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DISTANCE BETWEEN SPECIES BY CONFUSION 
OPERATORS OF MULTI-CLASS CLASSIFIERS  

Nicolae TARBĂ1, Ionela N. IRIMESCU2, Ana M. PLEAVĂ3, Eugen N. 
SCARLAT4, Mona MIHĂILESCU5 

We introduce a method to evaluate the similarities between classes of objects 
based on the confusion matrices coming from the multi-class machine learning (ML) 
predictors that operate in the vector space generated by the classes. Operation in the 
confusion domain allows us to use the distance as evaluation metric of the closeness 
of the relevant properties carried by the classes. We applied the method to semi-
quantitatively evaluate the effects of X-ray and carbon ion radiation on cultured 
SW1353 chondrosarcoma cells with respect to the non-irradiated reference. We prove 
that it is possible to draw useful information on the strength of cells nuclei changes. 

 

Keywords: machine learning classifiers, features, confusion matrix, confusion 
domain, confusion operator, cross-confusion coefficient, distance.  

1. Introduction 

Supervised machine learning (ML) classifiers are largely used to sort cells 
species or tissues using features drawn from optical microscopy images [1-4]. Since 
hyperspectral microscopy images span across a wide spectrum ranging between 400 
and 1000nm in each pixel, the properties extracted from the hyperspectral images 
(HSI) were used in association with ML algorithms to obtain effective and robust 
classifiers for accurate cell sorting [5-7]. For example, in the case of irradiated/non-
irradiated cells, the classification was done based on spatial features taken on 
spectral sub-intervals [8]. In multiple-category scenarios, the classifiers compute 
the probabilities of belonging to each category, such that the greatest likelihood 
gives the category the cell is predicted to belong to.  

 
1 Phd stud. Computer Sciences Doctoral School, Computer Science and Engineering Department, 
Faculty of Automatic Control and Computers, National University of Science and Technology 
POLITEHNICA Bucharest, Romania, nicolae.tarba@upb.ro   
2 Phd stud., Applied Sciences Doctoral School, National University of Science and Technology 
POLITEHNICA Bucharest, Romania, ionela.irimescu@stud.fsa.upb.ro   
3 Res., CAMPUS Research Center, National University of Science and Technology 
POLITEHNICA Bucharest, Romania.  
4 Assoc. Prof., Physics Dept., National University of Science and Technology POLITEHNICA 
Bucharest, Romania.  
5 Prof., Physics Dept, Research Center for Applied Sciences in Engineering, National University of 
Science and Technology POLITEHNICA Bucharest, Romania. 

mailto:nicolae.tarba@upb.ro
mailto:ionela.irimescu@stud.fsa.upb.ro


172        Nicolae Tarbă, Ionela Irimescu, Ana M. Pleavă, Eugen N. Scarlat, Mona Mihăilescu 
 

Besides accurate sorting, we prove that classifiers carry information which 
reveal the similarity among the cells species. The extent to which the species are 
similar is given by the distance metric in a vector space mapped onto itself by the 
confusion operators generated by the confusion matrices of the ML classifiers. 
Therefore, the coordinates in vector space are defined not by the raw probabilities 
calculated by the classifiers in the sorting process, but by the weights of the 
classification errors in the confusion matrices. 

In the application presented here, the features the ML classifiers work with 
are extracted from the HSIs of the investigated samples. General features used so 
far in the analysis of various types of images (microscopic, macroscopic, satellite) 
are based on shape, texture, edge and corner detection, brightness, or spectral 
response. In most cases the initial number of features is large enough to perform the 
classification with no error, i.e., with accuracy Acc=1. When reducing the number 
of features, the accuracy falls below unity Acc<1 and the process enters into the so-
called "confusion domain" where the distance could be considered an indicator of 
the differences/similarities between the relevant features that characterize one 
species.  

After the presentation of the method, we describe its application in the case 
of three cells species: irradiated with carbon ions (CI), with X-rays (XR), and non-
irradiated (REF). Since there is a large debate on the effectiveness of XR therapy 
versus CI therapy [9, 10], every piece of information related to their comparative 
properties becomes important. Particularly the optical methods for cell 
characterization gain more and more ground due to high automatization, high 
processing speeds, and workforce reduction [11].  

