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C∗-ALGEBRA VALUED EXTENDED b-METRIC SPACES AND
FIXED POINT RESULTS WITH AN APPLICATION

Mohammad Asim1 and Mohammad Imdad2

In this paper, we introduce the notion of C∗-algebra valued ex-
tended b-metric spaces and utilize the same to prove an analogue of Banach
Contraction Principle. We adopt an example to exhibit the utility of our
main result. Finally, we apply our result to examine the existence and
uniqueness of solution for a system of Fredholm integral equations.
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1. Introduction

Fixed point theory continues to be a fascinating subject of research de-
spite having a history of more than hundred years. The attraction of fixed
point theory lies in its application which belongs to numerous domain. The
first fundamental result on fixed point for contractive-type mappings is essen-
tially the well known result namely Banach contraction principle by Banach
[9] in 1922, which turns out to be very effective tool in guaranteeing the exis-
tence and uniqueness of solution of various types of diverse problems arising
in several domains within and beyond mathematics. The classical Banach
contraction principle has been extended and generalized in number of differ-
ent directions (see [8, 22, 3, 11, 10, 4, 5, 6, 7, 19]). To enhance the domain
of applicability, I.A. Bakhtin [8] and S. Czerwik [11] introduced the concept
of b-metric space as a note improvement of metric spaces and proved fixed
point results as an analogue of Banach contraction principle. Indeed, many
researchers are dealing with the fixed point theory for singlevalued and mul-
tivalued mappings in b-metric spaces and by now there exists a considerable
literature in such spaces (see [15, 12, 24, 27, 1, 16, 26]). On the other hand,
Kamran et al. [17] introduced a new type of generalized b-metric space and
termed it as extended b-metric space. Thereafter, several researchers proved
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some existence and uniqueness results on fixed point in extended b-metric
spaces (see [25, 23, 13, 18]).

In 2014, Ma et al. [20] established the notion of C∗-algebra valued metric
spaces (in short C∗-avMS) by replacing the range set R with a unital C∗-
algebra which is more general class than class of metric spaces and utilize the
same to prove some fixed point results in such spaces. One year later, again
Ma et al. [21] introduce the notion of C∗-algebra valued b-metric spaces as a
generalization of C∗-avMS and proved some fixed point results also used their
results as an applications for an integral type operator.

Inspired by foregoing observations, we enlarge the class of C∗-avbMS
by introducing the class of C∗-avEbMS and utilize the same to prove fixed
point result. We also furnish some examples which demonstrate the utility of
our main result. Moreover, we our main result to examine the existence and
uniqueness of solution for a system of integral type operator.

2. Preliminaries

In this section, we collect notions, definitions and auxiliary results which
are needed in our subsequent discussions.

Throughout the paper, we denote A by an unital (i.e., unity element I)
C∗-algebra with linear involution ∗ such that for all ρ, ς ∈ A, (ρς)∗ = ς∗ρ∗ and
ρ∗∗ = ρ. Let A be an unital C∗-algebra with unity element I, then we denote
AI = {a ∈ A; ab = ba, a < I and ∀ b ∈ A}. A positive element ρ ∈ A is
denoted by 0A 4 ρ, if ρ = ρ∗ and σ(ρ) = {λ ∈ R : λI − ρ is non-invertible } ⊆
[0,∞), where 0A is a zero element in A. The partial ordering on A can be
defined as follows: ρ 4 ς if and only if 0A 4 ς−ρ. The pair (A, ∗) is said to be
an unital ∗-algebra, if it contains the unity element I. A unital ∗-algebra (A, ∗)
is called a Banach ∗-algebra, if it satisfies ‖ρ∗‖ = ‖ρ‖ along with a complete
sub-multiplicative norm. A Banach C∗-algebra satisfying ‖ρ∗ρ‖ = ‖ρ‖2, for all
ρ ∈ A is called a C∗-algebra.

