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SOME FURTHER RESULTS ON THE ANNIHILATOR IDEAL GRAPH OF A
COMMUTATIVE RING

R. Nikandish1, M.J. Nikmehr2, M. Bakhtyiar3

Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by
ΓAnn(R), is a graph whose vertices are all non-trivial ideals of R and two distinct vertices I and J are
adjacent if and only if I∩Ann(J) ̸= (0) or J∩Ann(I) ̸= (0). In this paper, we show that if R is reduced,
then ΓAnn(R) is complete multipartite. Also, some results on the annihilator ideal graphs with finite
clique numbers are given. Moreover, some properties such as connectivity, diameter, girth and etc. of
a subgraph induced by ideals with non-zero annihilators are studied. Moreover, we characterize all
rings for which this subgraph and annihilating-ideal graphs are identical.
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1. Introduction

One of the most important and active research area in algebraic combinatorics is applying
graph theory and combinatorics in abstract algebra. There are a lot of papers which apply combi-
natorial methods to obtain algebraic results in ring theory (see for instance [1], [3], [5] and [10]).
Moreover, for the most recent study in this field see [6], [13] and [17].

Throughout this paper, all rings are assumed to be non-domain commutative rings with iden-
tity. The sets of all zero-divisors, nilpotent elements, non-trivial ideals, non-zero ideals with non-
zero annihilator and minimal prime ideals of R are denoted by Z(R), Nil(R), I(R), I′(R) and Min(R),
respectively. A non-zero ideal I of R is called essential, denoted by I ≤e R, if I has a non-zero inter-
section with any non-zero ideal of R. The ring R is said to be reduced if it has no non-zero nilpotent
element. A proper ideal I of R is said to be an annihilator ideal, if I = Ann(J), for some J ∈ I(R).
The socle of an R-module M, denoted by soc(M), is the sum of all simple submodules of M. If there
are no simple submodules, this sum is defined to be zero. It is well-known soc(M) is the intersection
of all essential submodules (see [16, 21.1]). We write depth(R) = 0 if and only if every non-unit
element of a ring R is zero-divisor. We say x is a regular element of R if x is non-unit and non
zero-divisor. For any undefined notation or terminology in ring theory, we refer the reader to [4].

Let G = (V,E) be a graph, where V = V (G) is the set of vertices and E = E(G) is the set
of edges. By G, diam(G) and girth(G), we mean the complement, the diameter and the girth of G,
respectively. The graph H = (V0,E0) is a subgraph of G if V0 ⊆ V and E0 ⊆ E. Moreover, H is
called an induced subgraph by V0, denoted by G[V0], if V0 ⊆ V and E0 = {{u,v} ∈ E |u,v ∈ V0}.
For two vertices u and v in G, the notation u− v means that u and v are adjacent. A complete
bipartite graph with part sizes m and n is denoted by Km,n. If the size of one of the parts is 1, then
the graph is said to be a star graph. A clique of G is a complete subgraph of G and the number of
vertices in a largest clique of G, denoted by ω(G), is called the clique number of G. The chromatic
number of G, denoted by χ(G), is the minimal number of colors which can be assigned to the
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vertices of G in such a way that every two adjacent vertices have different colors. A graph G is
said to be weakly perfect if ω(G) = χ(G). Let G1 and G2 be two disjoint graphs. The join of
G1 and G2, denoted by G1 ∨G2, is a graph with the vertex set V (G1 ∨G2) = V (G1)∪V (G2) and
edge set E(G1 ∨G2) = E(G1)∪E(G2)∪{uv |u ∈V (G1),v ∈V (G2)}. For any undefined notation or
terminology in graph theory, we refer the reader to [15].

Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by
ΓAnn(R), is a graph whose vertices are all non-trivial ideals of R and two distinct vertices I and
J are adjacent if and only if I ∩Ann(J) ̸= (0) or J ∩Ann(I) ̸= (0). The annihilator ideal graph was
first introduced and study in [2]. Many of basic properties of annihilator ideal graph may be found
in [2]. In this paper, we continue this study. Indeed, we show that annihilator ideal graph associated
with a ring contains the annihilating-ideal graph as a subgraph. The annihilating-ideal graph of R,
denoted by AG(R), is a graph with the vertex set I′(R), and two distinct vertices I and J are adjacent
if and only if IJ = (0). The story of annihilating-ideal graphs goes back to [8, 9]. Because of the
interesting properties of annihilating-ideal graphs, many papers have been devoted to study different
parameters of this graph. For instance, the coloring of annihilating-ideal graphs in [1], the domi-
nation number of annihilating-ideal graphs in [12] and the complement graph of annihilating-ideal
graphs in [14] were studied by different authors. Also, in [18], annihilating-ideal graphs whose cores
consist of only triangles were characterized. In Section 2, we complete the study of basic properties
of ΓAnn(R) which was started in [2]. It is shown that if R is reduced, then ΓAnn(R) is a weakly perfect
graph. Also, some results on the annihilator ideal graph with finite clique number are given. Then,
in Section 3, we focus on a subgraph of annihilator ideal graph induced by ideals with non-zero
annihilator. Some parameters of this subgraph such as diameter, girth and condition under which
this subgraph is star or complete are studied. Finally, in Section 4, we apply our results in Sections
2,3 to investigate the affinity between annihilator ideal graphs and annihilating-ideal graphs.

