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COMPUTATIONAL APPROACH TO DARK CURRENT
SPECTROSCOPY IN CCDs AS COMPLEX SYSTEMS.
II. NUMERICAL ANALYSIS OF THE UNIQUENESS
PARAMETERS EVALUATION

Tonel TUNARU', Ralf WIDENHORN?, Dan IORDACHE?, Erik BODEGOM *

Datoritda: a) numdrului considerabil de parametri de intrare, b) relatiilor
teoretice puternic neliniare (exponentiale), programele de calcul elaborate (pentru
fitarea parametrilor de univocitate ai dependentei de temperaturd a curentilor de
Intuneric ai unor dispozitive CCD) sunt foarte sensibile la alegerea: (i) aproxima-
tiilor de ordinul zero ale latimii efective a benzii interzise a Si, (ii) ponderilor
valorilor experimentale ale curentilor de intuneric. Acest lucru conduce la: a)
intervale inguste ale domeniilor de stabilitate ale aproximatiilor de ordinul zero
care conduc la atractori cu semnificatie fizicd, inconjurate de: b) domenii
conducdnd la oscilatii, c) instabilitati sau: d) pseudo-convergenta (atractori falsi, cu
valori fara semnificatie fizica ale parametrilor studiati), aspecte studiate in detaliu
de aceasta lucrare.

The evaluation of the uniqueness parameters of the temperature dependence
in CCDs is difficult to the considerable number of input parameters and to the
strongly nonlinear (exponential) theoretical relations. For this reason, the
elaborated computer programs are very sensitive to the choice of the zero-order
approximations of the effective (Si) energy gap, and of the weights associated to the
experimentally determined dark current. The main goal of this work was to study the
rather narrow stability domains of the zero-order approximations, which lead to
attractors with physical meaning. It was found that the stability domains are
surrounded by (usually in this order): other fields leading to oscillations, pseudo-
convergence (false attractors, described by non-physical values of the studied
parameters) or instability fields, which were studied also in detail.

Keywords: charge coupled devices, attractors, stability domains, compatibility of
theoretical models relative to experimental results, dark current,
intrinsic fermi level, deep traps in silicon, capture cross-sections.
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In the frame of our previous study [1], we have found that the minimal set
of uniqueness parameters which ensure a sufficiently accurate description of the
temperature dependence of the dark current in CCDs corresponds to: a) the

logarithms of the pre-exponential factors In Deg 4 , In Deg 4., Of the diffusion and

depletion dark current, respectively, b) the energy gap E, of silicon, ¢) modulus
|Et-Ei| of the difference of energies corresponding to the capture traps (of free
electrons or holes) inside Si, and to the: d) so-called “polarization degree” d of the
capture cross-sections of free electrons g, and holes o, , defined as:

O, — 0O

d=arg tanh[uJ . @))
Op+op

This work studied the obtained results concerning the uniqueness

parameters of the CCD semiconductor: InDeg gif , InDeg gop, Eg and |E, —E;| by

means of the classical gradient method [2]. In this aim, the expression of the total
dark current (with the role of “tested” parameters 7 here) was written as (see [1],

[3D):

E
De™ (T) = Degigy (T) + Deggy (T) = T2 exp{ln Deg gifr ~ %} +

E E, —E:
+73/2 -exp(ln Deq gop —ﬁ}-sec h{#} . 2)

As it is known, the gradient method aims to find the values of the effective
uniqueness parameters (described by the vector # ), by minimization of the sum §
of weighted deviations squares of the calculated values 7., (#, p) relative to their

N —
; - 2 _ - T 77 7 -
experlmental values exp - S=2Wi(tcalci _texpj) =(ealc. _texp.) W teale, _texpl) P

i=1
3)

where (t_calc.—f_exp.)T is the transposed of the difference of column vectors
Leale. Lexp.» While W isthe diagonal matrix of weights.