The following definition is introduced by Ma et al. [20]:

Definition 2.1. Let A 6= ∅. The mapping d : A × A → A is called a C∗-av
metric on A, if it satisfies the following (for all ς, σ, ρ ∈ A):
(1) d(ς, σ) < 0A and d(ς, σ) = 0A iff ς = σ;
(2) d(ς, σ) = d(σ, ς);
(3) d(ς, σ) 4 d(ς, ρ) + d(ρ, σ).

The triplet (A,A, d) is called a C∗-avMS.

I.A. Bakhtin [8] and S. Czerwik [11] introduced the notion of b-metric
spaces.

Definition 2.2. Let A 6= ∅. The mapping d : X × X → R+ is said to be a
b-metric with coefficient b ≥ 1, if σ satisfies the following (for all ς, σ, ρ ∈ A):
(1) d(ς, σ) = 0 if and only if ς = σ;
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(2) d(ς, σ) = d(σ, ς);
(3) d(ς, σ) ≤ b[d(ς, ρ) + d(ρ, σ)].

Then the pair (A, d) is said to be a b-metric space.

In 2015, again Ma et al. [21] introduced the notion of C∗-av b-metric
space as follows:

Definition 2.3. Let A 6= ∅ and s ∈ A such that s < I. The mapping d :
A × A → A is called a C∗-av b-metric on A, if it satisfies the following (for
all ς, σ, ρ ∈ A):
(1) d(ς, σ) < 0A and d(ς, σ) = 0A iff ς = σ;
(2) d(ς, σ) = d(σ, ς);
(3) d(ς, σ) 4 s[d(ς, ρ) + d(ρ, σ)].

The triplet (A,A, d) is called a C∗-avbMS.

In 2017, T. Kamran et al. [17] introduced the following definition of
extended b-metric spaces.

Definition 2.4. Let A 6= ∅ and ξ : X × X → [1,∞). The mapping d :
X × X → R+ is said to be an extended b-metric, if σ satisfies the following
(for all ς, σ, ρ ∈ A):
(1) d(ς, σ) = 0 if and only if ς = σ;
(2) d(ς, σ) = d(σ, ς);
(3) d(ς, σ) ≤ ξ(ς, σ)[d(ς, ρ) + d(ρ, σ)].

Then the pair (A, d) is said to be an extended b-metric space.

Remark 2.1. Clearly, if s = I then a C∗-avbMS reduced to a C∗-avMS.

3. Results

In this section, we introduce yet another type of generalized C∗-avMS,
which we refer as C∗-avEbMS. We also establish a fixed point theorem besides
deducing natural corollaries. Now, we define C∗-algebra valued extended b-
metric space (in short C∗-avEbMS) as follows:

Definition 3.1. Let A 6= ∅ and ξ : A×A→ AI . The mapping dξ : A×A→ A

is called a C∗-av extended b-metric on A, if it satisfies the following (for all
ς, σ, ρ ∈ A):
(1) dξ(ς, σ) < 0A and dξ(ς, σ) = 0A iff ς = σ;
(2) dξ(ς, σ) = dξ(σ, ς);
(3) dξ(ς, σ) 4 ξ(ς, σ)[dξ(ς, ρ) + dξ(ρ, σ)].

The triplet (A,A, dξ) is called a C∗-avEbMS.

Remark 3.1. Observe that, if ξ(ς, σ) = s < I, then (A,A, dξ) reduces to a
C∗-avbMS (see [21]).
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Metric space b-metric space Extended b-metric space

C∗-avMS C∗-avbMS C∗-avEbMS

Example 3.1. Let A = R and A = M2(C), the class of bounded and linear
operators on a Hilbert space C2. Define a mapping ξ : A× A→ A by (for all
ς, σ ∈ χ):

ξ(ς, σ) =


[
|ς − σ|p−1 0

0 |ς − σ|p−1

]
if ς 6= σ

I2×2 if ς = σ

where I2×2 is a square identity matrix in A and k > 0 is a constant.