2. Annihilator Ideal Graphs with Finite Clique Numbers

Our main aim in this section is to study the annihilator ideal graphs with finite clique numbers.
But first, it is shown that if R is a reduced ring, then ΓAnn(R) is weakly perfect (Indeed, we show
that ΓAnn(R) is a complete multipartite graph).

The following lemma will be used frequently in this paper.

Lemma 2.1. Let R be a ring and I,J ∈ I(R). Then the following statements hold.
(1) If I − J is not an edge of ΓAnn(R), then Ann(I) = Ann(J). Moreover, if R is a reduced

ring, then the converse is also true.
(2) If I ∩Ann(I) ̸= (0), then I is adjacent to every other vertex.
(3) If Ann(I) = (0) and Ann(J) ̸= (0), then I − J is an edge of ΓAnn(R).

Proof. (1) Since I − J is not an edge of ΓAnn(R), I ∩Ann(J) = (0) and J ∩Ann(I) = (0). Thus
Ann(I) ⊆ Ann(J) and Ann(J) ⊆ Ann(I). Let R be a reduced ring and Ann(I) = Ann(J). As K ∩
Ann(K) = (0), for every K ∈ I(R), we can easily see that I ∩Ann(J) = (0) and J ∩Ann(I) = (0).
Thus I − J is not an edge of ΓAnn(R).

(2) Assume to the contrary, I is not adjacent to J, for some J ∈ I(R). By part (1), Ann(I) =
Ann(J) and so I ∩Ann(J) ̸= (0), a contradiction. Thus I is adjacent to every other vertex.

(3) Since Ann(I) = (0), IAnn(J) ̸= (0) and thus I ∩Ann(J) ̸= (0). �

Let R be a reduced ring. Using Lemma 2.1, we show that ΓAnn(R) is a complete multipartite
graph.

Theorem 2.1. Let R be a reduced ring. Then ω(ΓAnn(R)) = χ(ΓAnn(R)) ∈ {k,k+1}, where k is the
number of annihilator ideals of R.

Proof. Define the relation ∼ on V (ΓAnn(R)) as follows: For ever I,J ∈ I(R) we write I ∼ J if and
only if Ann(I) = Ann(J). It is easily seen that ∼ is an equivalence relation on V (ΓAnn(R)). By
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[I], we mean the equivalence class of I. Therefore, the number of equivalence classes is equal to
k or k+ 1 (this number is k+ 1 if Ann(I) = (0) for some I ∈ I(R)). Now, suppose that [I] and [J]
are two distinct arbitrary equivalence classes. By Lemma 2.1, there is no adjacency between two
vertices contained in [I], but every vertex contained in [I] is adjacent to every vertex contained in [J].
Indeed, ΓAnn(R) is either a complete k-partite graph or a complete (k+1)-partite graph, where k is
the number of annihilator ideals of R. Thus ω(ΓAnn(R)) = χ(ΓAnn(R)) ∈ {k,k+1}. �

It is worthy to mention that the above theorem immediately generalizes [2, Theorem 14] to
arbitrary (not necessary direct sum of finitely many integral domains) reduced rings.

In two next results, we study rings whose annihilator ideal graphs have finite clique numbers.

Theorem 2.2. Let R be a non-reduced ring, ω(ΓAnn(R))< ∞ and I ≤e R, for some ideal I ⊂ Z(R).
Then the following statements are equivalent.

(1) R is a Noetherian ring.
(2) R is an Artinian ring.
(3) ΓAnn(R) is a complete graph.

Proof. (2)⇒ (3) is obtained by [2, Theorem 10] and (3)⇒ (1) is clear since ω(ΓAnn(R))< ∞.
(1)⇒ (2) Let A = {I ∈ I(R) | I ⊆ Nil(R)}. By [2, Lemma 4], the induced subgraph by A is

complete and so |A|< ∞. This implies that soc(R) ̸= (0). Let B = {I ⊆ Z(R) | I is essential in R}. It
is not hard to check that the induced subgraph by B is also complete and so |B|< ∞. Put J = ∩I∈B I.
By [16, 21.2], soc(R)⊆ J and soc(R) =soc(J). If the number of essential ideals in J is infinite, then
ω(ΓAnn(R)) = ∞, a contradiction. This implies that soc(J) ≤e J. Now, by [16, 17.3], soc(R) ≤e R.
Finally, it is well known that a commutative ring R is Noetherian and soc(R)≤e R if and only if R is
Artinian, as desired. �

The following example shows that in Theorem 2.2, the condition “I ⊂ Z(R) is an essential
ideal for some I ∈ I(R)” is needed and so can not be omitted.

Example 2.1. Let D = Z2[X ,Y,Z], I = (X2,Y 2,XY,XZ,Y Z)D be an ideal of D, and let R = D/I.
Also, let x = X + I, y = Y + I and z = Z + I be elements of R. Then Nil(R) = R(x,y) and Z(R) =
R(x,y,z). It is not hard to check that the set {Rx,Ry,Nil(R),Z(R)} is a clique and ΓAnn(R) = K4∨K∞
and so ω(ΓAnn(R)) = 5. But since there is no essential ideal in Z(R) such that I ̸= Z(R), R is not an
Artinian ring.