The vector C) of the correction of the vector & of uniqueness
parameters in a certain successive approximation (iteration) / is obtained by the
condition to minimize the sum § (if the functions 7,4, (z, p) would be linear):

a(s) +55)
ZE I P

Due to the strongly nonlinear (exponential) character of the expression (2),
the relation (4) does not lead always to the sum S decrease, i.e. in some conditions
it is possible to appear oscillations of positive and negative values of its change
oS, or even some monotonic increases 45 > 0. One finds so the appearance of

-0, )
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some numerical phenomena [4], the most important ones being: a) the stable
oscillations, which are located in the field of values of physical meaning, but offer
only some intervals of values, and not exact (effective) values of the studied
uniqueness parameters, b) the instability, if this algorithm leads to some diverging
results (obviously, without any physical meaning), and even: c¢) the pseudo-
convergence, if the results given by the computer program converge, towards
certain numerical values without physical meaning (see Fig. 1).
For this reason, we will examine below:
(1) the statistical criteria used to study the compatibility of the
theoretical model relative to the considered experimental data,
(i)  the main specific criteria for the identification of the pseudo-
convergence,
(iii)the choice of the zero-order approximations, extremely important
because - due to the strongly nonlinear character of relation (2) — the stability
domain could be rather narrow.

A Sum of weighted
deviations squares

Diver%enc e
(Instapility)

Di
(nstapiiityy ~ Oscillations

. Pseudo-
Physical convergence

Attractor

- Second Unifueness
______________

‘- SEifective Value of
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First Uniqueness
Parameter (Uy)

Fig. 1. Basic types of domains in the space of uniqueness parameters
2. Preliminaries of uniqueness parameter evaluation

2.1. Preliminary evaluations of the zero-order approximations of the
uniqueness parameters. Prediction possibilities of the convergence behavior of the
evaluation process.

It is known that at the limit of the lowest studied temperatures (222 ... 242 K),
and at that of highest temperatures (271 ... 291 K), the diffusion process and the
depletion one are prevalent, respectively [3] (see also Fig. 2). For this reason, it is
possible to obtain some rough zero-order approximations of the uniqueness parameters
starting from the linearization of the theoretical relation (2) at these limits. In this aim, we
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will observe that if - condition fulfilled for some pixels, see Table 1:

|E; —E; \>>k7Tz12 meV , then:

[ |E, ‘Eiq [|Et —Ei|] . {|Et _Eﬂ 1 [|Er —Ei|]
exp| ———— | << exp| ——— | and: cosh| ——— |~ —exp| —— |.
kT kT kT 2 kT

In such cases, the relation (2) can be well approximated by the expression :

De™(T) = Deg i - expl ——2 |+ 2Deg g - 732 ~ e, +2E, -E]]. @
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Fig. 2. Average of the dark current logarithm vs the inverse of temperature (see also [3b], fig. 5)

Assuming that the diffusion process is prevalent at higher temperatures

E
271...291 K): De™(271..291 K) = Dejigr = Deg gifr T exp| ——2- |, 5
( ): De™ ( )= Degigr = Deg gify exp[ kTJ ()
and the depletion one prevails at lower temperatures (222...242 K):
- ~ o= 9N 3/2 1

De™ (222..242 K) = Degep, = 2De gop - T -exp(—Zk—T[Eg +2|E, —E,-|D , (6)

these expressions can be linearized as it follows :
_ 1 _ 1
InDe (271..291K) = c4ifr — S dgify T InDe (222..242 K) = cep —Sdep T @)

It results that some rough evaluations of the zero-order approximations of
the uniqueness parameters of the temperature dependence of the dark current of
CCDs can be obtained starting from the crossing-points coordinates ¢y, g, and

the slopes sgyr,s4,, of the diffusion and depletion prevalence domains,

respectively:
- ~ _ 3.~
lnDEO,diﬁ’ = cqif —3-1aniﬁf R theO,dep = Cdep —Eln Tdep -In2, ®)

and: Eg)) ==Sqiff . |Et _Ei|(0) = (stiﬁ’ —Sdep )-k , 9
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where 7 is the average value of the 2...3 temperatures taken into considerations
at each end of the InDe™ = f(1/T) plot.
From relations (6), (7), it results also that:

s
i - 2 (10)
Sdep  1+2|E; —Ej|/ Eq

Taking into account that the values of the ratio 2|E, - E;|/ E4 are involved

in the range 0.0125 ... 0.2 (see e.g. Table 1), and that the prevalence of the
diffusion and depletion dark current, at higher and lower temperatures,
respectively, are not absolutely ones, it results that the ratio of the slopes
Sdiff » Sdep 18 somewhat less than the value predicted by relation (10). One finds we
can expect the following convergence behaviors of evaluation process:

s around of 1 — instability, due the disagreement with the HSR results,
diff _

Sdep

between 1.6 and 1.95 —  convergence to an attractor with physical meaning (11)
around of 2 — instability or pseudo —convergence for E g0 >true Eg value