Define dξ : A× A→ A by (for all ς, σ ∈ A):

dξ(ς, σ) =

[
|ς − σ|p 0

0 |ς − σ|p
]

Then (A,A, dξ) be a C∗-avEbMS.

Proof. By routine calculation one can verify, conditions (i)− (ii) of Definition
3.1. Now, we give the following inequality (for all α, β ∈ A):[

(α + β)p 0
0 (α + β)p

]
≤
[
(α + β)p−1 0

0 (α + β)p−1

] [
αp + βp 0

0 αp + βp

]
.

Above inequality is trivial for α = β = 0. For |α| ≥ 1 or |β| ≥ 1, we obtain

[
(α + β)p 0

0 k(α + β)p

]
=

[
(α + β)p 0

0 (α + β)p

]
[
αp + βp 0

0 αp + βp

] [αp + βp 0
0 αp + βp

]

≤

[
(α + β)p 0

0 (α + β)p

]
[
α + β 0

0 α + β

] [
αp + βp 0

0 αp + βp

]

=

[
(α + β)p−1 0

0 (α + β)p−1

] [
αp + βp 0

0 αp + βp

]
.

Finally, we set α = ς − ρ, β = ρ− σ and obtain[
|ς − ρ|p 0

0 |ς − ρ|p
]
≤

[
|ς − ρ|p−1 0

0 |ς − ρ|p−1
]([

|ς − ρ|p 0
0 |ς − ρ|p

]

+

[
|ς − ρ|p 0

0 |ς − ρ|p
])

.
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Therefore,
dξ(ς, σ) ≤ ξ(ς, σ)

(
dξ(ς, ρ) + dξ(ρ, σ)

)
.

Hence, (A,A, dξ) is a C∗-avEbMS. �

Remark 3.2. Observe that sup{ξ(ς, σ); ς, σ ∈ χ} = ∞. Thus, dξ is not a
C∗-avbMS.

Let (A,A, dξ) be a C∗-avEbMS. Then open ball of center ς ∈ A and
radius 0A ≺ ε ∈ A is defined by:

Bdξ(ς, ε) = {σ ∈ A : dξ(ς, σ) ≺ ε}.
Similarly, the closed ball with center ς ∈ A and radius ε � 0 is defined by:

Bdξ [ς, ε] = {σ ∈ A : dξ(ς, σ) 4 ε}.
The family of open balls (for all ς ∈ A and ε � 0)

Udξ = {Bdξ(ς, ε) : ς ∈ A, ε � 0A},
forms a basis of some topology τd on A.

Lemma 3.1. Let (A, τdξ) be a topological space and f : A → A. If f is
continuous then every sequence {ςn} ⊆ A such that ςn → ς implies fςn → fς.
The converse holds if A is metrizable.

Definition 3.2. A sequence {ςn} in (A,A, dξ) is called convergent (with respect
to A), if for given ε � 0A, there exists N ∈ N such that dξ(ςn, ς) ≺ ε, for all
n > N . We denote it by

lim
n→∞

dξ(ςn, ς) = 0A.

Definition 3.3. A sequence {ςn} in (A,A, dξ) is called Cauchy sequence (with
respect to A), if for given ε � 0A, there exists N ∈ N such that dξ(ςn, ςm) ≺ ε,
for all n,m > N . We denote it by

lim
n→∞

dξ(ςn, ςm) = 0A.

Definition 3.4. The triplet (A,A, dξ) is called complete C∗-avEbMS if every
Cauchy in A is convergent to a point ς in A.

Observe that, in general a b-metric is not a continuous functional and so
is a C∗-avEbMS.

Example 3.2. [14] Let X = N ∪∞ and a mapping d : X ×X → R+ defined
by:

d(ς, σ) =


0A if ς = σ

|1
ς
− 1

σ
| if ς, σ are even or ςσ =∞

5 if ς, σ are odd or ς 6= σ

5 otherwise.