Theorem 2.3. Let R be a ring and suppose that ω(ΓAnn(R))< ∞. Then the following statements are
equivalent.

(1) Z(R) = Nil(R).
(2) R is an Artinian local ring.

Proof. (2)⇒ (1) is clear.
(1)⇒ (2) Let I ∈ I(R) and I ⊆ Nil(R). We claim that I is a nilpotent ideal of R. It suffices

to show that I is finitely generated. Suppose that I is generated by {xi}i∈Λ, where |Λ| = ∞. Since
for every i ∈ Λ we have Rxi ∩Ann(xi) ̸= (0), it follows from Lemma 2.1 that {Rxi}i∈Λ is an infinite
clique in ΓAnn(R), a contradiction. Hence I is finitely generated and so the claim is proved. Thus
I ∩Ann(I) ̸= (0). Let A = {I ∈ I(R) | I ⊆ Nil(R)}. Then part (1) of Lemma 2.1 implies that the
induced subgraph by A is complete and so |A| < ∞. This, together with Z(R) = Nil(R), imply that
Rx and Ann(x) are Artinian R-modules, where x ∈ Z(R)∗. Since Rx ∼= R/Ann(x), R is an Artinian
ring. Finally, Z(R) = Nil(R) shows that R is a local ring. �

We close this section with the following result which shows that [2, Theorem 19] does not
occur.

Theorem 2.4. Let R be a ring and depth(R) ̸= 0. Then ω(ΓAnn(R)) ̸= 2.
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Proof. Consider two following cases:
Case 1. R is a reduced ring. Suppose to the contrary, ω(ΓAnn(R)) = 2. We show that

Z(R) = (0). Let x ∈ Z(R)∗. So xy = 0, fore some y ∈ Z(R)∗. Since R is a reduced ring, Rx ̸= Ry
and thus Rx − Ry is an edge of ΓAnn(R). Now, let z be a regular element of R. By part (3) of
Lemma 2.1, Rz−Rx−Ry−Rz is a triangle in ΓAnn(R), which is impossible. Thus Z(R) = (0), i.e.,
ω(ΓAnn(R))< 2, a contradiction.

Case 2. R is a non-reduced ring. We claim that Z(R) =Nil(R). To see this, let x∈Nil(R)∗ and
y∈ Z(R)\Nil(R). Since x∈Nil(R)∗, we conclude that Rx∩Ann(x) ̸= (0). By part (2) of Lemma 2.1,
Rx−Ry is an edge of ΓAnn(R). A similar argument to proof of Case 1 leads to a contradiction. Hence
Z(R) = Nil(R) and so the claim is proved. Now, by Theorem 2.3, depth(R) = 0, a contradiction and
so the proof is complete. �

3. A Main Subgraph of the Annihilator Graph of a Ring

The classic zero-divisor graph is a subgraph of Beck’s graph induced by Z(R) \ {0}, see
[3, 7]. On the other hand, obviously, the set of ideals with non-zero annihilators, has a key role in
the structures of both rings and annihilator ideal graphs. Thus, in this section, we study a subgraph
of the annihilator ideal graph induced by ideals with non-zero annihilators. For instance, it is shown
that ΓAnn(R)[I

′
(R)] is connected with diameter at most two and girth at most four (if it contains a

cycle). Also, all rings R with star ΓAnn(R)[I
′
(R)] are classified.

Recall that the annihilating-ideal graph of a ring R, denoted by AG(R), is a graph with the
vertex set I′(R), and two distinct vertices I and J are adjacent if and only if IJ = (0).

Theorem 3.1. Let R be a ring. Then
ΓAnn(R)[I

′
(R)] is connected and diam(ΓAnn(R)[I

′
(R)])≤ 2. Moreover, if

ΓAnn(R)[I
′
(R)] contains a cycle, then girth(ΓAnn(R)[I

′
(R)])≤ 4.

Proof. First we show that AG(R) is a subgraph of ΓAnn(R)[I
′
(R)]. If I − J is an edge of AG(R),

then IJ = (0) and so I ∩Ann(J) ̸= (0). This implies that I − J is an edge of ΓAnn(R)[I
′
(R)]. Hence

ΓAnn(R)[I
′
(R)] is connected and so by [8, Theorem 2.1], girth(ΓAnn(R)[I

′
(R)])≤ 4.

Now, we show that diam(ΓAnn(R)[I
′
(R)]) ≤ 2. If Nil(R) ̸= (0), then by part (2) of Lemma

2.1, diam(ΓAnn(R)[I
′
(R)]) ≤ 2. So we may assume that Nil(R) = (0). If d(I,J) ̸= 1, for some

distinct vertices I,J, then by part (1) of Lemma 2.1, Ann(I) = Ann(J). Since R is a reduced ring,
I ∩Ann(I) = (0). Therefore, both I and J are adjacent to Ann(I). This completes the proof. �

The next theorem shows that girth(ΓAnn(R)[I
′
(R)]) = 4 may occur.