In order to check these predictions, Table 1 presents some selected results
obtained by means of the above algorithm for different datasets leading to typical
convergence behavior: a) physical convergence, b) pseudo-convergence (towards
values without physical meaning), c) instability. One finds that sometimes (e.g.
for pixel 61, 140) it is necessary to take into account at least 3 temperatures in

order to obtain a regression line at each end of the De™ = f(1/T) plot. For this

reason, Table 1 presents in bold the results obtained by means of the straight-lines
with only M = 2 representative points at the end of each De = f(1/T) plot, and
using normal characters — the results given by the regression lines corresponding
to M = 3 representative points at each end of the De=f(1/T) plot.

Table 1

Study of a prediction criterion of the convergence behavior, starting from the zero-order
approximations derived from the straight (regression, for M = 3) lines at the ends of the plot
De = f(1/T), for different numbers M of temperatures considered at each plot end

Cootdinates of the pixel

STUDIED FEATURE 29, B8 61,140 31 347 | 41,120
M=2and M =2 =3 M=2 M=2
=3 atud M=3
Slopestratio 1.6684 2.165 1234 197428 | 087969
Sdiff e 1.5776 10948
Values of the zero-order 1rDiFE) 32,1206 | 3213052 | 297451 | 31.0320 | 33.1328
approvimations derived
from the straight lines 1D epl® 20821 | 1395848 | 1700361 | 15.7293 | 512881
%Tf;;saf&l";ﬁ; EglT (V) 10950 | 1.095144 | 100361 | 1.0668 | 112135
the tnDe=f(1/T) plot Et-Eif") (mev)| 108801 | 4174066! | 46 38555 | 6.9487 | 560.676
Fegression lines ¢ Coprer. | Fseudo- Insia-
Cotivet genice at the ends of NV ET- Instahility gence COMVEr- h ility
behavior for the 0 De = f{1/T) plat EENCE gence Instability
ot der approritha- “eeptral” Tero- Pseudo-
tions obtained from | crder approxima-| o | CONVERGENGCE | comver | o

tiotis (ses Table 2) gencE gence bility
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One finds that: a) the above numerical scheme allows to predict the
convergence behavior of the uniqueness parameters evaluation, b) a more detailed
analysis of the stability field of the zero-order approximations is necessary in
order to avoid the choice of such approximations outside this stability domain (see
e.g. the case M=2 for the pixel 61,140 in the above table).

2.2. Criteria for the study of the local compatibility of theoretical
models relative to the considered experimental data

A detailed study of the possibility to decide the
compatibility/incompatibility of some theoretical models relative to the existing
experimental data was achieved in the frame of [5]. This difficult problem is
somewhat simplified if it is possible to admit a normal distribution of the

individual values of the correlated parameters, in our case of dark current, De™,
and of their corresponding “inverse temperature” % .

In such a case, the confidence level P, an g associated to the confidence
ellipse (centered in the representative point of the most probable values of De™

and %), which is tangent to the theoretical plot De™ = f| [é} can be used to

estimate the error risk at the compatibility rejection: g =1-Peopf tang. (12)

As the error risk, g, is less or larger than a certain threshold (usually
between 0.1% and 2%), the compatibility hypothesis is rejected, or it has to be
kept (accepted).