2. Method 
 

2.1 Multi-class confusion matrices 

Table 1 shows the general form of a N×N confusion matrix corresponding 
to a ML classifier that sorts N species of objects Sk k=1,…N having #Sk elements 
each. ESk/Sj means the number of elements of the species Sk predicted to belong to 
the species Sj. 

The accuracy metric maintains unity value Acc=1 down to a minimal 
combination of fmin features that still ensure the classification without errors. An 
additional removal of any of the remaining fmin features, f<fmin, leads to 
classification errors and Acc<1. Therefore, the last fmin features are considered the 
relevant features, and the domain f<fmin is considered the confusion domain. The 
closer the values of the features of the species, the greater the confusion.  
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Table 1 
Multi-class confusion matrix 

 P R E D I C T E D 
S1 … Sj … SN 

A 
C 
T 
U 
A 
L 

S1 (#S1) ES1/S1 … ES1/Sj … ES1/SN 
…. 
Sk (#Sk) 
…. 

… 
ESk/S1 

…. 

… 
… ESk/Sj … 

… 

… 
ESk/SN 

… 
SN (#SN) ESN/S1 … ESN/Sj … ESN/SN 

 
Inside the confusion domain f<fmin, the number of possible combinations to 

select f features from the available ones fmin is Cfmin
f ; hence the number of confusion 

matrices is the same Cfmin
f . For every f<fmin, an averaged confusion matrix is 

computed whose elements are the mean values over the number of confusion 
matrices. The standard errors of the mean values are computed accordingly. Next, 
the confusion matrix of normalized values is obtained by dividing each entry of a 
specific row by the sum of the values within it. Consequently, the sums per row 
become one, and the normalized values denoted with "e" can be interpreted as 
estimators of the multi-class classification probabilities. The confusion matrix of 
normalized values is then the same as the confusion matrix of probabilities (see 
Table 2). The corresponding standard errors of the probabilities result from the 
standard errors of the mean values by using the error propagation relationships. For 
f.≥fmin the classification errors are zero, and the matrices have unit values along the 
main diagonal and zero elsewhere. The notation eSk/Sj means the probability an 
element belonging to species Sk to be predicted and classified in the category Sj. 

 
Table 2 

Multi-class confusion matrix of probabilities 
 P R E D I C T E D 

S1 … Sj… SN 
A 
C 
T 
U 
A 
L 

S1 (#S1) eS1/S1 …eS1/Sj… eS1/SN 
…. 
Sk (#Sk) 
…. 

… 
eSk/S1 
…. 

… 
…eSk/Sj… 

… 

… 
eSk/SN 

… 
SN (#SN) eSN/S1 …eSN/Sj… eSN/SN 

 
Since the sums per row are one and assuming Euclidean metric, the square 

roots of the elements of the confusion matrix of the probabilities can be considered 
the coordinates of an unit vector used in classification process. 
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2.2 The confusion operator and the associated matrix 

The confusion operator formally expresses the classification action in the N-
dimensional space of unit vectors where the species are represented by N-
dimensional vectors. The operator maps the actual elements of the species into 
predicted vectors of unit size located in the first hyper-octant. In the supervised 
classification process all elements that certainly belong to the species Sk are inputs 
for ML classifiers and are written as line vectors of coordinates 1 on the k position 
and zero elsewhere. The vectors are of the line type such that the representation be 
consistent with the meanings ACTUAL (on lines)/PREDICTED (on columns) in 
the confusion matrix. The set {S1, …, SN} constitutes an orthonormal basis.  

For f<fmin, the elements of the matrix C associated with the confusion 
operator C are the square roots of the corresponding elements of the confusion 
matrix of probabilities; for the sake of simplifying the notations, the dependence on 
f is omitted: 

C=�
�eS1/S1 ⋯ �eS1/S𝑁𝑁

⋮ ⋱ ⋮
�eS𝑁𝑁/S1 ⋯ �eS𝑁𝑁/S𝑁𝑁

�,    f<fmin.    (1) 

The process of classifying an element from Sk is written in the form 
C(Sk)=Sk·C, the result of the sorting action being a predicted species represented by 
a vector of unit size: 

 

