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CALCULATION OF THE GRAVITOELECTROMAGNETISM

FORCE FOR CYLINDRICALLY SYMMETRIC SPACETIME
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Using 1+3 splitting concepts of a spacetime, we first discuss the gravito-

electromagnetism force in terms of the gravitoelectric and gravitomagnetic fields.

By applying the Hamilton-Jacobi method, the trajectory of a moving test particle

in the cylindrically symmetric spacetime is calculated. Finally, the gravitoelectro-

magnetism force and the corresponding potential function are determined.

1. Introduction

As is well known [1], theory of general relativity discussed the motion of Mercury

perihelion in terms of a relativistic gravitoelectric field correction to the Newtonian

gravitational potential of the Sun. Also it contains a gravitomagnetic field due

to proper rotation of the Sun and this field influence on planetary orbits, [2-4].

The gravitomagnetic field is much smaller than the gravitoelectric one. Theory of

gravitoelectromagnetism1 that assumes a perfect isomorphism between gravitation

and electromagnetism has been established by Heaviside [6] and Jefimenko, [7]. In

the same way that a magnetic field is created when a charged object rotates, a

gravitomagnetic field is created when a massive body rotates and this effect is too

small. The gravitomagnetic field plays an important role in some astrophysical

scenarios such as neutron stars [8-10] and rotating black holes. To detect this field,

it is necessary to examine a very massive object or build an instrument that is

very sensitive. The gravitomagnetic field of Earth can be measured by studying the

motion of satellites LAGEOS2, [11,12]. The LAGEOS measured the frame-dragging

of the Earth. The recent results from the LAGEOS and LAGEOS II are available in

[13-15]. Theory of general relativity predicts that the rotating bodies drag spacetime

around themselves in a phenomenon referred to as frame-dragging. The rotational

frame-dragging effect was first derived from the theory of general relativity in 1918
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1The gravitoelectric and gravitomagnetic fields are so-called the gravitoelectromagnetism fields,

[5]. Gravitoelectromagnetism refers to a set of analogies between Maxwell equations and a refor-

mulation of the Einstein field equations in general relativity.
2LAGEOS (Laser Geodynamics Satellites) are a series of satellites designed to provide an orbiting

laser ranging benchmark for geodynamical studies of the Earth.
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by Josef Lense and Hans Thirring and it is also known as the Lense-Thirring effect,

[2,3]. The Lense-Thirring precession of the planetary orbits is too weak, and so

is not easily detected. In 2004, Gravity Probe B launched by Stanford physicists

to measure the gravitomagnetism on a gyroscope in outer space with much greater

precision. The data analysis of the Gravity Probe B mission is still ongoing. The

recent observational results from the Gravity Probe B are available in [16,17]. At

this time, the measurement of gravitomagnetism via superconducting gyroscopes in

a satellite about the Earth is one of the aims of NASA.

A brief review of literature which describe the gravitoelectromagnetism is pre-

sented below. Jantzen et al. [18] reviewed the many faces of the gravitoelectromag-

netism. Ciufolini and Wheeler [19] described the geodesics, precession and forces

on gyroscopes in the gravitoelectromagnetism fields. Mashhoon and Santos [20] dis-

cussed the gravitomagnetism in connection with the rotating cylindrical systems.

Bini and Jantzen [21] obtained a list of References on spacetime splitting and grav-

itoelectromagnetism. Ruggiero and Tartaglia [22] reviewed the theory and practice

of gravitomagnetism. Barros et al. [23] studied the global properties of the gravit-

omagnetism by investigating the gravitomagnetic field of a rotating cosmic string.