2.3. Choice of the zero-order approximations of the uniqueness
parameters and some basic specific criteria for the pseudo-convergence
identification

a) The values of the pre-exponential factor of the diffusion dark current
Given that the pre-exponential factors of the diffusion and depletion dark
current, respectively, have very large values, we are obliged (by the computers

numerical possibilities) to use the values of their logarithms: InDeg 4y and
In Deg gp - According to reference [3b], we have chosen the zero-order

approximation of the diffusion pre-exponential factor as: In De(()oc)]iﬁ, =349, but —
according to our numerical results (see table 2) - we can choose successfully these
zero-order approximation with values between 32 and 53, which stand also inside

the field of values with physical meaning.
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b) The values of the pre-exponential factor of the depletion dark current
According to reference [3b], we have chosen the zero-order approximation

of the depletion pre-exponential factor as: In De(()(,)c)lyff =19.0, but — according to our

numerical results (see table 2) - we can choose successfully these zero-order
approximation with values between 18 and 30, which stand also for the limits of
physical compatibility (results outside this interval representing almost sure an
indicator of pseudo-convergence).

Table 2

Synthesis of the obtained results concerning the: a) effective parameters of the
semiconductor material (silicon with different impurities), b) the stability diameters around
the representative point of the “central” zero-order approximations*, starting from the
temperature dependence of the dark current corresponding to the 20 selected pixels

The effeciire value of the parameter (the “atiractor coordinate ™)
Coordinates The extreme values o f the stability diameter along this parameter
of the Egi(eV)m
co:ﬁ_ﬂelmd mDiff InDep Cm = 10% Edfl— FAve [Et+-Ei], me%
P e Felize Fedve
41,120 Instab ility
61.140 31.079047 17.524259 1072556 eV 2892 meW
’ 27 ... 54 15 ... 36 m=-6..+4 2...169 meV
g1.160 31.119436 16276704 1073807 e’ 170 meX
’ 28 ... 56 16 ... 35 m=-8..+4 3... 146 meV
101. 180 31 353146 15 706546 1079606 eV 12,77 meW
! 28 ... 55 15 ... 36 m=-8_. +4 3... 145 meV
121. 200 30867372 15.611681 1067257 e’ 1323 meW
’ 28 ... 55 17 ... 35 m=-10... +2 0.9, 137 me¥V
141. 230 31.152358 15.684044 1074538 eV 12.96 meW
’ 27 ... 54 14 ... 36 m=-10.._ +4 3... 151 meV
161. 240 32355596 19 409546 1.105744 eV 4541 meW
' 28 ... 55 17 ... 34 m=-6... +8 1... 188 meV
181. 260 31.175348 15 508352 1075505 e 1248 mey
' 28 ... 54 16 ... 34 m=-10... +4 1... 144 eV
201, 280 31.072543 16 904658 1.071989 W 1698 meV
27 ...55 15 ... 37 m= -6 ... +2 2 ... 155 meWV
221. 200 30627558 16.588115 1061095 e 19.14 me’¥’
' 27 ... 54 15 ...37 m=-10... +4 2 ... 155 meV
241. 220 31203713 15.338220 1075681 eV 6.8 mei”
' 28 ...54 17 ...37 m=-10... +2 064, 134 meV
261. 240 31.768681 18.476570 1.000382 &% 30223 meRT
’ 28 ...53 16 ...34 m= -4 .. +8 2 ... 149 meV
281, 360 31.117528 18.011161 1073652 eV 2751 meV
27 ...55 16 ...35 m=-10... +4 3 ...164 me¥V
301. 280 30.193521 15793308 1.048424 &V 11 S8 meV
' 27 ...53 17 ...33 m=-10... +2 2 ... 137 me¥V
231, 400 31241897 14.748118 1076446 eV 1821 meW’
' 28 ...55 14 ...34 m= 8 ... +6 3 ... 160 me¥V
341. 420 33.174582 19.353220 1126603 e 3077 med
' 28 ...56 16 ...33 m= -6 ... +4 1... 181 meV
31,247 35635528 19 850227 1.190169 &3 103 me¥
’ 27 ...53 17 ...32 m= -6 ... +6 3 ...180 meV
20 88 31261220 17.285039 1077355 e 2415 meV
’ 28 .. 54 15 .. 35 m=-10.._+4 3. 155 meV
188. 471 21097230 16070513 1071933 e’ 2205 meW
' 28 ...55 15 ...32 m=-10... +6 06 ...151 meV
161. 289 31 838808 14.588399 1092433 eV 2836 me 'V
' 32 ...587 18 ...30 m=-11... +10 3 ... 130 meWV
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* The values InDiff = 34.9, InDep = 19 [3b], m = 0, |E; — E;j| = 100 meV were considered as
“central”. To determine the stability diameters, only one zero-order approximation is changed, the
others remaining equal to the “central” values.

