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THEORETICAL AND EXPERIMENTAL INVESTIGATIONS 
ON A SPECIAL ROTARY PIEZOELECTRIC MOTOR WITH 

TUBULAR GEOMETRY 

George C. ZĂRNESCU1 

Această lucrare descrie o abordare teoretică şi experimentală asupra unui 
motor piezoelectric cu geometrie tubulară. Teoria este dezvoltată pornind de la 
ecuaţiile de bază ale piezoelectricităţii pentru efectul direct şi invers scris sub formă 
tensorială şi ecuaţiile diferenţiale ale deplasărilor şi tensiunilor mecanice radiale şi 
circumferenţiale. Aceste ecuaţii sunt combinate într-o modelare matematică care 
împreună cu simulările 3D ale mişcării mecanice descriu întreaga interacţiune 
electromecanică. Secţiunile următoare se concentrează asupra metodelor de 
acţionare, a caracteristicilor şi performanţelor motorului. Influenţa frecvenţei şi a 
forţelor axiale este comparată atât theoretic cât şi experimental. 

This paper describes an experimental and theoretical approach on a rotary 
piezoelectric motor with tubular geometry. Theory is developed starting from the 
basic piezoelectric equations of direct and inverse piezoelectric effect written in 
tensorial form and the differential equations of inner radial and circumferential 
mechanical stresses and deformations. These equations are combined in one 
modelling type and 3D simulations of mechanical movement to give a description of 
the entire electromechanical interaction. Next sections concentrate on the driving 
methods, electromechanical characteristics and performances. The influence of 
frequency and axial forces is compared both theoretically and experimentally.  
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1. Introduction  

 
Many types of piezoelectric micromotors have been constructed by now 

starting from the idea of ultrasonic electromechanical conversion of electrical 
energy into useful mechanical thrust. 

Among them, a micromotor with cylindrical stator shape and panhead or 
spherical rotor is studied here. The micromotor is described also in national patent 
no. 122516 / 2007 granted to the author.   

The working principle of this piezoelectric motor can be explained in 
single phase supply by Rayleigh surface waves motion. The elliptical waves are 
produced at stator-rotor contact surface when the tubular piezoceramic element is 
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excited by a sinusoidal voltage at resonant frecquency. The rotor is forced to 
move by friction forces in the opposite travelling wave direction. This type of 
ultrasonic micromotor has the advantage of a simple manufacturing technology, 
compactness, large axial force support at low angular speed and a good precision 
and control. Two major disadvantages are the reliability for long operation due to 
friction and the need for an ultrasonic frequency power supply with at least 25 V 
peak voltage. 

Section 2 describes the micromotor construction and the principle of 
operation. In section 3 we propose a mathematical modeling algorithm accurate 
enough to predict the real time motor performances. Section 4 concentrates on the 
experimental work, the basic micromotor functional characteristics, mechanical 
and electrical parameters determination, different vibration modes and frequency 
variation intervals settings. Section 5 makes a comparison between theoretical and 
experimental results and part 6 concludes the paper. 

 
2. Tubular micromotor construction and operating principle 
 
In Fig. 1 is shown the structure of the tubular piezoelectric motor. The 

operation of rotary piezoelectric micromotor is based on surface progressive 
waves generation in piezoceramic materials.  

Rotary piezoelectric micromotor is composed from a tubular piezoceramic 
stator (1) having a diameter between 11-28 mm and a length between 10-20 mm, 
a compression system (2), a conical or spherical rotor (4), shaft (5), a screw nut 
(6), a bearing system (9), stator support (3), electrical wiring (7), inner and outer 
cylindrical conductive surface (8) and case (10), see Fig. 1.  

Two versions of this motor with similar geometry where constructed, a 
smaller one with an outside diameter of 15 mm and 10 mm height (MPR15) and 
the other having an outside diameter of 33 mm, an inner diameter of 25 mm and 
height of 20 mm (MPR33). Piezoceramic cylinder can be supplied either from a 
single phase, either by a biphasic voltage source, generating a mechanical 
progressive wave at ultrasonic frequencies that is rotating the conical or spherical 
rotor. Movement is transmitted through direct mechanical contact between the 
upper part of piezoelectric cylinder and rotor conical surface. The compression 
system with a spring, nut and bolt is adjusting the contact pressure between the 
pan head rotor and the piezoceramic cylinder, mounted on the stator support using 
also the rotor shaft and the ball bearing system at the bottom.  Electrical 
connections are soldered to four external cylindrical electrodes for a biphasic 
supply and the inner cylindrical electrode is considered null. Electrodes are made 
from a conductive silver lake applied on piezoceramic tube. 
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Fig. 1. Section through rotor and stator of piezoelectric converter 