Then (X, d) is a b-metric space with s = 3 but it is not continuous.
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Lemma 3.2. Let (A,A, dξ) be a C∗-avEbMS. If dξ is continuous then every
convergent sequence has a unique limit.

Our main result runs as follows:

Theorem 3.1. Let (A,A, dξ) be complete C∗-avEbMS and f : X → X satisfies
that the following:

dξ(fς, fσ) 4 c∗dξ(ς, σ)c, ∀ ς, σ ∈ A. (1)

where, c ∈ A with ‖c‖ < 1 and lim
n,m→∞

ξ(ςn, ςm)‖c‖ ≺ I. Then f has a unique

fixed point ς ∈ A.

Proof. Choose ς0 ∈ A and construct an iterative sequence {ςn} by:

ς1 = fς0, ς2 = fς1 = f 2ς0, ς3 = fς2 = f 3ς0, ..., ςn = fςn−1 = fnς0, . . .

Let, we denote ∆ = dξ(ς0, ς1). Now, we assert that lim
n,m→∞

dξ(ςn, ςn+1) = 0A.

On setting ς = ςn and σ = ςn+1 in equation (1), we get

dξ(ςn, ςn+1) = dξ(fςn−1, fςn) = c∗dξ(ςn−1, ςn)c

4 (c∗)2dξ(ςn−2, ςn−1)c
2

4 . . .

4 (c∗)ndξ(ς0, ς1)c
n

4 (c∗)n∆cn.
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Now, we assert that {ςn} is Cauchy sequence. For any n,m ∈ N such that
n < m, we have

dξ(ςn, ςm) 4 ξ(ςn, ςm)
[
dξ(ςn, ςn+1) + dξ(ςn+1, ςm)

]
4 ξ(ςn, ςm)dξ(ςn, ςn+1) + ξ(ςn, ςm)ξ(ςn+1, ςm)dξ(ςn+1, ςn+2) + ...+

ξ(ςn, ςm)ξ(ςn+1, ςm) . . . ξ(ςm−2, ςm)ξ(ςm−1, ςm)dξ(ςm−1, ςm)

4 ξ(ςn, ςm)(c∗)n∆cn + ξ(ςn, ςm)ξ(ςn+1, ςm)(c∗)n+1∆cn+1 + ...+

ξ(ςn, ςm)ξ(ςn+1, ςm) . . . ξ(ςm−2, ςm)ξ(ςm−1, ςm)(c∗)m−1∆cm−1

= ξ(ςn, ςm)(c∗)n∆
1
2 ∆

1
2 cn + ξ(ςn, ςm)ξ(ςn+1, ςm)(c∗)n+1∆

1
2 ∆

1
2 cn+1 + ...+

ξ(ςn, ςm)ξ(ςn+1, ςm) . . . ξ(ςm−2, ςm)ξ(ςm−1, ςm)(c∗)m−1∆
1
2 ∆

1
2 cm−1

= ξ(ςn, ςm)(∆
1
2 cn)∗(∆

1
2 cn) + ξ(ςn, ςm)ξ(ςn+1, ςm)(∆

1
2 cn+1)∗(∆

1
2 cn+1) + ...+

ξ(ςn, ςm)ξ(ςn+1, ςm) . . . ξ(ςm−2, ςm)ξ(ςm−1, ςm)(∆
1
2 cm−1)∗(∆

1
2 cm−1)

= ξ(ςn, ςm)|∆
1
2 cn|2 + ξ(ςn, ςm)ξ(ςn+1, ςm)|∆

1
2 cn+1|2 + ...+

ξ(ςn, ςm)ξ(ςn+1, ςm) . . . ξ(ςm−2, ςm)ξ(ςm−1, ςm)|∆
1
2 cm−1)|2

=
m−1∑
i=0

|∆
1
2 cn+i|2

i∏
j=0

ξ(ςn+j, ςm) 4

∥∥∥∥m−1∑
i=0

|∆
1
2 cn+i|2

∥∥∥∥ i∏
j=0

ξ(ςn+j, ςm)

