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LINEAR TWO-DIMENSIONAL INVERSE BOUNDARY VALUE

PROBLEM FOR A THIRD-ORDER PSEUDOHYPERBOLIC EQUATION

WITH AN ADDITIONAL INTEGRAL CONDITION

Yashar T. Mehraliyev1, Rena Sh. Sadikhzade2

The paper studies an inverse boundary value problem with an unknown right-

hand side for a third-order pseudohyperbolic equation with an additional integral condi-
tion. First, the definition of the classical solution for the considered problem is intro-

duced. The main goal of the problem is to simultaneously determine the solution and

the unknown coefficient. To investigate the solvability of the original problem, we first
consider an auxiliary inverse boundary value problem and prove its equivalence to the

original problem in a certain sense. Then using the Fourier method the existence and

uniqueness of a solution to an auxiliary problem is proved. Furthermore, based on the
equivalency of these problems, the existence and uniqueness theorem for the classical

solution of the original inverse problem is proved.

Keywords: Inverse problem, pseudohyperbolic equation of third order, integral overde-
termination condition, classical solution, existence, uniqueness.

MSC2020: 35R30, 35L82, 35A09, 35A01, 35A02.

1. Introduction and problem statement

It is known that the practical requirements often lead to the problem of determining
the coefficients or the right hand side of the partial differential equations for some known data
about its solutions. Such problems are called inverse boundary value problems in mathemat-
ical physics. Inverse problems arise in various fields of human activity such as seismology,
mineral exploration, biology, medical visualization, computed tomography, Earth remote
sensing, spectral analysis, nondestructive control, etc.

Fundamentals of the theory and practice of research of inverse problems were estab-
lished and developed in the pioneering works by A.N.Tikhonov [29], M.M.Lav-rent’ev et al.
[16], V.K.Ivanov et al. [11], V.G.Romanov [26], A.M.Denisov [8], M.I.Ivanchov [10], S.I.
Kabanikhin [12], A.I.Kozhanov [13], and the references therein.

From the point of view of physical applications, third-order partial differential equa-
tions are of great interest. These equations are considered when solving problems of the
theory of nonlinear acoustics and in the hydrodynamic theory of cosmic plasma, modeling
fluid filtration in porous media. Studies of wave propagation in cold plasma and magnetohy-
drodynamics also reduce to the partial differential equations of third order (see [7, 23, 27]).
To the study of nonlocal boundary value problems (including integral conditions) for partial
differential equations of the third order are devoted large number of works (see, for example,
[3, 4, 6, 9, 17, 25, 28], and the references therein).

Pseudohyperbolic equations arise in the theory of non-stationary flow of a viscous gas
during the propagation of initial densifications in a viscous gas [30, 31], in the theory of
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solitons [18] when describing the process of electron motion in the system “superconductor
- dielectric with tunneling conductivity – superconductor”.

It should be noted that the integral conditions are completely natural and they arise
in mathematical modeling in cases where it is impossible to obtain information about the
process occurring at the boundary of the region of its flow using direct measurements or
when it is possible to measure only some averaged (integral) characteristics of the desired
quantity.

The solvability of inverse problems in different formulations, with certain overdeter-
mination conditions for pseudohyperbolic equations, was the subject of researches in many
papers (see, for example, [1, 2, 5, 14, 15, 19, 20, 21, 22, 24], and the bibliography therein).

The purpose of this paper is to prove the existence and uniqueness of the classical
solution of an inverse boundary value problem for a third-order pseudohyperbolic equation
(1), with boundary conditions (1)-(4) and integral overdetermination condition (12).

Let DT = Qxy × {0 ≤ t ≤ T} be a parallelepiped, where Qxy = {(x, y) : 0 <
x < 1, 0 < y < 1} and let F (x, y, t), g(x, y, t), φ(x, y), and ψ(x, y), be given functions of
x, y ∈ [0, 1] and t ∈ [0, T ]. Consider the following boundary value problem of identifying an
unknown function u(x, y, t), that satisfies the equation

utt(x, y, t)− α∆ut(x, y, t)− β∆u(x, y, t) = F (x, y, t) (x, y, t) ∈ DT , (1)

with the initial conditions

u(x, y, 0) = φ(x, y), ut(x, y, 0) = ψ(x, y), 0 ≤ x, y ≤ 1, (2)

the boundary conditions

ux(0, y, t) = u(1, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ T, (3)

u(x, 0, t) = uy(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T, (4)

where α and β are given positive numbers and ∆ = ∂2

∂x2 + ∂2

∂y2 .

We introduce the following set of functions

C̃2,2,2(DT ) = {u(x, t) : u(x, t) ∈ C2,2,2(DT ), utxx(x, t), utyy(x, t) ∈ C(DT )}.