C(Sk) = Sk·C = ∑ �eS𝑘𝑘/S𝑗𝑗
𝑁𝑁
𝑗𝑗=1  · Sj,   ∑ eS𝑘𝑘/S𝑗𝑗

𝑁𝑁
𝑗𝑗=1  =1.   (2) 

Therefore 
Sk    

classification
�⎯⎯⎯⎯⎯⎯⎯⎯�  C(Sk) = (�eS𝑘𝑘/S1 ,  …, �eS𝑘𝑘/S𝑗𝑗  , . . . ,�eS𝑘𝑘/S𝑁𝑁),  (3) 

i.e., the predicted species C(Sk) is confounded with the actual species Sj with the 
probability eS𝑘𝑘/S𝑗𝑗.  

For two vectors U=(u1, …, uN) and V=(v1, …, vN), the dot product is: 
 

〈U, V〉 = U·VT = u1 v1 + … + uN vN.      (4) 

The predicted state C(Sk) expands on the basis {S1, …, SN}, the expansion 
coefficients being computed by the help of the dot product 〈C(Sk), Sj〉=�eS𝑘𝑘/S𝑗𝑗. 
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2.3 Cross-confusion coefficient and distance 

For f<fmin features and Sk≠Sj, the cross-confusion coefficient denoted 
K(Sk,Sj) (f omitted) indicates the extent to which the predicted species Cf(Sk) is 
confounded with the species Sj, and is computed as the dot product 

K(Sk,Sj) = 〈Cf(Sk), Sj〉,  k≠j.      (5) 

The predicted species Cf(Sk) has properties similar to those of the species Sj to the 
extent 〈Cf(Sk), Sj〉. Similarly, the confusion operator predicts the species Sj as Cf(Sj) 
which has properties similar to those of the species Sk to the extent 〈Cf(Sj), Sk〉: 

K(Sj,Sk) = 〈Cf(Sj), Sk〉,  k≠j.      (5’) 

Since 〈Cf(Sk), Sj〉 ≠ 〈Cf(Sj), Sk〉, the two coefficients are not necessarily equal to each 
other K(Sk, Sj) ≠ K(Sj, Sk). 

The distance between two states U and V is: 

d(U,V) = U−V =(〈U−V, U−V〉)1/2=(1− 〈 U, V〉)1/2.    (6) 

The maximum distance is √2. The normalized distance is D=d/√2. The normalized 
distance between a predicted species Cf(Sj) and an actual species Sk can be expressed 
with the help of K(Sk, Sj) from Eq.(5): 

D(Cf(Sj), Sk) = (1− 〈Cf(Sj), Sk〉)1/2 = (1− K(Sj, Sk))1/2.   (6’) 

The bigger the confusion coefficients, the smaller the distances. 

3. Application 

We used Microsoft’s ML.NET AutoML [12] for multi-class classification 
with LogLoss as the optimization metric to explore various models with various 
hyper-parameters [13-15]. After the training and testing stages, the best models 
were chosen based on their LogLoss values. Here the ML classifiers use an initial 
set of 49 optical features drawn from the 1D hyperspectral curve of SW1353 
chondrosarcoma cells nuclei. This is different from [8] where the features were 
extracted from 2D images; besides, here the classifications are multi-class not only 
binary. The features number is progressively reduced through permutation feature 
importance (PFI) [16], removing the features that increase LogLoss the least when 
their values are randomly permuted. We found a minimal combination of 6 features 
(fmin=6) for which there is no classification error. Additional elimination of any of 
the remaining features leads to classification errors and subunit accuracy. The 
interval f<6 is the confusion domain. The number of confusion matrices used to 
generate the matrices of the confusion operators is shown in Table 3. 
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Table 3 
The number of confusion matrices in the confusion domain, fmin=6 

f 5 4 3 2 1 
# confusion matrices 6 15 20 15 6 
 

The samples consist of nuclei from 38 cells of CI species, 52 cells of XR 
species, and 78 cells of REF species. For irradiated cells the dose was 4Gy. In Fig. 
1 are hyperspectral microscopy images of cells from each of the three species. We 
focus on the confusion operators that confuse the species CI with REF, respectively 
XR with REF in the confusion domain.  