Mashhoon [24] reviewed the theoretical aspects of the gravitoelectromagnetism and

some recent developments in this topic. Capozziello et al. [25] discussed the theory

of orbits by considering the gravitomagnetic effects in the geodesic motion. Costa

and Herdeiro [26] concluded that the actual physical similarities between the gravity

and electromagnetism occur only on very special conditions and depends crucially

on the reference frame. Schmid [27] have been treated the cosmological gravito-

electromagnetism and Machs principle. Ghose [28] studied the mutual interaction

of a relativistic particle and gravitoelectromagnetism both classically and quantum

theoretically. Ruggiero and Iorio [29] investigated the effects of a time-varying grav-

itomagnetic field on the motion of test particles. Tsagas [30] presented the technical

and physical aspects of the gravitomagnetic interaction. Costa et al. [31] studied

the dynamics of spinning test particles in GR, in the framework of exact gravitoelec-

tromagnetic analogies. Li [32] showed that the gravitational theories with metrics

relevant to the gravitoelectromagnetism can be decomposed in terms of two sectors

of Abelian gauge field theories. Costa and Natário [33] collected and further de-

veloped different gravitoelectromagnetic analogies existing in literature and clarified

the connection between them.

2. Threading formalism and gravitoelectromagnetism force

The slicing and threading points of view are introduced respectively by Misner,

Thorne and Wheeler [34] in 1973 and, Landau and Lifshitz [35] in 1975. Both points

of view can be traced back when the Landau and Lifshitz [36] in 1941 introduced the

threading point of view splitting of the spacetime metric. After them, Lichnerowicz

[37] introduced the beginnings of the slicing point of view. In 1956, Zel’manov [38]

discussed the splitting of the Einstein field equations in general case. The slicing
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point of view is commonly referred as 3+1 or ADM formalism and also term 1+3

formalism has been suggested for the threading point of view. For more details

about these formalisms, see reference [39]. In threading point of view, splitting

of spacetime is introduced by a family of timelike congruences with unit tangent

vector field, may be interpreted as the world-lines of a family of observers, and it

defines a local time direction plus a local space through its orthogonal subspace

in the tangent space. Let3 (M, gαβ) be a 4-dimensional manifold of a stationary

spacetime. We now can construct a 3-dimensional orbit manifold as M̄ = M
G with

projected metric tensor γij by the smooth map ϱ : M → M̄ where ϱ(p) denotes the

orbit of the timelike Killing vector ∂
∂t at the point p ∈ M and G is 1-dimensional

group of transformations generated by the timelike Killing vector of the spacetime

under consideration, [39, 40]. This splitting of the spacetime leads to the following

distance element, [35,40]:

ds2 = gαβdx
αdxβ = h(dt− gidx

i)2 − γijdx
idxj , (2.1)

where γij = −gij + hgigj in which gi = −g0i
h

and h = g00. We now consider a

moving test particle of mass m in a spacetime with the metric tensor (1). The

gravitoelectromagnetism force acting on this particle, as measured by the threading

observers, is described by the following equation4, [38, 41]:

∗F =
∗d∗p

dt
− m√

1− ∗v2

{
∗Eg +

∗v × ∗Bg + f
}
, (2.2)

here ∗pi =
m∗vi√
1− ∗v2

such that ∗v2 = γij
∗vi ∗vj in which ∗vi =

vi√
h (1− gkv

k)
and

vi =
dxi

dt
. Also, the starry total derivative with respect to time is defined as

∗d

dt
=

∗∂

∂t
+ ∗vi ∗∂i where

∗∂

∂t
=

1√
h

∂

∂t
and ∗i =

∗∂i = ∂i+gi
∂

∂t
. In equation (2), the last

term is defined as f i = −(∗λi
jk

∗vj +2Di
k)

∗vk, where 3-dimensional starry Christoffel

symbols are defined as ∗λi
jk =

1

2
γil(γjl∗k+γkl∗j−γjk∗l). The deformation rates of the

reference frame with the respect to observer are represented by tensors Dij =
1

2

∗∂γij
∂t

and Dij = −1

2

∗∂γij

∂t
. Finally, the time dependent gravitoelectromagnetism fields are

defined in terms of gravoelectric potential Φ = ln
√
h and gravomagnetic vector

3The Greek indices run from 0 to 3 while the Latin indices take the values 1 to 3.

4The vector C = A×B has components as Ci =
εijk
√
γ

AjBk in which γ = det(γij) and 3-

dimensional Levi-Civita tensor εijk is skew-symmetric in any exchange of indices while ε123 =

ε123 = 1, [35].