Theorem 3.2. Suppose that ΓAnn(R)[I
′
(R)] contains a cycle. Then

girth(ΓAnn(R)[I
′
(R)]) = 4 if and only if R is reduced with |Min(R)|= 2.

Proof. First suppose that girth(ΓAnn(R)[I
′
(R)]) = 4. If Nil(R) ̸= (0), then by part (2) of Lemma

2.1, girth(ΓAnn(R)[I
′
(R)]) = 3, a contradiction. Thus Nil(R) = (0). Now, let I ∈ I′(R). We show

that Ann(I) is a prime ideal of R. To see this, assume that ab ∈ Ann(I) such that a ̸∈ Ann(I) and
b ̸∈ Ann(I). This implies that aI ̸= 0 and bI ̸= 0 but aIbI = 0. So for every 0 ̸= c ∈ Ann(I), it
is easy to see that Rc− aI − bI −Rc is a triangle, a contradiction (note that since Nil(R) = (0),
aI ̸= bI). Hence Ann(I) is a prime ideal. Since R is reduced, [11, Corollary 2.2] implies that
Ann(I) is a minimal prime ideal. By using a similar argument, Ann(y) is a minimal prime ideal, for
every 0 ̸= y ∈ Ann(I). Now, we prove that Min(R) = {Ann(I),Ann(y)}. It is enough to show that
Ann(I)∩Ann(y) = (0). Assume to the contrary, 0 ̸= a ∈ Ann(I)∩Ann(y). Thus Ra− I −Ry−Ra
is a triangle, a contradiction. Hence Min(R) = {Ann(I),Ann(y)}.

Conversely, suppose that R is reduced and |Min(R)| = 2. Let p1, p2 be the minimal prime
ideals of R. Since R is reduced, we have Z(R) = p1 ∪ p2 and p1 ∩ p2 = (0), by [11, Corollary 2.4].
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Let A,B be the sets of all non-zero ideals contained in p1,p2, respectively. It is not hard to see that
ΓAnn(R)[I

′
(R)] = K|A|,|B|. As ΓAnn(R)[I

′
(R)] contains a cycle, girth(ΓAnn(R)[I

′
(R)]) = 4. �

In order to characterize all rings R whose ΓAnn(R)[I
′
(R)] is star, the following lemma is

needed.

Lemma 3.1. Let R be a non-reduced ring. Suppose that ΓAnn(R)[I
′
(R)] is a star graph. Then the

following statements hold.
(1) R is indecomposable.
(2) |I′(R)|= 2.

Proof. (1) Let R ∼= R1×R2, where Ri is a ring, for 1 ≤ i ≤ 2. Then for every a ∈Nil(R)∗, the vertices
of the set {Ra,R1 × (0),(0)×R2} forms a triangle, a contradiction. So R is indecomposable.

(2) We claim that Z(R) = Nil(R). Let a ∈ Nil(R)∗ and x ∈ Z(R) \Nil(R). It is shown that
ax = 0. Assume to the contrary, ax ̸= 0. Since Ra∩Ann(a) ̸= (0), by part (2) of Lemma 2.1,
Ra is adjacent to every other vertex. Again, since ax ̸= 0 and x ∈ Z(R) \Nil(R), RxRy = (0) and
Rx ̸= Ry, for some y ∈ Ann(x). This implies that Ra−Rx−Ry−Ra is a triangle, a contradiction. If
a ̸= b ∈ Nil(R) such that Ra ̸= Rb, then Ra−Rb−Rx−Rb is a triangle, a contradiction. Thus Nil(R)
is a minimal ideal of R. Therefore, Nil(R) = Ra and hence either Ra2 = 0 or Ra2 = Ra. Since R is
indecomposable, Ra2 = 0. This means that a ∈ Ann(Z(R)) and thus Z(R) ∈V (ΓAnn(R)[I

′
(R)]). But

this implies Z(R) is adjacent to every other vertex, a contradiction. Hence Z(R) = Nil(R) and so the
claim is proved. Now, by Theorem 2.3, R is an Artinian ring and thus by Theorem 2.2, ΓAnn(R)[I

′
(R)]

is a complete graph. Since ΓAnn(R)[I
′
(R)] is a star graph, we deduce that |I′(R)|= 2. �

Theorem 3.3. Let R be a ring. Then ΓAnn(R)[I
′
(R)] is a star graph if and only if one of the following

statements holds.
(1) R ∼= F ×D, where F is a field and D is an integral domain.
(2) R is a local ring with exactly two non-trivial ideals.

Proof. First suppose that ΓAnn(R)[I
′
(R)] is a star graph. We consider the following cases.

Case 1. R is a reduced ring. Suppose that the vertex I is adjacent to every other vertex. If
I ̸= I2, then I−I2 must be an edge of ΓAnn(R)[I

′
(R)]. But since R is a reduced ring, Ann(I)=Ann(I2)

and thus by part (1) of Lemma 2.1, I is not adjacent to I2, a contradiction. Thus I = I2. Now, let
J ⊆ I. If J ̸= I, then since JAnn(I) = (0), we deduce that J is adjacent to Ann(I), a contradiction.
So I is a minimal ideal of R and thus by [16, 2.3 and 2.7 ], R ∼= Ra×R(1−a), for an element a ∈ R.
We may assume that R ∼= R1 ×R2 with R1 × (0) adjacent to every other vertex. If R1 has a non-
trivial ideal, say I. Then I × (0) is adjacent to (0)×R2, a contradiction. So R1 is a field. Similarly,
Z(R2) = (0). Therefore, R ∼= F ×D, where F is a field and D is an integral domain.