 
In a single phase supply mode, micromotor operation can be explained 

with the help of Rayleigh surface waves. The basic principle is to produce 
elliptical waves at stator-rotor interface. When tubular piezoceramic element is 
excited by a sinusoidal voltage signal it will produce a longitudinal vibration 
along radial direction. Since the pan head rotor has an angle of 45 degrees of the 
slope (or is spherical) the impact between tubular converter and rotor will be 
inclined, causing a secondary axial vibration. Radial vibration and axial 
(transversal) one will compose resulting in an elliptical motion at the contact 
surface of between stator and rotor.   

In bi-phased regime, these two waves are created directly by 90 degrees 
electrical phase shifting. The two stationary waves are composed resulting a 
elliptical movement trajectory of the surface points. This wave will interact with 
rotor generating a rotation movement [3].   

 
3. Theoretical modelling and simulations 
 
For this tubular piezoelectric converter we have developed a mathematical 

model that is accurate enough to predict its real behavior and performances. 
Equations are used in mathematical modeling or for a preliminary actuator design. 
Each piezoelectric constant is in fact a tensor and is describing the effect on each 
polar or Cartesian coordinate. 

First of all we must take in consideration the geometry and all mechanical 
stresses for our piezoceramic element. Mechanical stresses can be either external, 
either internal. External forces balance is derived from classical mechanics. A 
more complicated way is to determine the internal mechanical stress inside 
piezoelectric material. This is where differential equations of material science 
interfere with both classical mechanics and piezoelectricity.  

Because electric displacement field doesn’t have any component along the 
axial direction, we can consider that the mechanical stress on that axis is zero. 
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Also other projections that are not from the established polar coordinate system 
are nullified. The only remaining mechanical stresses and most important are 
radial and circumferential ones. 

 General mechanical stress equations can be simplified and reformed 
because of tubular geometry (relation 1). Shear stress and circumferential angle θ  
dependence are excluded from further calculation.    

 

0=
−

+
∂
∂

rr
rrrr θθσσσ       (1) 

 
This first equation is rewritten to take in account equilibrium and 

compatibility conditions. The result is a system of partial derivatives from that the 
solution is extracted. Differential equations solving is skipped due complexity and 
space limitation. In the end the solution looks like: 
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Where a is inner radius, b outer radius, ip  the pressure given from rotor to 

stator inner surface, and θθσσ ,rr  are radial and circumferential stresses. This 
inner pressure and frictional forces are dependent mainly on rotor weight and 
other axial loads. Outer surface pressure is considered zero, no external force is 
acting on that surface. 

So, we can see that radial and circumferential stresses θθσσ ,rr  are 
changing with inverse square radius. This dependence takes into account the 
piezoceramic element geometry and will be further used to replace stresses in 
piezoelectricity relations.  

If equation of compatibility is ignored then equilibrium equations system 
will give multiple solutions. So, compatibility equation and pressure boundary 
conditions are generating unique solutions (see system 2).  

The connection between mechanical stress and deformation for an usual 
material is just Hook’s law, but for a piezoelectric material Hook’s law must be 
extended and integrated to form general equations of piezoelectricity.  

In our particular case of a piezoceramic cylinder, radial and 
circumferential mechanical stress dependence function of deformation and electric 
field can be written in 3D polar coordinates like: 
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L-specific deformation relative to geometric dimension [
x
xΔ ]; s-

compliance [
N

m2

]; d-piezoelectric charge accumultation coefficient [m/V or C/N], 

σ -mechanical stress;ε -total electrical permitivity; E-applied electrical field 
[V/m]; 

Stiffness c is the reciprocal of compliance s, 1−= sc , n is another 
piezoelectric constant and is directly connected to compliance s and piezoelectric 
charge or polarization coefficient d by d n s= ⋅  or cdn ⋅=  relations. Even if we 
don’t know the stiffness and the electric field constant, we can express them by 
the other coefficients d and s (charge coefficient and compliance). Comsol 
calculation was made using the same system (3).      
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In analogue mode, knowing that there is no dependence of θ  variable for 
radial and circumferential deformations and shear deformation is eliminated due 
to symmetry, we can ignore any partial derivative of circumferential angle θ . 
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−θθL relative circumferential deformation; −rrL relative radial 
deformation; −ru radial deformation, −θγ r shearing deformation. 

