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A HYBRID MODEL FOR TUMOR-IMMUNE COMPETITION

A. Ciancio', A. Quartarone?

In this work will be examined a model of the competition between the
tumor cells and the immune system, starting from the Kuznetsov’s model and using
a hybrid model recently proposed in [21]. The description of this phenomenon will
be improved in a particular way in its initial phase. There will be considered both
cases, the case in which tumor cells avoid the control of the immune system, as well
as the stable case, pointing out that the tumor may have a long dormant stage.
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1. Introduction

Tumors which for some reason have their origin in a vertebrate, grow slowly
for some time. In fact, sometimes it takes several months or even years for cancer to
appear [1]—[2]. This semi-dormant state is described by many works in literature,
because the dormant state cancer is a very well-known clinical phenomenon in which
cancer cells can persist for an extended period of time, with a small (or no) increase
in cancer cells. This state can occur naturally or after a seemingly effective therapy.

There are at least two independent explanations for this phenomenon:

a) The first one is due to the intrinsic properties of tumor cells and immune cells
[3].

b) The second one is supposed due to a balance between the interactions between
tumor cells and the immune system.

In both situations, the tumor seems eradicated.

But unfortunately the dormancy of the tumor is not necessarily a stable state,
because many factors such as infection, stress, immuno-suppression can disturb this
balance.

For this purpose Kuznetsov [3] proposed a mathematical model for tumor
growth and its suppression, showing that this model can also describe the regrowth
of dormant tumor following the occurrence of one of the two mechanisms discussed
earlier:

a) The first mechanism is due to a modest decrease in immune system cells.
b) The second is the case in which it is assumed the presence of some tumor cell
mutant that is resistant to the control of the immune system and thus grows
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out of control, except for the limits imposed by the presence or absence of
nutrients.

From the description of this model it will be seen that the tumor is reduced
initially and then is kept in check by the constant presence of immune cells, but when
the equilibrium relationship between tumor cells and cells of the immune system is
properly disrupted, the cancer is no longer under control and escapes to grow in an
uncontrolled manner.

However, as we shall see, this model is not suitable to describe the initial stage
of the tumor competition because it does not take into account the fact that in the
initial instants of growth the two populations have the same ability to learn, before
they evolve over time. Moreover, the approach of [3] is developed at a supermacro-
scopic scale and neglects the heterogeneous behavior of cells.

To overcome this limitation we will follow the paper [21], where a very use-
ful coefficient for describing the evolution of learning ability of the two populations
is introduced. In [13] a different approach was proposed. They proposed a class
of nonlinear integro-differential equations that at the mesoscopic level models the
competition between a tumor and the immune system. And in [14] the asymptotic
stability of the solutions of the mesoscopic equation in the case when the corre-
sponding macroscopic equation is asymptotically stable is proved.

The contents of the paper are organized in six sections, which follow the above
introduction.

Section 2 describes the model of Kuznetsov, and the significance of each pa-
rameter and shows an application of this model, both when the immune system fails
to control cancer cells, which in the contrary case Section 3 describes the limits of
the original model of Kuznetsov and introduces the paper [21], obtaining the coeffi-
cient will allow us to improve the description of the initial phase of tumor growth.
Section 4 shows an application of the modified model obtained following the paper
[21], when the immune system can control the cancer cells, and in the contrary case.
Section 5 shows a comparison between the two models, when the immune system
can control the cancer cells, and the contrary case.

The reader interested to understood more on the biology of cancer is addressed
to the fundamental book of Weinberg, and specifically [15, chapter 11], devoted to
the immune competition.

2. Kuznetsov Model

In the model for the regrowth of cancer proposed by Kuznetsov, is supposed
that the encounters of killer cells with cancer cells cause:

1) suppression of tumor cells,

2) suppression or deactivation of the killer cells. By putting:

e ¢ = ¢(t) is the number of cancer cells at time ¢, measured in units of one
million cells.

e ¢ = e(t) is the number of cytokines killers at time ¢, measured in units of one
million cells.