Case 2. R is a non-reduced ring. By Lemma 3.1, it is easily seen that R is a local ring with
exactly two non-trivial ideals.

The converse is clear. �

To prove Theorem 3.4, we state the following lemma.

Lemma 3.2. Suppose that R = R1 ×R2, where R1 and R2 are two rings. Then ΓAnn(R)[I
′
(R)] is

complete if and only if ΓAnn(Ri)[I
′
(Ri)] is complete, for i = 1,2.

Proof. Suppose that ΓAnn(R)[I
′
(R)] is a complete graph and I,J are to distinct vertices of ΓAnn(R2)[I

′
(R2)].

With no loss of generality, one may suppose that (R1 × I)∩Ann(R1 × J) ̸= 0. Thus I ∩Ann(J) ̸= 0
and so I and J are adjacent together. Hence ΓAnn(R2)[I

′
(R2)] is complete. Similarly, ΓAnn(R1)[I

′
(R1)]

is complete. To prove the converse, let I1 × I2,J1 × J2 ∈ I′(R). Then without loss of generality, we
may assume that Ann(I1) ̸= (0) in R1. If Ann(J1) ̸= (0) in R1, then since ΓAnn(R1)[I

′
(R1)] is com-

plete, we conclude that I1×I2−J1×J2 is an edge of ΓAnn(R)[I
′
(R)]. If Ann(J1)= (0) in R1, then J1 is
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an essential ideal of R1. Thus J1∩Ann(I1) ̸= (0) and so I1× I2−J1×J2 is an edge of ΓAnn(R)[I
′
(R)],

as desired. �

Let R be a ring and I,J ∈ I′(R). We say that I contains a J-regular element say, x, if x /∈Ann(J)
and RxJ ̸= J.

We now state our last result in this section.

Theorem 3.4. Let R be a Noetherian ring. Then ΓAnn(R)[I
′
(R)] is complete if and only if either

there exists x ∈ I∗ such that x is not a J-regular element or there exists y ∈ J∗ such that y is not an
I-regular element, for every pair of distinct vertices I,J.

Proof. If ΓAnn(R)[I
′
(R)] is complete, then it directly follows from the definition of annihilator ideal

graph that for every pair of distinct vertices I,J ∈ I′(R) either there exists an element x ∈ I∗ such that
x is not J-regular or there exists y ∈ J∗ such that y is not an I-regular element.

To prove the other side, let I,J be two distinct vertices of ΓAnn(R)[I
′
(R)]. By Lemma 3.2,

we may assume that R is indecomposable. Without loss of generality, assume that x ∈ I∗ is not an
J-regular element. If x ∈ Ann(J), then there is nothing to prove. If x /∈ Ann(J), then RxJ = J, and so,
by [4, Corollary 2.5], there exists an element a ∈ Rx such that (1− a)J = 0. Thus 1− a ∈ Ann(J),
and hence Rx+Ann(J) = I +Ann(J) = R. Since R is indecomposable, I ∩Ann(J) ̸= (0). Hence
I − J is an edge of ΓAnn(R)[I

′
(R)]. This completes the proof. �

4. When ΓAnn(R)[I
′
(R)] and AG(R) Are Identical?

As we have seen in the previous section, ΓAnn(R)[I
′
(R)] and AG(R) are close to each other.

So, it is interesting to characterize rings R whose ΓAnn(R)[I
′
(R)] and AG(R) are identical. This

characterization also make some of properties of ΓAnn(R)[I
′
(R)] (and AG(R)) clear. First we study

the case when R is reduced.

Theorem 4.1. Let R be a reduced ring. Then the following statements are equivalent.
(1) ΓAnn(R)[I

′
(R)] = AG(R).

(2) |Min(R)|= 2.
(3) ΓAnn(R)[I

′
(R)] is a complete bipartite graph.

(4) AG(R) is a complete bipartite graph.

Proof. (1)⇒ (2) Suppose to the contrary, p1, p2 and p3 are three distinct minimal prime ideals. Let
a ∈ p1 \p2 ∪p3. Thus p2 ∪p3 * Ann(a) (as Ann(a)⊆ p2 ∩p3). So one may assume that ab ̸= 0, for
some b ∈ p2 ∪p3 \p1. With no loss of generality, assume that b ∈ p2 \p1. Obviously, Ann(b)⊆ p1.
Also, it follows from [11, Corollary 2.2], there exists an element x ∈ Ann(a) such that x /∈ p1.
Therefore, Ann(a) ̸= Ann(b), and so by part (1) of Lemma 2.1, Ra−Rb is an edge of ΓAnn(R)[I

′
(R)]

that is not an edge of AG(R), a contradiction. Hence |Min(R)|= 2.
(2)⇒ (3) Suppose that |Min(R)|= 2. Let p1, p2 be minimal prime ideals of R. Since R is a

reduced ring, we have Z(R) = p1 ∪ p2 and p1 ∩ p2 = (0). Let A,B be the sets of all non-zero ideals
contained in p1,p2, respectively. It is not hard to check that V (ΓAnn(R)[I

′
(R)]) = A∪B and for every

I ∈ A and J ∈ B, Ann(I) = p2 and Ann(J) = p1. Now, it is easily seen that ΓAnn(R)[I
′
(R)] = K|A|,|B|.