c¢) The criterion of the silicon energy gap E, estimation

Because the usual values indicated by the specialty literature [6], [9], for the
silicon energy gap for temperatures less than 300 K stand between 1.05 and 1.20 eV, the
results outside this interval of the run programs represent almost sure an indicator
of pseudo-convergence.

d) The values of the difference of energies |£, - £;| for the deep-level traps

As it was shown above, the usual values of |E, - E;| stand usually between
10 and 150 meV. Negative values of |E,—E;| indicate obviously a pseudo-
convergence of the run computer program.

2.4. Study of the implications of the choice of the zero-order
approximation of the value of the studied semiconductor effective energy gap

Given being that the energy gap E, intervenes in the argument of both

exponential functions, a first matter to be examined refers to the choice of its
zero-order approximation.
Because: a) the first order approximation ( EgSze =1.17 eV ) indicated by Sze

[7] for the silicon energy gap E, seems sometimes to be too large, we studied

also the possibilities to choose this zero-order approximation by means of the:
b) modulus EgLin of the slope of the straight-line joining the extreme

points (for 222 K and 291 K, respectively) of the plot InDe™ = f‘(%j, with the
meaning of an effective Arrhenius energy,
c) average of these zero-order approximations: Egdve = % (EgSze + EgLin) .

The implications of these 3 most important choices of the zero-order
approximation of the energy gap of silicon on the evaluations of its uniqueness
parameters are examined below.

2.5. Study of the implications of the choice of the weights associated to
the total dark current values

a) Taking into account: (i) the huge differences between the very small
values of dark current at low temperatures and the rather high ones at large
temperatures, (ii) the necessity to describe accurately the whole studied
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temperature range (222...291 K) of dark current, a first choice of the weights
associated to the total dark current will correspond to the expression:

walpe@n)-lpe ] (13)
so that the use of the classical gradient method will lead to a minimum value of
the sum of squares of relative deviations of the calculated dark current in terms of
their experimental values.

b) Assuming the (approximate) validity of a normal distribution of the

experimental values of the studied parameters ( De~ and %), the weights of the

square deviations of the individual values relative to their most probable (true)
ones will be given by the inverses of their corresponding experimental variances,
hence these inverses of variances will be kept as weights in the frame of the least-

squares method:
_ 1
Wilpe (T")]:“ﬁ . (14)
V|De™ (T})

The implications of these important choices of the: a) zero-order
approximations of the uniqueness parameters, b) weights associated to the total
dark current values, are examined below.

3. Numerical Results

3.1. Results concerning the compatibility of theoretical models relative
to the considered experimental data

a) Global compatibility: all dark current at different temperatures for
a given pixel (see also [5])

The accomplished study pointed out that — except pixel 41, 120 (with a
global incompatibility relative to the assumed theoretical model) and pixel 31,
247, whose experimental data lead to probably non-physical values of the
uniqueness parameters (InDiff, Eg, especially, and InDep, |Et-Ei|, probably) - all
other 18 pixels present experimental data in clear agreement with the considered
theoretical model.

b) Local compatibility of the dark current at a each temperature
for different pixels (see also [5])

We have found a perfect local compatibility for temperatures T = 222,
232,242, 252 and 291 K and rather frequent disagreements for the temperatures
T = 262, 271 and 281 K. Taking into account that the standard deviations
corresponding to these last 3 temperatures seem to be too optimistic, we studied
the possibility to obtain a statistical agreement [according to relation (5)] for
somehow larger values of the standard deviations for temperatures T = 262, 271
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and 281 K. The accomplished study pointed out that 2 ... 5 times larger values of
the standard deviations for these last 3 temperatures re-establish the agreement
between the corresponding experimental values and the studied theoretical model.
That is why we consider that our study indicates that the standard deviations for
these temperatures are in truth somewhat larger than the values indicated by Table
1 of work [1]).

3.2. Results about the (effective) values of the uniqueness parameters
for different pixels

First of all, we have to underline that — due to the rather strong non-
uniformity of the dark current corresponding to different pixels, it is expected to
obtain rather different values of the uniqueness parameters of these pixels, these
values corresponding to effective parameters being due not only to (the general
use of) different experimental methods, but also to the non-uniformity of the
studied physical systems (pixels).