The law that regulates the growth of the tumor population is given by the
differential system:



A Hybrid Model for Tumor-Immune Competition 127
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where

kc[l — bc| =is the intrinsic rate of tumor cell growth;

k =maximum rate of tumor growth, when b = 0, the tumor grows at a rate k;
b =reciprocal of the maximum number of cells in the cell population

i.e. 1/b =(maximum number of tumor cells permitted to arise)/10°;

p =is the probability that a tumor cell bound with a killer cells will be de-

stroyed;

e a = is defined so that a(1 — p) is the rate of destruction of natural killer cells
(after the encounter with tumor cells);

e ap =rate of destruction of tumor cells after encounter with a killer cell, is
the constant "kinetic” which when multiplied by e and ¢ forms the rate of
destruction of the entire tumor;

e a-p-e(t)c(t) =rate of destruction of tumor cells.

The rate of population growth killer (which varies in size when they are attracted
new killer cells for the presence of cancer) is described by the second differential
equation of system (1) where

e r =parameter that indicates the base number of killer cells, = r = eqd;

e ¢g = 0,3 million cells;

e d =natural rate of death of killer cells;

ve(t)

g+ c(t)

e v = maximum rate of the logistic growth of the population killer, due to the
tumor growth;

e y =amount of time it takes for the immune response before the new killer cells
can attack the tumor;

e g =parameter g is the mid-point logistic parameter;

e a(1 — p)ce =Kkiller-cell death or inactivation due to the induced by the tumor.

= logistic growth rate;

This model as already mentioned, is developed at a super-macroscopic scale.
It is applied to the experimental data known in the literature related to tumor
growth in mice used as test subjects. To evaluate the numerical values that define
the tumor growth we have considered mice with an initial tumor of 0.5 million cells,
not under the control of the immune system and therefore free to grow. While we
applied this model in mice with an initial 0.5 million cancer cells under the control
of the immune system.

From the results we have [6]:

Numerical Values

d=0.591 a=0.138
u = 28.054 k =0.188
v=0.524 b =0.002

p = 0.998 g=0.160
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With these parameter values and given as initial conditions:
c(0) = 0.5; e(0) = 0.3. (2)

We have that tumor growth is suppressed and enter into a dormant state of equilib-
rium, apparently stable. Now we vary the value of the parameter p. From p = 0.998
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FIGURE 1. Phase diagram of the original model with p = 0.998

to p = 0.498 keeping the same initial conditions (2). We immediately notice that
a small decrease in immune response means that the tumor grows in an uncontrol-
lable way: as shown in Figure 2. This result indicates that a modest decrease in the
immune response effectiveness, corresponding to a small increase in the proportion
1—p of killer lymphocytes being inactivated by tumor cells, dramatically changes the
outcome of the disease: from a stable evolution (Figure 1) to an unstable evolution
(Figure 2).

Note also that this phenomenon of re-growth there is also after a appropriate
change of the parameters v,d,k, while there are no appreciable changes by varying
the parameter g. Therefore, this model suggests that the regrowth of a dormant
state may be associated with a decreased activity of the immune system, caused by
multiple mechanisms.

3. The Kuznetsov Model Revised by Cattani-Ciancio

Since the parameters of the differential system do not depend on time and on
the quantity of the cells, we can see that it is not suitable for describing the evolution
of the competition between two species. To analyze the more realistic case, in which
it is supposed that the learning ability of the both cell populations is the same, in
the initial phase, with aim to tend to two different values during the evolution of the
system, we must take into account that each cell population evolves in a different
way and as consequence develops the capacity to avoid or to destroy another specie
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FIGURE 2. Phase diagram of the original model with p = 0.498

with different speed (generally, malignant cells develop the ability to hide from the
immune system cells more quickly than the latter become able to locate and destroy
the first).

To overcome this limitation following the work of [21]. Let us consider a system
of two interacting and competing populations. Each population is constituted by
a large number of individuals called active particles, and their microscopic state is
called (biological) activity, as described in [7]—[12]. This activity enables the particle
to organize a suitable response with respect to any information process. In absence
of the external information, the activity reduces either to a minimal loss of energy
or to a random process.