(3) ⇒ (4) Suppose that ΓAnn(R)[I
′
(R)] is a complete bipartite graph with parts V1,V2, i.e.,

ΓAnn(R)[I
′
(R)] = K|V1|,|V2|. If I,J ∈ Vi for i = 1,2, then since ΓAnn(R)[I

′
(R)] is a complete bipartite

graph, IJ ̸= (0). Also, if I ∈ V1 and J ∈ V2, then IJ = (0) (If IJ ̸= (0), then I − J −Ann(I)− I is a
triangle, a contradiction).

(4)⇒ (1) is obtained by [9, Corollary 2.11] and proof of (2)⇒ (3). �

Theorem 4.2. Let R be a reduced ring. Then the following statements are equivalent.
(1) ΓAnn(R) = AG(R)∨K∞.
(2) ΓAnn(R)[I

′
(R)] = AG(R) and depth(R) ̸= 0.
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(3) |Min(R)|= 2 and ΓAnn(R) = ΓAnn(R)[I
′
(R)]∨K∞.

(4) |Min(R)|= 2 and V (AG(R)) = ∞.

Proof. (1)⇒ (2) Suppose that I−J is an edge of ΓAnn(R)[I
′
(R)] that is not an edge of AG(R). This

implies that I − J is an edge of ΓAnn(R) that is not an edge of AG(R)∨K∞, a contradiction. So
ΓAnn(R)[I

′
(R)] = AG(R). If depth(R) = 0, then by Theorem 4.1, |Min(R)| = 2. Let p1, p2 be the

minimal prime ideals of R. Since R is reduced, we have Z(R) = p1 ∪ p2 and p1 ∩ p2 = (0). This,
together with every non-unit element of R is zero-divisor, implies that V (ΓAnn(R)) = V (AG(R)), a
contradiction.

(2) ⇒ (3) By Theorem 4.1, |Min(R)| = 2 and so Ann(I) ̸= (0) for every I ⊂ Z(R). If we
put A = {I ∈ V (ΓAnn(R)) | Ann(I) = (0)}, then ΓAnn(R)[A] is null. Since depth(R) ̸= 0, |A| = ∞.
Part (3) of Lemma 2.1 implies that every vertex of A is adjacent to all of V (ΓAnn(R)[I

′
(R)]). Hence

ΓAnn(R) = ΓAnn(R)[I
′
(R)]∨K∞.

(3)⇒ (4) If V (AG(R))<∞, then by [8, Theorem 1.1], R is an Artinian ring. Since |Min(R)|=
2 and R is reduced, R is isomorphic to the direct product of two fields and so ΓAnn(R) = K1,1, a con-
tradiction.

(4)⇒ (1) Since |Min(R)|= 2, ΓAnn(R)[I
′
(R)] = AG(R). Let

A= {I ∈V (ΓAnn(R)) | Ann(I)= (0)}. If |A|<∞, then depth(R)= 0 and so R is isomorphic to
the direct product of two fields and so AG(R) = K1,1, a contradiction. Part (3) of Lemma 2.1 implies
that every vertex of A is adjacent to all of V (ΓAnn(R)[I

′
(R)]). Hence ΓAnn(R) = ΓAnn(R)[I

′
(R)]∨K∞.

�

Theorem 4.3. Let R be a reduced ring. Then the following statements are equivalent.
(1) ΓAnn(R) = AG(R).
(2) ΓAnn(R) = K2.
(3) AG(R) = K2.
(4) |Min(R)|= 2 and depth(R) = 0.

Proof. (1)⇒ (2) Since ΓAnn(R) =AG(R), ΓAnn(R)[I
′
(R)] =AG(R) and depth(R) = 0. By Theorem

4.1, |Min(R)| = 2. Since R is reduced, R is isomorphic to the direct product of two fields and so
ΓAnn(R) = K1,1. (2)⇒ (3), (3)⇒ (4) and (4)⇒ (1) are clear. �

To prove Theorem 4.4, the following lemma is needed.

Lemma 4.1. [9, Conjecture 1.11] Let R be a reduced ring with more than two minimal prime ideals.
Then girth(AG(R)) = 3.

Proof. Since R is reduced, by [11, Corollary 2.4], Z(R) =∪p∈Min(R)p. Suppose that p1, p2 and p3 are
three distinct minimal prime ideals. If x ∈ p1 \p2 ∪p3, then Ann(x)⊂ p2 ∩p3. Let 0 ̸= y ∈ Ann(x).
Since Rxp2 ̸= (0), let a ∈ Rx∩p2. As R is reduced, Rx∩Ann(x) = (0). This implies that a /∈ Ann(x).
Since a,y ∈ p2, we have a+y = z ∈ p2 and so Ann(z) ̸= (0). By [11, Corollary 2.2], hz = 0 for some
h /∈ p2. Since Ann(z) = Ann(y)∩Ann(a), Ra−Ry−Rh−Ra is a cycle of length 3. �

Theorem 4.4. Let R be a reduced ring. Then the following statements are equivalent.
(1) ΓAnn(R)[I

′
(R)] is a star graph.