286 Morteza Yavari

potential g = (g1, g2, g3) as follows
5

∗Eg = −∗∇Φ− ∂g

∂t
; ∗Egi = −Φ∗i −

∂gi
∂t

, (2.3)

∗Bg√
h

= ∗∇× g ;
∗Bi

g√
h

=
εijk

2
√
γ
g[k∗j]. (2.4)

3. Motion of a test particle in cylindrically symmetric spacetime

We start with the general form of a static metric in cylindrical Weyl coordi-

nates (t, r, ϕ, z) given by, [42]:

ds2 = e−2vdt2 − e−2vdr2 − w2e−2vdϕ2 − e2vdz2, (3.1)

where v and w are functions of r. Firstly, we solve the Einstein field equations for

this metric and so, the following results are obtained

v = a ln(c1r + c2) + b, w = c1r + c2, (3.2)

where a, b, c1, c2 are arbitrary constants. Below we calculate the trajectory of a

relativistic test particle with mass m that moving in spacetime (5) by using the

Hamilton-Jacobi equation, [43-46]. Therefore, this equation is of the form(
∂S

∂t

)2

−
(
∂S

∂r

)2

− 1

(c1r + c2)2

(
∂S

∂ϕ

)2

− e−4b

(c1r + c2)4a

(
∂S

∂z

)2

− m2e−2b

(c1r + c2)2a
= 0.(3.3)

For solving this partial differential equation, we use the method of separation of

variables for the Hamilton-Jacobi function as follows

S(t, r, ϕ, z) = −Et+R(r) + p1ϕ+ p2z, (3.4)

here6 E, p1 and p2 are arbitrary constants and can be identified respectively as

energy and angular momentum components of particle along ϕ and z-directions.

With substituting the last relation into Hamilton-Jacobi equation, the unknown

function R is given by

R = ϵ

∫ √
E2 − σ dr, (3.5)

where σ = (c1r + c2)
−2p21 + e−2b(c1r + c2)

−2am2 + e−4b(c1r + c2)
−4ap22 and ϵ =

±1 stands for the sign changing whenever r passes through a zero of the above

integrand, [47]. Let us now obtain the trajectory of particle by considering the

following relations, [43-46]:

∂S

∂E
= constant,

∂S

∂p1
= constant,

∂S

∂p2
= constant. (3.6)

5Here, curl of an arbitrary vector in a 3-space with metric γij is defined by (∗∇×A)i =
εijk

2
√
γ
A[k∗j]

while the symbol [ ] represents the anticommutation over indices.
6In the next section, we will show that the energy of particle is equal to E.
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Consequently, after some calculations, the set of equations (10) respectively are

changed to the following relations

t = ϵE

∫
dr√

E2 − σ
, (3.7)

ϕ = ϵp1

∫
dr

(c1r + c2)2
√
E2 − σ

, (3.8)

z = ϵp2e
−4b

∫
dr

(c1r + c2)4a
√
E2 − σ

, (3.9)

we have taken the constants in equations (10) to be zero without any loss of gener-

ality. Obviously, it does not seem to be an easy task to find the general solutions

for the above integrals. On the other hand, we know that the turning points of

trajectory are given by dr
dt = 0. As a consequence, the potential curves are

E = ±
√
σ . (3.10)

Next, calculations show that we can express the turning points explicity from the

above equation only for values7 a = 1
2 , 1. Here we discuss these two cases as follows:

Case (1) : a = 1
2

By defining a new variable as8 u = 1
r , the equation (12) is transformed to

p21
(c1 + c2u)4

(
du

dϕ

)2

+
(p21 + p22e

−4b)u2

(c1 + c2u)2
+

m2e−2bu

c1 + c2u
−E2 = 0. (3.11)

Unfortunately only an integral expression as ϕ = ϕ(u) can be obtained from this

equation. However, the explicit expressions for the solutions of equation (15) can be

obtained if we take c2 = 0. For this case, after some calculations, we get

u(ϕ) = α− β sin

(
c1
√

p21+p22e
−4b

p1
(ϕ− ϕ0)

)
, (3.12)

where ϕ0 is a constant of integration and

α = − c1m
2e−2b

2(p21 + p22e
−4b)

, (3.13)

β = − c1
√

m4e−4b + 4E2(p21 + p22e
−4b)

2(p21 + p22e
−4b)

. (3.14)

There are also two constant solutions obtained by setting du
dϕ = 0 in equation (15)

as

r0 =
1

α± β
, (3.15)

where r0 is the radius of the circular orbit. This circular motion occurs in relativity

theory just as in classical theory. In relativistic classical mechanics the finite trajec-

tories are, in general, not closed but rather rosette shaped, [35]. From the equation

7Most of the calculations were done using Maple software.
8See reference [48], for more discussion.
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(16), we can see that the trajectory of particle is bounded, i.e. the particle can be

trapped by the extended object with the static cylindrically symmetric geometry.