General equation of mechanical equilibrium and piezoelectric equations 
must be satisfied in any case. So, replacing radial and angular mechanical stresses 
from equation 2, with general piezoelectric expressions from system 3 we obtain a 
complete differential equation of relative deformations that can be resolved. But 
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relative radial and circumferential deformations are directly changing with the real 
radial displacement, like we see in system 4. If we further replace relative radial 
and angular displacements from system 4 to the final differential equation we will 
have a single variable to resolve. After another derivation of r radius and 
expression rearrangements we will have the radial displacement equation. 

A simplified solution of radial displacement is showed below (see also Fig. 
2, [1]): 
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Initially we have solved mechanical stress expressions for our tubular 

geometry, now a simple way to calculate A and B constants from radial 
displacement equation 5 is to impose boundary conditions ( ) irr pa −=σ , 
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stresses from system 2, more exactly into secondary equation [1]. So, after this 
arithmetic artifice the full expression of radial displacement is finally revealed. 
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Above we have showed a static solution model that is highly accurate in 
comparison with some other types of electromechanical modelling. If we need an 
immediate answer on piezoelectric motor behaviour maybe is more proper to 
work with electromechanical schemes and impedances at resonance frequency. 
This other electromechanical approach can give faster results but is not accurate 
enough, unless is improved by further additions. A static model can be useful but 
is more interesting to estimate the dinamic behaviour of rotary piezoelectric 
motor. For this we need to focus on ultrasonic wave propagation.     

We start from a simplified version of general wave propagation equation 
written in polar coordinates (equation 7). Using variable separation method for 
radial, circular displacement and time, a solution of wave propagation is described 
in expression 8.    
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 ( ) ( )θω ktuKtru rr −⋅⋅= cos,      (8) 
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and piezoceramic element geometry, 2/12  in our case of first vibration mode and 
cylinder average radius, −ω angular frequency. 
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Linear speed ν of the transverse traveling wave was written as a 

displacement variation with time. A maximum value of angular speed corresponds 
to a maximum linear speed and to a maximum variation of the radial deformation.  

Angular speed obtained by calculation from relation 10 is greater than the 
one determined by experimental means at mechanical resonance frequency of 159 
kHz, approximate five times greater than electrical frequency of 32000 Hz. 3D 
simulation model will be confirmed also by simulations (same displacements). 
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In reality radial vibrations ru  and axial vibrations zu  are combined 

resulting an overall displacement tu , 22
zrt uuu += . The maximum rotational 

speed n is estimated to 16 rpm (from the wave movement, we need a correction 
parameter for the rotor movement). 

 
Fig. 2. Radial displacement variation for MPR 33 function of cylinder radius 
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Fig. 3. Angular speed estimation function of voltage and axial force 

 
For a voltage that varies between V1000 ÷  and an axial force being in 
N200 ÷  range, applying radial displacement solution from equation 5 and 

calculating expression 10 we can approximately estimate the maximum angular 
speed. Speed can be calculated for any voltage and axial force.  

A maximum deformation of cylinder means also a maximum amplitude for 
ultrasonic wave and angular speed. Cylinder deformation was also simulated 
using COMSOL program. At different moments of time that can be established 
geometrically where maximum and minimum radial and axial displacements can 
appear. This is a dynamic simulation closely related to real situation.  We know 
that at 0=t  we have ( ) 21sin πθθ =⇒= kk . Every separation limit of two 
neighbor electrodes with 2π  diphase geometrically and electrically gets 
maximum displacements (Fig. 4). 

 

 
Fig. 4. MPR33 cylinder deformation at different oscillating times 0,1/8, 2/8....8/8*T, coresponding 

to period T 
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Fig. 4 simulates cylinder deformation using (-Sin)(-Cos)(Sin)(Cos) diphase 
voltage supply, creating a progressive wave inside piezoelectric material [4]. All 
inner surface is connected to the ground. We can observe that we have eight main 
steps in order to complete a full osicllating period. Each step corresponds to an 

angle in radians 
4

7,
2

3,
4

5,,
4

3,
2

,
4

),2(0 ππππππππ  . At zero time coordinate or full 

period T ( )π2  we have a maximum amplitude of 50 V and at 1 and 5 positions, 
respectively 45° and 225°, we obtain quite uniform stresses for the entire tubular 
geometry. The maximum displacement is mμ6.0  and each of four sectors is 
electrically supplied with U⋅707.0 voltage.  