(2) girth(ΓAnn(R)[I
′
(R)]) = ∞.

(3) ΓAnn(R)[I
′
(R)] = AG(R) and girth(AG(R)) = ∞.

(4) girth(AG(R)) = ∞.
(5) |Min(R)|= 2 and at least one of minimal prime ideals is a minimal ideal.
(6) Either ΓAnn(R)[I

′
(R)] = K1,1 or ΓAnn(R)[I

′
(R)] = K1,∞.

(7) Either AG(R) = K1,1 or AG(R) = K1,∞.

Proof. (1)⇒ (2) is clear.
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(2) ⇒ (3) Since AG(R) is a subgraph of ΓAnn(R)[I
′
(R)], if |Min(R)| > 2, then by Lemma

4.1, girth(ΓAnn(R)[I
′
(R)]) = 3, a contradiction. Thus |Min(R)|= 2 and so ΓAnn(R)[I

′
(R)] =AG(R),

by Theorem 4.1. Also, this implies that girth(AG(R)) = ∞.
(3)⇒ (4) is clear.
(4)⇒ (5) By Lemma 4.1, |Min(R)|= 2. By Theorem 4.1, AG(R) is complete bipartite and

girth(AG(R)) = ∞. Let p1, p2 be the minimal prime ideals of R. Since R is reduced, we have
Z(R) = p1 ∪ p2 and p1 ∩ p2 = (0). If (0) ̸= I ⊂ p1, (0) ̸= J ⊂ p2, then the cycle I − J − p1 − p2 − I
implies that girth(AG(R)) = 4, a contradiction.

(5) ⇒ (6) Since R is reduced and contains a minimal ideal, we deduce that R is decom-
posable. Now, |Min(R)| = 2 implies that R = F × D, where F is a field and D is an integral
domain and ΓAnn(R)[I

′
(R)] = AG(R). Now, if D is a field, then ΓAnn(R)[I

′
(R)] = K1,1 otherwise

ΓAnn(R)[I
′
(R)] = K1,∞.

(6)⇒ (7) is clear since AG(R) is connected subgraph of ΓAnn(R)[I
′
(R)].

(7)⇒ (1) AG(R) is a star graph, by [8, Corollary 2.3], |Min(R)|= 2 and thus ΓAnn(R)[I
′
(R)]

is a star graph. �

Theorem 4.5. Let R be a reduced ring. Then the following statements are equivalent.
(1) girth(ΓAnn(R)[I

′
(R)]) = 4.

(2) ΓAnn(R)[I
′
(R)] = AG(R) and girth(AG(R)) = 4.

(3) girth(AG(R)) = 4.
(4) |Min(R)|= 2 and both of minimal prime ideals of R are not minimal ideals.
(5) AG(R) = K∞,∞.
(6) ΓAnn(R)[I

′
(R)] = K∞,∞.

Proof. (1)⇒ (2) By Theorems 3.2 and 4.1, ΓAnn(R)[I
′
(R)] = AG(R), and so

girth(AG(R)) = 4.
(2)⇒ (3) is clear.
(3)⇒ (4) is obtained by Lemma 4.1 and Theorem 4.4.
(4)⇒ (5) Let p1, p2 be the minimal prime ideals of R. Since R is reduced, we deduce that

Z(R) = p1 ∪p2 and p1 ∩p2 = (0). If either p1 or p2 contains a minimal ideal, then R = F ×D, where
F is a field and D is an integral domain, a contradiction.

(5)⇒ (6) is obtained by Theorem 4.1.
(6)⇒ (1) is clear. �

In view of Theorems 4.1 and 3.2, we have the following corollary.

Corollary 4.1. Let R be a reduced ring. Then the following statements are equivalent.
(1) ΓAnn(R)[I

′
(R)] = AG(R).

(2) girth(ΓAnn(R)[I
′
(R)]) = girth(AG(R)) = {4,∞}.

In the rest of this section, we focus on non-reduced rings for which AG(R) and ΓAnn(R)[I
′
(R)]

are identical.

Theorem 4.6. Let R be a non-reduced ring. Then the following statements are equivalent.
(1) ΓAnn(R)[I

′
(R)] = AG(R).

(2) AG(R) is a complete graph.
(3) Either AG(R) = K2 or Z(R)2 = (0).