In this case, the turning points of the trajectory are9 rtp = r0. For the trajectories

with the equation (16), the period of motion is given by

T =
2πp1

c1
√

p21 + p22e
−4b

, (3.16)

which depends explicitly on the angular momentum components of particle. Finally,

it can be shown that the exact solution of equation (11) is of the form

α ln
(
α+ (β2 − α2)r +

√
β2 − α2

√
(β2 − α2)r2 + 2αr − 1

)
−
√

β2 − α2
√

(β2 − α2)r2 + 2αr − 1 + (β2 − α2)t = 0. (3.17)

Unfortunately, we can not solve exactly the above equation in order to obtain the

coordinate r in terms of t. Hence, from the equations (13) and (16), we can not

determine the coordinates z and ϕ explicity in terms of t.

Case (2) : a = 1

In this case, with the help of variable u, equation (12) converts to

p21
(c1 + c2u)4

(
du

dϕ

)2

+
p22e

−4bu4

(c1 + c2u)4
+

(p21 +m2e−2b)u2

(c1 + c2u)2
− E2 = 0. (3.18)

Similarly as in previous case, the above equation can be solved exactly only for

c2 = 0, and it can be shown that its solution is10

u(ϕ) =
1

ζ
JacobiSN

(
c21Eζ

p1
(ϕ− φ0) ,

iδ√
2

)
, (3.19)

in which i =
√
−1, φ0 is a constant of integration and

ζ =

√
p21+m2e−2b+

√
(p21+m2e−2b)2+4E2p22e

−4b

c1E
√
2

, (3.20)

δ =
c1Ep2e

−2b√
(p21 +m2e−2b)c21ζ

2 + p22e
−4b

. (3.21)

Also, if |E| >
√

p21+m2e−2b

c1ζ
, the constant solutions of the equation (22) become the

circular orbits with the following radius

r0 = ± p2e
−2b

c1
√

c21E
2ζ2 − p21 −m2e−2b

. (3.22)

On the other hand, it is easy to show that the following identity is valid

JacobiSN(x, 0) = sinx, (3.23)

here x is an arbitrary variable. By considering the last consequence, it is interesting

to rewrite the equation (23) with δ = 0. For doing this, there is only one choice,

9The subscript tp in rtp refer to the turning points.
10For more details about Jacobi functions, see references [49,50].
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i.e. p2 = 0. Therefore, we shall henceforth ignore the motion in the z-direction. By

applying this condition, equation (23) is reduced to the following simple relation

1

r
=

c1E√
p21 +m2e−2b

sin

(
c1
√

p21 +m2e−2b

p1
(ϕ− φ0)

)
, (3.24)

and so, the period of motion becomes

T =
2πp1

c1
√

p21 +m2e−2b
. (3.25)

Also, we can check that the trajectories described by equation (28) will be bounded

with the turning points as rtp = ±
√

p21+m2e−2b

c1E
. Finally, with the help of equations

(11) and (28), we can rewrite the trajectory of test particle in terms of time as

follows

r =

√
t2 +

p21+m2e−2b

c21E
2 , (3.26)

and

ϕ = φ0 +
T

2π
arccot

(
c1Et√

p21 +m2e−2b

)
. (3.27)

4. Calculation of the gravitoelectromagnetism force

In this section, we will calculate the gravitoelectromagnetism force acting on

a test particle in the static cylindrically symmetric spacetime. But, in case (1),

it was shown that the exact determination of coordinates (r, ϕ, z) in terms of t is

impossible. Hence, we ignore the study of this case. Next, from the equations (30)

and (31) in case (2), we deduce

∗vi = eb


c1t i = 1,

p1√
c21E

2t2+p21+m2e−2b
i = 2,

0 i = 3.

