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A REFINED UPPER BOUND FOR ENTROPY

Guoxiang Lu!

In this paper we mainly refine the recent entropy upper bound given by
Tdpus and Popescu (2012). By using Jensen’s inequality and some new inequalities with
exponential functions and logarithmic functions, we obtain the stronger upper bound for
entropy. At last we prove that the new upper bound is better than the previous one.
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1. Introduction

In information theory[2], if the probability distribution F' is given by P(X = i) =
pi, pi >0, i =1,2---,n, st. > p; = 1, then the (Shannon’s) entropy is defined
as H(X) := Y. | pilog pi The entropy reflects the expected value (or average value) of
the information contained in each message. And it plays an important role in information
science and applied mathematics. Some available bounds for the entropy can be seen in
[1, 3,4, 5,6,7, 8,9, 10]. Recently, Simic improved the Jensen’s inequality and obtained a
new bound for the entropy with two given variables as follows[13]:

2u 2v
0<m(u,v):=plog [ —— ) +vlog [ —— ) <logn — H(X),
< m(p,v) u0g<ﬂ+y> vog(lHV) ogn — H(X)

where 1 = min;<;<,{p;} and v = maxi<;<,{pi }-
In 2012, Tapus and Popescu [14] obtained a sharper entropy upper bound by using
another refinement of Jensen’s inequality based on Simic’s work:

1 Z?;11 Puy fn—1

n — Du.

H(P) < logn — 1 _ W\
( >_ osn 1SN1<“21£1§X</M71§7L 8 <Zn_l ) (zl;[lpm ) ( )

i=1 Pui

And soon Popescu et al. found a new upper bound for the entropy by a novel approach
in modeling of big Data applications[11] and bounds for Kullback-Leibler divergence[12].
In this paper, we will obtain a more precise upper bound for entropy by using Jensen’s
inequality and some new inequalities with exponential functions and logarithmic functions.

2. Some preliminary results

In this paper, the term “log” refers to natural logarithm.
Theorem 2.1. Forxz > 0,

z—1—logz >1+z(e™7 —2). (2)

The equality holds if and only if © = 1.
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Proof. Let f(z) =2 —1—logzx — [1 + x(ek% — 2)} Direct computing yields

fl(x)=3— 1 (l—i- 1) el %,

x €T

1 1

" _ _al—z .
i) = 23 (m ¢ )

Using the standard inequality logax > 1 — %

1—

with the necessary and sufficient condition

x = 1 for the equality, we can find that z > e + and the equality holds if and only if z = 1.
Hence f”(z) > 0 for x # 1. Since f(1) = f'(1) = 0, we first have f'(z) < 0for 0 <z < 1
and f'(x) > 0 for z > 1. Next we can obtain f(x) > 0 for 0 < z < 1 as well as > 1 and
f(z) =0 for x = 1. So the proof is complete. |

Theorem 2.2. Ifa = (a1,a2) and q = (¢1, q2) are two positive 2-tuples such that g1 +q2 = 1,
then

a _g191+gzaz a _g1a1+tazan
loB(q10s + aag) > — D10 (oI )y G0
Q101 + Q202 qra1 + goas

+ (q1logar + g2 logaz) .

The equality holds if and only if a1 = as.

Ve

Proof. Substituting © = ——4— into (2) and multiplying by ¢; for i = 1,2, we have

qia; a; q;a; 1—9121+t92a2
7—%—%10%72%4-7(6 g —2)
qia1 + q2a2 qi1a1 + ga2a2 qi101 + G202

and the equality holds if and only if a; = as are equal. By using g1 +¢2 = 1 and —2%—

qia1+qzaz
g2a2

—1222__ — 1 after summing the two inequalities above we have
qrai+qza2

1 4 1 =
—qlog——— —@qlog—————
qra1 + q2a2 q1a1 + g2a2
> giax (el_Q1a1:r1<Z2a2 B 1) i q2a2 (el_qwl;rztm% _ 1) .
gia1 + q2a2 qia1 + ga20a2
Therefore, the desired result follows and the equality holds if and only if a1 = as. O

Theorem 2.3. Let fi(v) := § (el’% — 1) +logx, A > 0. Then fy is a concave function
on (0,400).

Proof. Straightforward derivative shows

(@) = — (Ael,; ~).

Observing the standard inequality log x> 1—2, wehavelog ¥ > 1— A Then the inequality
5> el=% holds or equivalently \e!™% —z < 0 So the function fy(x ) is a concave function
n (0, +00). O
Next let x = (21,29, -+ ,x,) and p = (p1,pa, - ,pn) are two positive n-tuple such

that Z?:l p; = 1. Then we present two effective theorems.