In active particle competitions the simplest model of binary interaction is
based on proliferation-destructive competition. That is when, one of the population
gets aware of the presence of the other competing population starting to proliferate
and to destroy the competing cells. However, in this process an important step is
the ability of the first population cells (tumor cells) to hide themselves from the
second population cells (cells of the immune system), which tends to evolve with the
aim to identify and to destroy the extraneous cells.

In details consider a physical system of two interacting populations each one
constituted by a large number of active particles with sizes

ni = na(t), (ng(t) : [0,7] — Ry, (3)

fori=1,2.

Particles are homogeneously distributed in space, while each population is
characterized by a microscopic state, called activity, denoted by the variable u.
The physical meaning of the microscopic state may differ for each population. We
assume that the competition model depends on the activity by a function of the
overall distribution

p=plfilt,w)], (plfitw)]: Ry = Ry) (4)
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such that f;(t,u)du denotes the number of particles of the i-th population, at the
time ¢, that are in the interval [u,u + du]. Moreover,

Vi, Vt > 0:0 < fi(t,u) <1, fi(t,u)du = 1. (5)
D,
Let
e (G;,i=1,2 be a function of n = ny,no;
e pacts over f = (f1,f2);
e A; be a nonlinear operator acting on f;
e /i [f] be a functional (0 < p < 1) which describes the ability of the second

population to identify the first one.

The analysis developed in what follows is referring to a specific case where the second
population attempts to learn about the first population which, instead, escapes
by modifying its appearance. Specifically, the hybrid evolution equations can be
formally written

dCZi = G; (n1,n9; 1 [f]) (6)
ofi
5 = Ailf)-

As a consequence, (6) denotes a hybrid system of a deterministic system coupled
with a microscopic system statistically described by a kinetic theory approach. In
the following, the evolution of density distribution will be taken within the kinetic
theory. The derivation of (6)2 can be obtained starting from a detailed analysis of
microscopic interactions. Specifically, consider binary interactions between a test, or
candidate, particle with state u, belonging to the i —th population, and field particle
with state uw. belonging to the j — th population. We assume that microscopic
interactions are characterized by the following quantities:

e The encounter rate, which depends, for each pair of interacting populations
on a suitable average of the relative velocity 7;;, with ¢,7 = 1,2.

e The transition density function ¢;; (us, u*,u), denotes the probability density
that a candidate particle with activity u, belonging to the ¢ — th population,
falls into the state u € D,, of the test particle, after an interaction with a
field entity, belonging to the j — th population, with state «*. The probability
density ¢;; (uy, v*,w) fulfills the condition

Vi, 5, VU™, st iy (u", Us, u) > 0,/ ©ij (U* Uy, u) du = 1.
Dy
Then, by using the mathematical approach, developed in [17], it yields the following
class of evolution equations (for similar equations, see also [28])

1,0 -Y /| e ) it ) 00 (7)

2
- fi(t, ij fi(t, wy)du®
f(tU);/Dun]f(tU)u
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which can be formally written as (6)2.

Since our model is based on the hiding-learning dynamics, one has to introduce
the functional which takes into account the ”distance” between the two distribution
so that p in (6) is defined as:

Wl £ () = ulfi — fi](6) = 1— /D (i — f2)? (t,u)du. (8)

Notice that p is the coupling term which links the macroscopic model (6); to the
microscopic model (6)s.

In order to find some classes of solutions of (7), we assume that the transition
density is the product of separable density functions

Pij (U*, Uiy u) - (1 - 52J)wl<u*7 U)&(u*, u) (9)
As an example, let us solve this system under the following hypotheses:
U1 (U, u) = Yo (us,u) = 6(u — uy), & (u*, u) = Ea(u®,u)o(u — u*). (10)
The system (7), by using (9) — (10), becomes

0
£(tvu) =mafife — (m1+m2) f1
ot
" (11)
87;(75#) = no1f1fz — (M21 + m22) fa.
Moreover, by assuming that
M1 ="Mz =1"721=1M2=17 (12)
and putting
f(tau) :fl(t7u)_f2(t7u) (13)
from (11), one has
of
E(tvu) - _277f(t7u)' (14)
The general solution of this equation is
ft,u) = f(0,u)e”>™. (15)
Assuming that
1 —u
FO.w) = —=e i (16)
eq. (14) becomes
1
f(t7 U) = %67(1}24}2”&- (17)