(4.1)

With applying this relation, after some work, we lead to

m√
1− ∗v2

= eb
√

c21E
2t2 + p21 +m2e−2b. (4.2)

Therefore, it follows that

∗p = e2b
(
c1t
√

c21E
2t2 + p21 +m2e−2b , p1 , 0

)
. (4.3)

Before continuing, we know that the energy of a particle as measured by the thread-

ing observers located at trajectory is given by E = m
√
h√

1−∗v2
which is a conserved

quantity during the motion of particle, [35]. Thus, from equation (33) we can con-

clude E = E. Next, we can verify that all components of gravitoelectromagnetism
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fields are vanish except11

∗Eg1 =
c1E√

c21E
2t2 + p21 +m2e−2b

, (4.4)

∗Eg2 = −c21Et

p1
. (4.5)

Also, the non-zero components of starry Christoffel symbols are calculated as follows

∗λ1
11 = −∗λ3

13 = − c1E√
c21E

2t2 + p21 +m2e−2b
,

∗λ1
12 = −∗λ3

23 =
c21Et

p1
,

∗λ1
33 = −c1e

4b
√

(c21E
2t2 + p21 +m2e−2b)3

E3
, (4.6)

∗λ2
11 = − c21E

3t

(c21E
2t2 + p21 +m2e−2b)p1

,

∗λ2
33 =

c21e
4b(c21E

2t2 + p21 +m2e−2b)t

p1E
,

and the non-zero components of deformation tensor are

D11 = − c21e
−bE3t√

(c21E
2t2 + p21 +m2e−2b)3

, (4.7)

D33 =
c21e

3bt
√

c21E
2t2 + p21 +m2e−2b

E
. (4.8)

From the equations (32), (34) and (37-39), we derive the following expressions

f i =
1

p1


2c31e

2bp1Et2√
c21E

2t2+p21+m2e−2b
i = 1,

c41e
2bE3t3

c21E
2t2+p21+m2e−2b i = 2,

0 i = 3.

(4.9)

and

∗d∗pi

dt
=

c1e
3b

E

{
2c21E

2t2 + p21 +m2e−2b i = 1,

0 i ̸= 1.
(4.10)

Finally, from the equations (33-36), (40) and (41), we obtain

∗F = c31e
3bE

(
−t2,

(p21 +m2e−2b)t

c1p1
√
c21E

2t2 + p21 +m2e−2b
, 0

)
. (4.11)

To continue our analysis, we are going to determine the potential function corre-

sponding to the gravitoelectromagnetism force. For doing this, we can prove that in

11In our notation (r, ϕ, z) ≡ (1, 2, 3).
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a 3-space with the metric tensor γij the following identity is valid, [51,52]:

[∗∂i ,
∗∂k] =

√
h g[k∗i]

∗∂

∂t
. (4.12)

With the help of this identity and equation (4), we can obtain the following identity12

∗∇× ∗∇Ψ =
∗∂Ψ

∂t
∗Bg, (4.13)

where Ψ is an arbitrary scalar function. But the gravitomagnetic fields for the metric

(5) are zero, so the above relation is changed to

∗∇× ∗∇Ψ = 0. (4.14)

On the other hand, by taking curl of the gravitoelectromagnetism force, we get

(∗∇× ∗F)i =
1

p1


3c31e

2bE2(p21+m2e−2b)t

c21E
2t2+p21+m2e−2b i = 3,

0 i ̸= 3.

̸= 0. (4.15)

Consequently, comparing the equation (45) with the equation (46), we cannot define

the potential function (V) corresponding to the gravitoelectromagnetism force with

the following classical form

∗F = −∗∇V. (4.16)

5. Conclusions

In this paper, the classical behaviour of a test particle in cylindrically sym-

metric spacetime has been studied. We showed that the particle can be trapped by

this gravitational field. The trajectory, turning points and period of motion have

been calculated. Also, we showed that the parameters of motion depend on the

choice of the angular momentum components of particle. Finally, by determining

the gravitoelectromagnetism force, it was shown that the existence of the corre-

sponding potential function with the classical definition is impossible.
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