The obtained effective values of the studied uniqueness parameters are
located in the intervals (see also Table 2):

(1) InDiff - between 30 and 33.2 (the larger values as that: 35.6 for pixel

31, 247 being associated with non-physical values of other uniqueness parameters,
e.g. |[Et-Ei| = 0.94 eV), (ii) InDep - between 15 and 19.5, (iii) |Et-Ei| between 13
and 91 meV, in agreement with the results obtained by means of other
experimental methods in the frame of works [6] and [9], (iv) Eg - between 1.06

and 1.13 eV.

3.3. Results concerning the numerical efficiency of different types of
weights

As it was indicated above, we studied mainly the types of weights
corresponding to relations (13) and (14). Unlike the behavior of the numerical
fittings corresponding to relation (13) [incompatibility only for the pixel 41, 120
and probable pseudo-convergence for pixel 31, 247], we met considerably more
bad fittings for the use of relation (14) [besides the pixels: (i) 41, 120 and (ii) 31,
247, there presented instabilities the experimental data corresponding to pixels:
(ii1) 101, 180, (iv) 121, 200, (v) 141, 220, (vi) 241, 320, (vii) 301, 380, (viii) 321,
400, (ix) 188, 471 and (x) 161, 289, i.e. the experimental data corresponding to a
total number of 10 pixels (from the 20 studied ones) cannot be suitably processed
by means of the weights described by relation (14)].

It results that the use of relation (13), i.e. the minimization of the
weighted sum of squares of relative deviations is clearly preferable.
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3.4. Results concerning the stability fields of the numerical processes
of evaluation of the effective values of the uniqueness parameters

Starting from certain “central” values of the zero-order approximations of
the specific uniqueness parameters: In Diff () =34.9, In Dep® =19 [3], |Et-Ei| = 0.1
Eg0 - EgMed
EgSze— EgMed
one uniqueness parameter_(InDiff, InDep, m or: |Et-Ei|, respectively). For each
pixel, it was studied the behavior of the numerical process of evaluation of the
uniqueness parameters: the stability, and instability, respectively; the effective
values of the uniqueness parameters, obtained as the corresponding coordinates of
the attractor (in stability conditions, see Fig. 3); the appearance of the pseudo-
convergence (when the attractor coordinates do not have a physical meaning); the
existence (for weak attractors, see Table 3) of some significant oscillations in the
frame of the numerical evaluation process (in stability conditions). The synthesis
of the results obtained in the frame of this study allowed also to point out the
stability fields diameters of the numerical evaluation processes corresponding to
each uniqueness parameter [InDiff, InDep, E, (represented by m), and |Et-Ei|, in
Table 2], for each of the studied pixels.

eVand m©@ =0 (m = 10x ), there were modified the values of only

AUL(E-ED B
. Zi{(ero o-rder approximations :1 ([;?t’ov:l‘)zvithout
Instability of uniqueness parameters) physical meaning
Domain of
physical meaning
ignificant
attractors
oscillations
0, »U,(InDep)

CLASSIFICATION OF ATTRACTORS
IN UNIQUENESS PARAMETERS

U, (InDiff) Us (Eg) EVALUATION

Fig. 3. Main types of evolution in the uniqueness parameters space of the representative point of
evaluated values (example for the problem of temperature dependence of dark current in CCDs)
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Table 3
FINAL RESULTS (concerning the values of unigueness parameters
InDiff, InDep, E, and |E-E|]) OF THE GRADIENT METHOD USE for different pixels
and zero-order approximations of the uniqueness parameter InDiff