 

 
 

Fig. 5. 3D simulation of total cylinder deformation at 2T/8 period of time, the point where cosinus 
is minimum and sinus is maximum 

 
At π  angle it is peak value of mμ18.1  for deformation, meaning that the 

cosinusoidal signal is reaching the voltage limit of 50 V. For 2/π  angle or 8/2T  
position, altough we obtain only mμ0844.0 , we clearly see that zones supplied 
with sinusoidal signal are the most stressed and the ones of cosinusoidal signal 
don’t have any vibrations (see Fig. 5).  The red spots are maximum deformation 
zones, green and yellow zones are under average or little above average and blue 
or dark blue zones are the minimum deformations zones. Main deformation zones 
are localized on cylinder edges or at separation limit between sectors.     

All simulations where realized using basic equations and constant matrix 
values that are presented in chapter 3. 
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4. Experimental micromotor characteristics and functional 
parameters determination 

 
Experimental tests were focused on resonance frequency identification, 

different vibration modes and variation intervals, torque and friction forces 
analysis, determination of main working motor characteristics, like speed control 
function of frequency at constant torque and voltage or axial force and contact 
pressure influence on piezoelectric motor speed and overall performances.    

Motor speed is controlled from a variable frequency source with a 
maximum voltage amplitude of 50 V. 

In Fig. 6 a) and 6 b) are presented two characteristics, one for MPR33 
motor and the other for MPR15, of angular speed variation function of frequency. 
Characteristics are determined for different axial loads, 6 N and 4 N, in case of 
MPR33 tests or 0.23 N and 1.73 N (spherical rotor weights), for the case of 
MPR15.   

An important observation in both cases is the rapid variation of angular 
speed for a relative narrow frequency range. For MPR33 the frequency variation 
interval is between 32 and 33.5 kHz and for MPR15 between 22 and 23 kHz. At 
the end of both intervals motor speed is very low or practically zero. In the middle 
of   angular speed variation curve will reach a maximum value, 9 rpm for MPR33 
and 8 rpm for MPR15. 

Experimental curves have a maximum at 32700 Hz resonance frequency 
for MPR33 and 22200 Hz for MPR15 model. Axial force modification gives a 
resonance point displacement of about 100 Hz down with the increase of axial 
load from 6 N to 4 N. This can be explained as a changing in mass for the entire 
stator-rotor electromechanical system and also a microcontact variation.  

Vibration transmission from piezoelectric converter to rotor is realized by 
micromechanical contact. So, we must find the best available microcontact for an 
efficient electromechanical conversion. This can be done when we find an optimal 
pressure and of course an optimal axial force. In this way can be explained the 
apparent anomaly of axial force and angular speed dependence. 

Electrical resonance frequency is different from mechanical resonance 
frequency. So, when we talk about resonance and frequency control it is all about 
the electrical frequency responsible for mechanical resonance. By analogy, once 
the axial force is increasing and is over the optimal value, rotor speed will tend to 
decrease. By axial force variation we also have obtained an angular speed curve 
similar to a Bode diagram. Lower axial forces as also higher axial forces 
compared to the optimal axial force value give us a poor functional efficiency, this 
can be directly observed from speed variation in Fig. 7 a). 
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a)                b) 

Fig. 6. a) Speed function of frequency characteristics for MPR33 motor with pan head rotor, at 6 N 
and 4 N axial loads; b) Speed function of frequency characteristics for MPR15 motor with 

spherical rotors having 0.23 N and 1.73 N loads 
 
When we totally exceed these limits the rotor will stop rotating. For an 

axial force under 1 N the rotor doesn’t have a good contact pressure and friction 
force, so the electromechanical energy transfer is lost. In the same way, for an 
axial force that exceeds the upper limit of 18 N, dynamic friction is so high that 
all electromechanical energy is consumed by it, effective force generated by the 
piezoceramic tube is much under dynamic friction force and the rotor will stop. In 
the transmission of movement by mechanical contact we will always need the 
friction force as a binding element between two surfaces.  

 

 
a)       b) 

Fig. 7. a) Rotational speed variation for different axial forces at two distinct resonance points of 
MPR33; b) Total MPR33 torque function of rotational speed, mechanical characteristic around 

resonance frequency 
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In our case the dynamic friction force directly depends on the axial force 
variation from the first law of motion axkf FF ⋅= 2μ , so in this way we can 
explain the motor behaviour at different axial loads.    

