f'is quite different from the graph of g, the retraining procedure
does not lead to smaller values of the cycles number (see Fig. 3b, ALR case,
where E4(f,g,100) = 0.1). The graph of training cycles number descends below the
initial threshold just for ¥ = 0.4 and 0.5. If the dissimilarity error between these
two functions grew more, then we would have no reason to apply retraining
method because we cannot achieve a reduction of the training cycle number. This
leads to the conclusion that the scale reduction procedure must be carefully
applied when the goal function g is too much different from f, previously known
from an earlier training.



12 I. Nastac, R. Matei

In the second part, we tested our procedure over a number of three-
dimensional functions (see for example Fig. 4). These kinds of functions were
simulated by two inputs — one output network architectures following training
sets of 400 points.

Fig. 4. An example of 3D input-output function

As a result of analyzing the simulating data, regardless of the training
procedures, we get again that by varying the scale value, the number of retraining
cycles starts from a higher value than the reference cycles number (marked with a
horizontal line), and then it progressively decreases in accordance with the
increases of » much below the reference value, especially for ¥ > 0.3 (Fig. 5.a).
Sometimes, for the values of y higher than 0.6, we have significant jumps of the
learning cycles’ number that are associated with the network paralysis or over-
learning phenomenon (Fig. 5.b).
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Fig. 5. The number of training cycles as function of p, with decreasing aspect (a) and over-learning
aspect for y > 0.6 (b)
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This remark remains valid even if some graphs might surprise us (see Fig.
6.a). At first sight, the observation that we have already made seems not to be
true. This was due to the fact that we used a relative small number of scales, L=9,
for 3 (=1...L). When we resumed the retraining sequence with L=45 values of y,
from 0.02 to 0.9 (having 0.02 as the increment), we obtained the graph in Fig. 6.b
that finally confirmed the previous observation. We noticed that a small number L
leads in some cases to irrelevant conclusions.
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Fig. 6. Irrelevant situation for L=9 values of » (a) and an improvement for L=45 (b)

We performed similar experiments for other neural networks with 3 and 4
inputs. We could not notice different behaviors as far as the evolution of the
training cycles number varying with the parameter y is concerned.

Conclusions

In this paper, we have proposed a procedure for retraining those ANNs,
which require modifications of their input-output functions. We described the
information extracting mechanism directly from the weights of a reference ANN
that was already functional. These weights were reduced by a scale factor y, and
handled as initial weights for the new training sequence. Using our procedure, we
obtained a significant decrease in the number of the training cycles compared to
the classical way.

Based on the simulations performed for multiple combinations of the input
parameters, we conclude that the optimal y has its value around 0.5. Increasing
this coefficient is not justified by the over-learning possibility and the implicit
paralysis of the neural networks. In addition, values below 0.5 lead to a behavior
very similar to a lack of the memory that remains by scaling.
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We noticed that the phenomena in the ANN behaviour are almost the same
when the retraining procedure is applied, regardless of the learning method used.
Even if some of the techniques used are more efficient than others, applying the
scaling method leads to a somehow similar ratio with respect to the decrease of
the training cycles. This ratio depends on the analyzed case, more precisely on the
neural architecture, functions dissimilarity, imposed error limit, etc.

The results and the graphs were selected in a non-preferential manner from
more than 200 retraining simulation sessions. In 32% of the analyzed cases, for y
> 0.7, we noticed that the number of the training cycles has an ascending trend,
and this was associated with the over-learning phenomenon. The aforementioned
percentage kept itself relatively independent in almost all the situations given by
the parameter modifications, i.e. inputs number, layers number, cells number of
each hidden layer, etc.

The performed simulations lead to similar behavior, independently of the
inputs number of the tested models. The similarity between the training methods
for networks with an arbitrary number of inputs and/or outputs implies the fact
that the results are also valid for the case of a highly dimensional space. This
reason allows us to generalize the conclusions regarding the values of y to
networks with any dimension.

The main advantage of ANNs is their fastest computing speed.
Unfortunately they need too much time for training process therefore we showed a
way to decrease this time. Research is being conducted to implement the
retraining procedure for ANNSs that perform prediction tasks.
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