4
m−1∑
i=0

‖∆‖‖cn+i‖2
i∏

j=0

ξ(ςn+j, ςm) 4 ‖∆‖
m−1∑
i=0

‖cn+i‖2
i∏

j=0

ξ(ςn+j, ςm),

Observe that, the above inequality is dominated by

m−1∑
i=0

‖cn+i‖2
i∏

j=0

ξ(ςn+j, ςm) 4
m−1∑
i=0

‖ci‖2
i∏

j=0

ξ(ςj, ςm).

Now, by using the ratio test, we have

lim
i→∞

‖ci+1‖2
∏i+1

j=0 ξ(ςj, ςm)

‖ci‖2
∏i

j=0 ξ(ςj, ςm)
4 lim

i→∞
ξ(ςi, ςm)‖c‖2 ≺ I.

Next, we say that (for all m ≥ 1)

Sn =
n∑
i=0

‖ci‖2
i∏

j=0

ξ(ςj, ςm) and S =
∞∑
i=0

‖ci‖2
i∏

j=0

ξ(ςj, ςm)

Consequently, we have

dξ(ςn, ςn+p) 4 ‖∆‖‖c2n‖[Sm−1 − Sn].

On making limit n → ∞, we obtain that {ςn} is a Cauchy sequence in A.
Since, A is complete then there exists a ∈ A such that

lim
n→∞

dξ(ςn, ς) = 0A.
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Now, we will show that a is a fixed point of f . For any n ∈ N, we have

dξ(fς, ς) 4 ξ(fς, ς)[dξ(fς, ςn+1) + dξ(ςn+1, ς)]

= ξ(fς, ς)[dξ(fς, fςn) + dξ(ςn+1, ς)]

4 ξ(fς, ς)[c∗dξ(ς, ςn)c+ dξ(ςn+1, ς)]

→ 0A as n→∞.

Therefore, ς is a fixed point of f . For the uniqueness part, suppose that
ς, σ ∈ A such that fa = a and fσ = σ. Then by employing 3.1, we have

dξ(ς, σ) = dξ(fς, fσ) 4 c∗dξ(ς, σ)c,

so that

‖dξ(ς, σ)‖ = ‖dξ(fς, fσ)‖
≤ ‖c∗dξ(ς, σ)c‖
≤ ‖c∗‖‖dξ(ς, σ)‖‖c‖
= ‖c‖2‖dξ(ς, σ)‖
< ‖dξ(ς, σ)‖

deals a contradiction. Hence, ς = σ, that is, f has a unique fixed point. This
completes the proof. �

Now, we furnish the following example which illustrates Theorem 3.1.

Example 3.3. In Example 3.1, we define a map f : A→ A by:

fς =
ς

5
, for all ς ∈ A.

Observe that, dξ(fς, fσ) 4 c∗dξ(ς, σ)c, (for all ς, σ ∈ A) satisfies with

ρ =

[√
5
5

0

0
√
5
5

]
∈ A and ‖ρ‖ =

√
5

5
=

1√
5
< 1.

Thus, all the hypothesis of Theorem 3.1 are satisfied and ς = 0 is unique fixed
point of f .

Now, we obtain following corollaries:

Corollary 3.1. Theorem 2.1 of Z. Ma et al. [20] is immediate from Theorem
3.1.

Proof. By taking ξ(ς, σ) = 1, for all ς, σ ∈ A, we obtain required result, �

Corollary 3.2. Theorem 2.1 of Z. Ma et al. [21] is immediate from Theorem
3.1.