From previous diagrams we can conclude that speed regulation and control 
can be realized either by frequency variation, either by changing the contact 
pressure and axial force [5].  

Mechanical characteristic is quite flexible permitting a speed variation 
between 0 and 10 rpm. Friction torque is between 0.2..0.3 cNm.  

 
5. Comparison between theoretical and experimental results 
 
We saw from previous sections that piezoelectric displacement plays an 

important role in estimating motor behaviour [6, 7]. The influence is very simple 
because deformation is linearly increasing with voltage and angular speed 
depends on vibration amplitude and frequency. In order to measure micrometric 
and nanometric displacements we need special devices like a linear laser 
interferometer or a feed finger. A laser interferometer uses two optical paths and 
laser beams to be compared and to extract the nanometric displacement. It is 
sufficient for the moving probe to change the path of one laser beam when a 
retroreflector is fixed on it. Axial displacement was measured for the entire 
frequency interval. It is interesting to observe that a maximum displacement 
appears only at resonance frequency. This experimental evidence shows us that 
even if an ultrasonic motor is supplied by a significant voltage the piezoelectric 
effect is minimum outside resonance frequency.   

 

 
Fig. 8. MPR33 axial displacement at resonant 33.7 kHz frequency 

 
Three conditions must be respected for this type of ultrasonic motor to 

work: voltage must be high enough to ensure an optimum displacement, 
frequency must be around resonance point and contact pressure or force must be 
carefully chosen for optimum performances.   



Theoretical and experimental investigations on a special rotary piezoelectric motor with…  221 

 

Below is a comparison table of measured and calculated displacement 
values near resonance frequency. Peak to peak voltage is 45 V and axial force is 3 
N, both are kept constant to ensure the same conditions. 

Table 1 
Measured and calculated displacements 

 
MPR33 

PZT-5 Material 

Measured axial 
displacement 

[nm] 

Calculated axial 
displacement 

[nm] 

Measured radial 
displacement 

[μm] 

Calculated radial 
displacement  

[μm] 

Uvv=ct.=45 V 
F=ct.=3 N 

220 150 2 1.44 

 
We see that are no major differences between theoretical and experimental 

results for radial and axial displacements.  
Modifying axial force and keeping the voltage constant at 50 V for tubular 

piezoceramic element will give us a speed variation like in Fig. 9. For a frequency 
of 31250 Hz that is little under resonance we still observe a maximum angular 
speed of 4.5 rpm. If we increase the axial force from 2 N up to 8 N we sense that 
the rotor is significantly slowing down until it stops. At this frequency the motor 
has poor performances and supports only lower axial forces. Theoretical and 
experimental results are quite similar. The first curve from Fig. 7 a) shows us an 
apparent anomaly, that the speed is increasing together with force or torque.  

 
Fig. 9. Theoretical and experimental angular speed characteristics function of applied 

axial force. 
 
If both torque and speed are increasing means also that we’ve got more 

mechanical output power. A possible explanation is that efficiency is increasing 
and losses are diminished. It is obvious that when we reach to an optimum axial 
load the motor efficiency is increasing because of a larger developed 
microdisplacement and a mechanical contact improvement.      
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6. Conclusions  
 
Using a laser interferometer we were able to determine the resonance 

modes with 10 nm precision. Submicronic measured axial displacement of 220 
nm could be compared with the theoretical axial displacement value of 150 nm. 
For a 50 V peak to peak voltage a radial displacement of maximum mμ2  was 
obtained. We can conclude that the MPR model is mainly based on radial and 
axial vibrations of piezoelectric tube to generate movement.  

All the experimental work was done to improve the overall motor 
performances and obviously to establish the optimum working point, that 
corresponds to a 12 N axial force and to a maximum rotational speed of 9 rpm. 

 We also saw that motor performances are drastically changing with 
frequency. Even if we shift frequency with only some hundred Hertz from 
resonant point, the angular speed is decreasing until the rotor stops. For an 
electrical drive system voltage, axial force and frequency can be used for an 
automatic control of angular speed. Axial force or contact pressure can be 
modified by a secondary linear actuator (piezoelectric or electromagnetic). In 
most cases voltage combined with frequency control is preferred.   

Almost all theoretical results are confirmed by experiments so we can 
conclude that our proposed mathematical model is sufficiently accurate to predict 
motor behavior around resonance.  
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