 

   
a)                                      b)                                             c) 

Fig. 1 Experimental hyperspectral images for a) REF, b) IC, c) XR species. 
 

For three species, the confusion matrices from Eq.(1) reduce to 3×3 
matrices (again, for the sake of simplifying the notations, the dependence on f is 
omitted):  

C=�
�eCI/CI �eCI/XR �eCI/REF
�eXR/CI �eXR/XR �eXR/REF

�eREF/CI �eREF/XR �eREF/REF

�.    (7)  

4. Results 

Table 4a shows the matrices of the confusion operators built as explained in 
Sec.2.2 according to the meaningfulness stated by Eq.(7). The corresponding 
standard errors for f≤6 are given in Table 4b. The case fmin=6 is only to mark the 
threshold of the confusion domain. For fmin=6 the accuracy is still unity with no 
contribution to confusion matrices nor to confusion operators.  
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Table 4a 

The matrices of the confusion operators 
fmin=6 f=5 f=4 

�
1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000

� �
0.992 0.073 0.103
0.000 0.994 0.113
0.000 0.065 0.998

� �
0.989 0.111 0.103
0.062 0.988 0.139
0.058 0.109 0.992

� 

f=3 f=2 f=1 

�
0.967 0.178 0.185
0.088 0.959 0.270
0.119 0.188 0.975

� �
0.914 0.258 0.313
0.179 0.879 0.441
0.163 0.241 0.957

� �
0.747 0.320 0.580
0.233 0.770 0.594
0.191 0.300 0.936

� 

 

 

Table 4b 

The standard errors of the matrices of the confusion operators 
f=6 f=5 f=4 

�
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000

� �
0.007 0.001 0.001
0.000 0.006 0.057
0.000 0.021 0.091

� �
0.005 0.020 0.035
0.017 0.007 0.044
0.029 0.029 0.005

� 

f=3 f=2 f=1 

�
0.006 0.017 0.028
0.011 0.008 0.026
0.024 0.021 0.007

� �
0.019 0.022 0.050
0.041 0.033 0.052
0.029 0.022 0.009

� �
0.056 0.040 0.062
0.086 0.080 0.074
0.020 0.050 0.019

� 

 

4.1 The distances between predicted XR/CI and actual REF 

When the classifiers sort the elements of CI and XR species, the results are 
the predictions Cf(CI) and Cf(XR) computed according to Eq.(3). One can remark 
that whatever f=5, 4, 3, 2, 1, the following relationships stand (see Eq.(7) and Table 
4a, the dependence on f is omitted as before) 

�eXR/REF > �eCI/REF  for all f≤5,     (8) 

meaning that the predictor Cf(XR) confuses REF to a greater extent than Cf(CI) 
confuses REF: 

K(XR, REF) > K(CI, REF),      (8’) 
equivalent to 

〈Cf(XR), REF〉 > 〈Cf(CI), REF〉.     (8’’) 

In terms of normalized distances, by using Eq.(6’), one finds (see Table 5) 

D(Cf(XR), REF) < D(Cf(CI), REF) for all f≤5.    (8’’’) 
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Table 5 

Normalized distances between predicted XR/CI and actual REF  
f 5 4 3 2 1 

D(Cf(CI), REF) 0.994±0.001 0.947±0.018 0.903±0.016 0.829±0.030 0.648±0.048 
D(Cf(XR), REF) 0.942±0.030 0.928±0.024 0.854±0.015 0.747±0.035 0.637±0.058 
 
Consequently the predicted state Cf(XR) is closer to REF than the predicted state 
Cf(CI).  

4.2 The distances between predicted REF and actual CI/XR 

The classifier now sorts out the non-irradiated REF cells. Intuitively, if 
Cf(XR) mimics REF better than Cf(CI) does, then one might expect Cf(REF) to 
mimic better the XR cells than the CIs. In compact form, this consistency 
relationship should be:  

(�eREF/XR −�eREF/CI)(�eXR/REF −�eCI/REF) > 0.   (9) 

Indeed, whatever f = 5, 4, 3, 2, 1, the results are consistent with those from Eq.(8) 
(once again, see Eq.(7) and Table 4a): 

�eREF/XR  > �eREF/CI, consistent with  �eXR/REF  > �eCI/REF. (10) 

 

The corresponding equivalent forms are related to the values of the Ks coefficients  
 

K(REF, XR) > K(REF, CI),     (10’) 
 

 〈Cf(REF), XR〉 > 〈Cf(REF), CI〉     (10’’)  

which are consistent with Eq.(8’) and Eq.(8’’) respectively. 
The normalized distances can be compared in Table 6:   
 

D(Cf(REF), XR) < D(Cf(REF), CI)     (10’’’). 