Theorem 2.4. If fy is defined as above, P, is defined as P,, = Z?Zl piT;, and the notation
T} is defined as follows:

Zg:1pm~”’3m g
Tj:_1<u1<u2< <pi<n me o S _;p“ifp"(x“i) ’ (4)

i:lpui
where j = 2,--- ;n — 1, then we have
0<T <T3<---<T,_1.
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Proof. Because fp, () is concave on (0, +00) by Theorem 2.3, using Jensen’s inequality we
can easily have Tp > 0. Next we will show that for any j € {2,--- ,n—2}, T; <T,4;. Let
us consider that the maximum of the expression

J Z] Dy, Ty, J
(Zplli> an (W) - Zplti,fpn (xllqi)
1=1 =1

i=1Ppi

is obtained for p; = n;, n; € {1,2,--- ,;n}, i =1,2,--- 4. Then it is enough to prove that

J Z] D, T, J
(me> an <’L317;m> - mefpn (‘Tfh)
1= =111 =1

Jj+1 Z P Jj+1
< (me> fP <Zz:j1+1mm> - mefpn (xm)
1=1

for any n;11 € {1,2,--- ,n} \ {m,--- ,n;}. The above inequality is equivalent to
j j+1 j+1
i1 Poi, 8 Soi Pnit,
i o)+ (S ) i (E 200 ) < (S, ) g ()
i=1Pn: Z =1 Pn;
. . i+1 -1
Multiplying by (ZZ:I pm) , we have

' i+1
Py fP ( ) Zz 1 Pn; fP Zi 1 Pni T, < fp Zi 1 Pni%n;

~—i+1  JPn Ln; +1 1 Py, 1 :
ZH ’ 2j+ Z 1Pn; Z]+

This inequality follows from Jensen’s inequality for the concave function fp, (z). So we
obtain the desired result. |

P’Vl
Theorem 2.5. Let S = P% S Pt (elfTi — 1), then the following estimates hold

n
S<S+Ty<S+Ty<--<S+T, 1 <logP,—» piloga;. (5)

i=1

Proof. By Theorem 2.4, we have
S<SH+TH <S+T3<---<S+T,.

Next we prove the last inequality of (5). Choose arbitrary x,, € {x1,x2,---,z,} such that
1< < po <--- < pin1 < n with corresponding multiplier {p,,,Pu,, - s Pp,_,}, and
let z,, = {z1,22,-- 2z} \ {&p, 2ps, -+ 2y, ,}. Using the inequality (3) for ¢1 = p,,,,
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n—1 Z" 1 PuiTuy
q2 = 21‘21 Puis @1 = Ty, A2 = 7271 1p1 L, qia1 + qea2 = P, we have
=1 Mg

n n—1 Erl—lp z
o, =t (S ) <o+ (S ) B
i=1 ] Zi:l Pu;
1
1— i=1 Ppilpu;
75+ () (B2
Z;il pm
I-==1 ,Pn n—1 z 1plh i
e Timi Peimwg/ Tioi Py — ] + Dy, Ingﬂn me log =2=——— Z
i=1 p,Uw
1 [ - 1 r
== (mexm) <e ST gt ST iy 1) n szixi (el el 1)
n 7/=1 n 4
1 n—1
- ( B 1)+ Ymtons - 3w
P L
<Zplh> IOg z 1 Ppi

Zz 1 Pu;
— E?L—lp z n—1
S o+ 5+ (zpﬂ,) fr, () S e ()
i=1 i=1 > i i=1

i=1
Because p; € {1,2,--- ,n} are arbitrary, we have
n n—1 Zn—lp T
log P, > logx; +S + max v =l DRiRL
&in = ;n &% 1<pr<pe<--<pn-1<n [(;p“l> 7. ( Z?:_llpm
n—1
- Zpl»bifpn ('rll«z)
i=1
n
= Zpi logz; + S +Th—1.
i=1
Then the last inequality of (5) follows. O

3. The new upper bound for entropy
By using Theorem 2.5, we can improve the upper bound for entropy.

Theorem 3.1. We have

n

H(P)<logn— 3 (@™ 1)~ max _{FG+G@}h  (©)

i—1 1<ps <po<-<pn_1<n
1=

n—1 Z?:Hl Puy fn—
F(u) = log (nl> <H Pﬁ‘f > )
Zi:l DPu; i

G(M) — L_l (el—nfl :L;llp/_bi _ ) Z 1— NPu; _ ,

where

and p = (p1, f2, -, fin)-
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Proof. Applying the last inequality (5) with z; = 1/p;, after some calculations by using
A, =n we can obtain the inequality (6). O

The following theorem can illustrate that our new upper bound (6) for entropy is
better than previous bound (1) in [14].

Theorem 3.2.
1
_ npi _ 1 .
a2 (e ) e {F(n) + G} ;
2 max (F(u)}.

T 1S <pe < <pp—1<n
Proof. Let us consider that the maximum of the right-hand side of the inequality (7) is
obtained for u; = n;, n; € {1,2,---,n}, i = 1,2,--- ,;n—1, and let n, = {1,2,--- ,n} \
{7717 e 7nn—1}- For n= (77177723 o ann) we have
I _
IS max(F(e) + G
i=1

1<pi<po < <pp—1<n

— ma; F
1Su1<u2<--~x<un71§n{ (M)}

1 - 1—np; _

_1 n 1—np; 1 n—1 1—-n Zf:llpn. ) 1 n—1 — .
_ﬁ;(e —1) + = (R _>_n;(e )
:l (el—npnn _ 1) _|_ n _1 (elfﬁ ZZL:_ll Pn; 1)

n n

Let 1 (z) = e! =% — 1. We can easily obtain () is convex for > 0 by the second derivative
Y (x) = e!=® > 0. Using Jensen’s inequality we have
l (e]-*npvm — ]_) + n—1 (elfﬁ Z?;f Pn; __ ]_)
n n

—1 —1
> elf(%npnnJrnTﬁ i pm‘)

_l=elmXiri 1=
So we obtain the desired result. O
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