CﬂO?‘dI‘HﬂfﬂSLZBm ordar |Ef ~ El.l Ohservations COHCEmng
of the consi- ppproximati In Diff | InDep | Egiel) (meV) the main features of the
dered pixei’ Of rﬂj.)l_.ﬁ' Herative procass
3400 JOPIAF | 37524250 | JO7X5E | 29H6S
30 30707 | 17524250 | 1072556 | 2592%4| Yery strong altractor:
&1 140 37 0700 | 175459 | 1072566 | 2002168 |all 7 characteristic figures
i 34 JL0ANF 17524759 1072556 XIS mnim'ug invariable on the
35 HOP0G | 175M% | 10TXSE | BINES| pote srability domain
37 310707 | 175470 | 1077550 | 2602168
340w 30867372 | I56MES1 | 106727 | 132280 ]
30 30807402 | 15513658 | 10672557 | 32rqz| ditractor of medivm
121 200 32 30.567443 | 15676538 | 1067258 | 032606y | ietemsily. presenting
. 34 30567447 | ISEI676S | 1067258 | 13.2iss|  olse some medium
35 0567420 | 15600 | 10672556 | 13270 | awplitude oscillations
37 JOG67411 | IS6M33T | 1067XE | 130500
349 ISE36526 | 10659227 | LOIOVEF | 1030872 Pseudo-atiractor
31, M7 30 5.05575 | 1051260 | 100176~ | jomels| (correspouding to a
37 35.650835 | 2080757 | L0005t | 152307 | psendo-couvergance)
34_9*—’:*
41, 120 30 Tustability, starting from tha Ird or 4th fteration ™
i

* The symbol “Instability starting from iteration n”” indicates that — beginning from the succesive
approximation (iteration) of the n-th order — the values of the studied parameters become larger
than the divergence threshold admitted by the used computer. ** Values indicating the pseudo-
convergence of the iterative numerical process, because they do not agree with the results of the
experimental studies. *** The indicated value corresponds to the zero-order approximation chosen
in the specialty literature [3b]

4, Conclusions

The use of the numerical analysis methods allowed:

1) to point out: (i) the global compatibility for the experimental results of
18 pixels from the 20 studied ones, (ii) the local compatibility for 5 from the 8
studied temperatures, as well as for the other 3 temperatures for somewhat larger
values of the standard deviations of dark current, (iii) the agreement of the
evaluated values of the distance |E-Ej| from the impurities (traps) energy level to
that of the intrinsic Fermi level, with those obtained by different experimental
methods [6], [9], [10], hence we consider that the accomplished numerical
analysis confirms the compatibility of the quantum theoretical model Shockley-
Read-Hall (SRH) [11], [12] with the experimental results referring to the
temperature dependence of the dark current of the studied CCDs,

2) the emphasis (see table 2) of the basic types of results of the “fitting”
processes (by means of the gradient method) of the parameters of Shockley-Read-
Hall (SRH) nonlinear relations expressing the dark current in CCD: a) attractors,
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whose components: (i) have a physical meaning, (i) do not have a physical
meaning (numerical processes of pseudo-convergence), b) oscillations inside the
stability field, c) instabilities,

3) the evaluation of the effective values of the uniqueness parameters of
the dark current of some Charge Coupled Devices (CCD): the pre-exponential
factors of the diffusion and depletion current, respectively, the forbidden band
width E,, and the difference |E-Ej|, as components of the positions of attractors
resulted after the “fitting” processes of the parameters of the nonlinear Shockley-
Read-Hall (SRH) relations,

4) the emphasis of the: a) considerably weaker effect of the temperature
dependence of the forbidden band energy than that corresponding to impurities, b)
principle possibility of numerical evaluation of the “polarization degree” d of the
cross-sections of capture corresponding to holes (op) and electrons (on),
respectively:

d = argtanh[(cp-on)/(cp+on)],

5) the evaluation of the confidence domains of the pre-exponential factors:
InDiff = 31.2611 £ 0.5833 and InDep = 16.6044 £ 1.42034. One finds so that
while the relative square mean (standard) deviation of InDiff (1.866%) stands in
the limits of the experimental errors, that of InDep (8.554%) is considerably larger
(due to the specific contributions of traps).

The main goal of following studies will be to find if the present accuracy
of the experimental determinations of the temperature dependence of the dark
current in Charge Coupled Devices allows also: a) the effective evaluation of the
“polarization degree” of the capture cross-sections for holes and electrons,
respectively, b) the effective evaluation of both capture cross-sections o,

corresponding to the free electrons and holes, respectively, ¢) the confirmation of
the Meyer-Neldel correlations [3a] for the obtained uniqueness parameters.
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