Eq.(10’’’) is also consistent with Eq.(8’’’).  
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Table 6 
Normalized distances between predicted XR/CI and actual REF  

f 5 4 3 2 1 
D(Cf(REF), CI) 1.000±0.000 0.970±0.015 0.938±0.013 0.915±0.016 0.899±0.011 
D(Cf(REF), XR) 0.967±0.011 0.944±0.015 0.901±0.011 0.871±0.013 0.839±0.030 

 
The predicted species Cf(REF) is closer to XR than to CI for all classifiers in the 
confusion domain. 

4.3 The distances between predicted CI/XR and predicted REF    

For all f≤5, the normalized distances between the predicted species are 
indicated in Table 7. Since 

 

    D(Cf(XR), Cf(REF)) < D(Cf(CI), Cf(REF)),    (11) 

ML classifiers notice greater differences between Cf(REF) and Cf(CI) than between 
Cf(REF) and Cf(XR). 
 

Table 7 

Normalized distances between predicted CI/XR and predicted REF 
f 5 4 3 2 1 

D(Cf(CI), Cf(REF)) 0.945±0.063 0.910±0.051 0.820±0.045 0.699±0.072 0.467±0.180 
D(Cf(XR), Cf(REF)) 0.907±0.062 0.867±0.059 0.739±0.048 0.580±0.109 0.414±0.290 

 
To summarize, there is a general trend that emerges from Tables 8a and 8b. 

Except for the unitary normalized distances between the actual species, stated by 
the working hypotheses, all distances involving XR and REF species (actual or 
predicted) are smaller than those involving CI and REF species (actual or 
predicted). Since both CI and XR are obtained from the irradiation of REF cells, it 
can be said that X-rays produce less optical changes on the relevant features than 
carbon ion beams. 

Table 8a 

Normalized distances involving XR and REF species 
XR D(REF, XR) D(XR, Cf(REF)) D(REF, Cf(XR)) D(Cf(XR), Cf(REF)) 
f=5 1 0.967 0.942 0.907 
f=4 1 0.944 0.928 0.867 
f=3 1 0.901 0.854 0.739 
f=2 1 0.871 0.747 0.580 
f=1 1 0.839 0.637 0.414 
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Table 8b 

Normalized distances involving CI and REF species 

 

5. Conclusions 

We propose a method to evaluate the similarities/differences among the 
features of N species with the help of multi-class ML classifiers working in a 
supervised classification mode. For a number of features above a certain threshold, 
the classification performs without errors with Acc=1. Any further reduction of the 
number of features leads to entering into the confusion domain defined by the 
occurrence of errors and the appearance of confusion matrices with Acc<1. By 
generating the confusion operators in a N-dimensional vector space, we proved it is 
possible to use the distance metric and the cross-confusion coefficients between the 
actual and predicted species as semi-quantitative indicators of the 
similarities/differences between the relevant properties of the species. 

We applied the method in the case of three cell species, two irradiated with 
CI and XR, and one non-irradiated REF, and we computed the cross-confusion 
coefficients as well as the distances between predicted and actual species. All the 
findings endorse the general conclusion that REF species, actual or predicted, are 
closer to XR species, also actual or predicted, than to CI species. Since both CI and 
XR are obtained from the irradiation of REF cells, we conclude that X-ray radiation 
produces weaker changes on the relevant optical properties than CI radiation. 

 
 
 
 
 
 
 
 
 
 
 
 

CI D(REF, CI) D(CI, Cf(REF)) D(REF, Cf(CI)) D(Cf(CI), Cf(REF)) 
f=5 1 1.000 0.994 0.945 
f=4 1 0.970 0.947 0.910 
f=3 1 0.938 0.903 0.820 
f=2 1 0.915 0.829 0.699 
f=1 1 0.899 0.648 0.467 
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