And then from (8), by virtue of (13) and (17) we get the following time-dependent

parameter, which takes into account the ability of competition of two species cellular
(fig 3):

e—47]t

pu(t) =1 7

As can be seen this coefficient tends to 1 for a long time and therefore has no

significant effect on the model, thus returning the classic model of Kuznetsov, which

supposes that two populations have different learning abilities. So this coefficient is

very useful to describe the evolution of competition from the initial moments, until

(18)
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a long time since that time has little influence on the model and describes well the
initial transitional period, before to fading with increasing time. The classical model
describes the evolution ignoring the initial phase.

We are able to describe the evolution of the phenomenon from the initial
moment up to long periods.

4. Model with Modified Coefficient

By changing the model just seen, taking into account also the phenomena
from the microscopic point of view, and then inserting the coefficient of the model
obtained by [21], we obtain the hybrid system

e—477t

V2

¢ (t)=r+ [g’f%] e(t) — de(t) — a (1 —p {1 - 6:;;}) c(t)e(t).

With this model the phenomenon description improves significantly as we can see
from the following phase diagrams of figure 4. This diagram was obtained from the
same initial conditions and the same values of the parameters of the first diagram
shown above.

We see that initially the cancer cells grow slightly as being controlled by lym-
phocytes in that phase, which grow rapidly because of the presence of extraneous
cells. While as time passes the immune system collapses so the tumor can grow in
an uncontested way as it is shown in Figure 5.

¢ (t)=kc(t)[1—0be(t)] —ap [1— ] e(t)c(t)

(19)

5. Comparison between Two Models

Now we compare the phase diagrams for the two different models, first for the
stable case where p = 0.998 and then the unstable case where p = 0.498

e Case 1: p=0.998.
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FIGURE 5. Phase diagram of the modified model with p = 0.498

With this value of p we obtain the following phase diagrams that we plot simulta-
neously: In this graph, the dashed line represents the phase diagram of the original
system proposed by Kuznetsov, in which the two species are supposed to result
already evolved, that means that we have already passed the phase "Hiding- Learn-
ing”. So in this case the cells of the immune system have already developed the
technique of identifying and destroying the tumor cells. For this reason we notice
that these tumors grow slowly being destroyed by lymphocyte. While the solid line
demonstrates the evolution of the Kuznetsov’s model modified thanks to the coef-
ficient described above. Certainly the initial point and the final one are the same
because for t = 0 we have the same initial conditions, while for ¢ — oo the coefficient
tends to one and thus provides no longer a significant contribution.

But the important result is found in the description of this evolution, because
it illustrates the fact that initially the immune system is not able to identify and
to destroy tumor cells. Comparing the two graphs we note in fact that for the
same number of the cells (y axis), the solid line shows much more cancer cells than
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the dashed one, this is because the cancer in its early stage is not detected by the
immune system and therefore can grow in a way less contrasted than when it is
supposed that already at time ¢ = 0 immune cells are capable to destroy tumor cells
(original model, dashed line).

e Case 2: p=0.498.
With this value of p we obtain the following phase diagrams that we plot simulta-
neously: Where the dashed line represents the phase diagram of the original model,
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30

FIGURE 7. Phase diagram of the two models with p =
0.498 solid line = Modified Model, dashed line = Original
Model

while the solid one concerns the model modified by the coefficient. We see that in
this case the trend of the two curves is the same as well as the initial point and the
point toward which both curves tend for ¢t — oo are the same, but once again we
have a better description of the evolution of the system.
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We note, in fact, that the curve for the original model shows a greater increase

in lymphocytes, already from the earliest moments of the evolution of the tumor,
as if the body had the innate ability to identify malignant cells reacting with an
increased production of antibodies. But it is more realistic to think that the body
does not have this ability and therefore (see solid line) initially reacts with a lower
production of lymphocytes. While as time goes on the behavior of the two graphs
in effect is the same, as during more prolonged periods both of them take in account
the evolution of the both species.
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