Proof. (1)⇒ (2) First we show that Ann(Z(R)) ̸=(0). Let a∈Nil(R)∗. If ax ̸= 0, for some x∈ Z(R),
then since Ra∩Ann(a) ̸= (0), by part 2 of Lemma 2.1, Ra−Rx is an edge of ΓAnn(R)[I

′
(R)] that is

not an edge of AG(R), a contradiction. This implies that Ann(Z(R)) ̸=(0) and so Z(R)∈V (AG(R)).
Let I,J ∈ I′(R) and suppose that I − J is not an edge of AG(R). Thus IZ(R) ̸= (0) and so I −Z(R)
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is an edge of ΓAnn(R)[I
′
(R)] which is not an edge of AG(R), a contradiction. Therefore, AG(R) is a

complete graph.
(2)⇒ (3) is obtained by [8, Theorem 2.7].
(3)⇒ (1) is clear. �
Suppose that R is a non-reduced ring. The proof of [8, Theorem 2.2] shows that if there exists

a vertex of AG(R) which is adjacent to every other vertex, then Ann(Z(R)) ̸= (0). By using this fact
the following theorem is proved.

Theorem 4.7. Let R be a non-reduced ring and let A be the set of all non-zero ideals contained in
Nil(R). If Z(R) ̸= Nil(R), then the following statements hold.

(1) AG(R) = K|A|∨K∞ if and only if Ann(Z(R)) is a prime ideal of R.
(2) ΓAnn(R)[I

′
(R)] = K|A|+1 ∨K∞ and Nil(R) = Ann(Z(R)) if and only if Ann(Z(R)) is a

prime ideal of R and for every I ̸= Z(R) and I /∈ A, I ∩Ann(Z(R)) = (0).

Proof. (1) Since AG(R) = K|A|∨K∞, every vertex of K|A| is adjacent to all other vertices but there
is no adjacency between two arbitrary vertices of K∞. This implies that Ann(Z(R)) = Nil(R) and
IJ ̸= (0), for every I,J ∈ V (Km). Now we show that Ann(Z(R)) is a prime ideal of R. To see
this, let IJ ⊆ Ann(Z(R)), I * Ann(Z(R)) and J * Ann(Z(R)). We claim that IJ ̸= 0. Suppose to the
contrary, IJ = (0). Since I *Nil(R) and J *Nil(R), I−J is an edge of V (Km), a contradiction unless
I = J. Hence I2 = 0, and so I ⊆ Ann(Z(R)), a contradiction. So IJ ̸= (0) and hence the claim is
proved. Since IJ ⊆ Ann(Z(R)) and I * Ann(Z(R)), KIJ = (0), KI ̸= (0) for some K ∈V (AG(R)).
This implies that J ∈ V (AG(R)), IJJ = IJ2 = (0), J2 ⊆ Ann(Z(R)). Hence J2J = J3 = (0), a
contradiction. So Ann(Z(R)) is a prime ideal of R.

Conversely, since Ann(Z(R)) is a prime ideal of R, Ann(Z(R))=Nil(R). Let B=V (AG(R))\
A. So IJ = (0), for all I,J ∈ A and IJ ̸= (0), for all I,J ∈ B. Now, it is easy to see that AG(R)[A]
and AG(R)[B] are two subgraphs of AG(R) such that AG(R)[A] is complete, AG(R)[B] is null
and AG(R) = AG(R)[A]∨AG(R)[B]. We have only to prove that |B| = ∞. Suppose to the con-
trary, |B| < ∞ and let x ∈ Z(R) \ Nil(R). Since |B| < ∞, Rxn = Rxm for some positive integers
n < m. So Rxn = RxnRxm−n. Now, by [4, Corollary 2.5], there exists an element a ∈ Rxn such that
(1−a)Rxm−n = 0. Thus 1−a ∈ Ann(Rxm−n), and hence Rxn+Ann(Rxm−n) = R. On the other hand,
Ann(Rxm−n) = Nil(R), a contradiction.

(2) Since Ann(Z(R)) ̸= (0), Z(R) ∈V (AG(R)) and so Z(R) is adjacent to every other vertex
in ΓAnn(R)[I

′
(R)]. This, together with ΓAnn(R)[I

′
(R)] =K|A|+1∨K∞ and Nil(R) =Ann(Z(R)), imply

that AG(R) = K|A|∨K∞. By part 1, Ann(Z(R)) is a prime ideal of R. Also, if I ∩Ann(Z(R)) ̸= (0)
for some I /∈ A and I ̸= Z(R), then we can easily deduce that ΓAnn(R)[I

′
(R)] = K|A|+n ∨K∞, where

n ∈ {N,∞}, a contradiction.
The converse, is obtained by part 1. Indeed, since Ann(Z(R)) is a prime ideal of R, AG(R) =

K|A| ∨K∞. Also, since for every I ̸= Z(R) and I /∈ A, I ∩Ann(Z(R)) = (0), for V (AG(R)) \ Z(R)
we have AG(R) = ΓAnn(R)[I

′
(R)]. This, together with Z(R) is adjacent to every other vertex in

ΓAnn(R)[I
′
(R)], implies that ΓAnn(R)[I

′
(R)] = K|A|+1 ∨K∞. �

We finish this paper with the following example which explains Theorem 4.7.

Example 4.1. Let R=Z2[X ,Y ]/(XY,X2) and let x=X+(XY,X2), y=Y +(XY,X2). Then Ann(Z(R))=
Nil(R) = {0,x} is a prime ideal of R, Ann(Z(R)) ̸= Z(R) and Z(R) = (x,y)R. It is clear that
AG(R) = K1 ∨K∞ and ΓAnn(R)[I

′
(R)] = K2 ∨K∞.
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