Proof. By taking ξ(ς, σ) = s (constant), for all ς, σ ∈ A, we get required. �
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4. Application

As an application of Theorem 3.1, we find the existence and uniqueness
results for a type of following integral equation:

ς(µ) =

∫
E

G(µ, ν, ς(ν))dν + h(µ), µ, ν ∈ E, (2)

where E is a measurable set, G : E × E × R→ R and h ∈ L∞(E).
Let A = L∞(E), H = L2(E) and L(H) = A. Define dξ : A× A→ A by

(for all h, k, I ∈ A, p ≥ 1 and ‖ρ‖ = k < 1):

dξ(h, k) = π|h−k|p

where πu : H → H is the multiplicative operator defined by:

πu(ψ) = u.ψ .

Now, define a mapping ξ : A× A→ A by (for all ς, σ ∈ χ):

ξ(ς, σ) =

{
π|h−k|p−1 if ς 6= σ

I2×2 if ς = σ

where I2×2 is an square identity matrix in A and k > 0 is a constant.
Note that, (A,A, dξ) is a complete C∗-avEbMS.

Now, we state and prove our result as follows:

Theorem 4.1. Suppose that (for all ς, σ ∈ A)
(1) there exist a continuous function ψ : E ×E → R and k ∈ (0, 1) such that

| G(µ, ν, ς(ν))−G(µ, ν, σ(ν)) |≤ k | ψ(µ, ν)
(
ς(ν)− σ(ν)

)
|,

for all µ, ν ∈ E.
(2) supµ∈E

∫
E
| ψ(µ, ν) | dν ≤ 1.

Then the integral equation (2) has a unique solution in A.

Proof. Define f : A→ A by:

fς(µ) =

∫
E

G(µ, ν, ς(ν))dν + h(µ), ∀ µ, ν ∈ E.
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Set ρ = kI, then ρ ∈ A. For any u ∈ H and p ≥ 1, we have

‖dξ(fς, fσ)‖ = sup
‖u‖=1

(π|fς−fσ|p+Iu, u)

= sup
‖u‖=1

∫
E

[∣∣∣∣ ∫
E

G(µ, ν, ς(ν))−G(µ, ν, σ(ν))dν

∣∣∣∣p]u(µ) ¯u(µ)dµ

≤ sup
‖u‖=1

∫
E

[ ∫
E

∣∣G(µ, ν, ς(ν))−G(µ, ν, σ(ν))
∣∣dν]p|u(µ)|2dµ

≤ sup
‖u‖=1

∫
E

[ ∫
E

∣∣kψ(µ, ν)(ς(ν)− σ(ν))
∣∣dν]p|u(µ)|2dµ

≤ kp sup
‖u‖=1

∫
E

[ ∫
E

|ψ(µ, ν)|dν
]p
|u(µ)|2dµ‖ς − σ‖p∞

≤ k sup
µ∈E

∫
E

|ψ(µ, ν)|dν sup
‖u‖=1

∫
E

|u(µ)|2dµ‖ς − σ‖p∞

≤ k‖ς − σ‖p∞
= ‖c‖ ‖dξ(ς, σ)‖.

Since, ‖c‖ < 1, so it is verified that the mapping f meats all the requirements
of Theorem 3.1. Hence, f has a unique fixed point, means that the Fredholm
integral Equation (2) has a unique solution. �

5. Conclusions

As the C∗-avMS as well as C∗-avbMS are relatively new addition to the
existing literature, therefore, we endeavor to further enrich this notion by in-
troducing the idea of C∗-avEbMS wherein we replace the constant s ≥ 1 by a
function ξ(ς, σ). Our main result (i.e., Theorem 3.1) is an analogue of Banach
contraction principle in C∗-avEbMS. An example is also adopted to highlight
the realized improvements in our newly proved result. Finally, we apply The-
orem 3.1 to examine the existence and uniqueness of solution for a system of
Fredholm integral equation.
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