Definition 1.1. The function u(x, y, t) ∈ C̃2,2,2(D̄T ) is said to be a classical solution of the
problem (1)-(4), if this function satisfy Equation (1) in DT , the condition (2) on [0, 1], and
the statements (3)-(4) on the interval [0, T ].

Theorem 1.1. If problem (1) - (4) has a solution, then it is unique in the class C̃2,2,2(D̄T ).

Proof. Assume that there are two solutions to the considered problem as u1(x, y, t) and
u2(x, y, t). Let us denote the difference of these solutions by v(x, y, t) = u1(x, y, t) −
u2(x, y, t).

It is clear that the function v(x, y, t) satisfies the following homogeneous equation

vtt(x, y, t)− α∆vt(x, y, t)− β∆v(x, y, t) = 0 (x, y, t) ∈ DT , (5)

and the conditions
v(x, y, 0) = 0, vt(x, y, 0) = 0, 0 ≤ x, y ≤ 1, (6)

vx(0, y, t) = v(1, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ T, (7)

v(x, 0, t) = vy(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T. (8)

Let us prove that the function v(x, y, t) is identically equal to zero.
Multiplying both sides of equation (5) by the function 2vt(x, y, t) and integrating the

resulting equality over Qxy, we obtain

2

1∫
0

1∫
0

(vtt(x, y, t)− α∆vt(x, y, t)− β∆v(x, y, t))vt(x, y, t)dxdy = 0, 0 ≤ t ≤ T (9)
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Using the boundary conditions (7), (8), we have:

2

1∫
0

1∫
0

vtt(x, y, t)vt(x, y, t)dxdy =
d

dt

1∫
0

1∫
0

v2t (x, y, t)dxdy, 0 ≤ t ≤ T ;

2

1∫
0

1∫
0

(vxx(x, y, t) + vyy(x, y, t))vt(x, y, t)dxdy =

= − d

dt

1∫
0

1∫
0

(v2x(x, y, t) + v2y(x, y, t))dxdy, 0 ≤ t ≤ T ;

2

1∫
0

1∫
0

(vtxx(x, y, t) + vtyy(x, y, t))vt(x, y, t)dxdy =

= −2

1∫
0

1∫
0

(v2tx(x, y, t) + v2ty(x, y, t))dxdy, 0 ≤ t ≤ T.

Then, from (9), we get

d

dt

1∫
0

1∫
0

(v2t (x, y, t) + v2x(x, y, t) + v2y(x, y, t))dxdy =

= −2

1∫
0

1∫
0

(v2tx(x, y, t) + v2ty(x, y, t))dxdy, 0 ≤ t ≤ T. (10)

We denote

y(t) =

1∫
0

1∫
0

(v2t (x, y, t) + v2x(x, y, t) + v2y(x, y, t))dxdy ≥ 0.

From (6) it is obvious that y(0) = 0, and in turn from (10) it is easy to see that
y′(t) ≤ 0.From here we get:

y(t) =

1∫
0

1∫
0

(v2t (x, y, t) + v2x(x, y, t) + v2y(x, y, t))dxdy = 0.

Whence, it follows that

vt(x, y, t) ≡ 0, vx(x, y, t) ≡ 0, vy(x, y, t) ≡ 0.

Thus, we get

v(x, y, t) = const = C0.

Consequently, using conditions (6), we have:

v(x, y, 0) = C0 = 0.

This proves that v(x, y, t) = 0. Thus, if there are two solutions u1(x, y, t) and
u2(x, y, t) of problem (1)-(4) then u1(x, y, t) ≡ u2(x, y, t). It follows that if a solution to
problem (1)-(3) exists, then it is unique. □
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Based on the direct problem (1)-(4) we consider the following inverse problem. Let

F (x, y, t) = a(t)g(x, y, t) + f(x, y, t), (11)

where the functions g(x, y, t) and f(x, y, t) are given functions and the function a(t) is
unknown.

It is required to determine a(t), if the following additional information about the
solution of problem (1)-(4) is given:

1∫
0

1∫
0

ω(x, y)u(x, y, t)dxdy = h(t), 0 ≤ t ≤ T, (12)

where the functions ω(x, y) and h(t) are unknown functions.

Definition 1.2. A pair {u(x, y, t), a(t)} is called a classical solution to problem (1)-(4),

(12) if the functions u(x, y, t) ∈ C̃2,2,2(D̄T ) and a(t) ∈ C[0, T ] satisfy Equation (1) in DT ,
the condition (2) in Q̄xy, the conditions (3) and (4) in [0, 1]× [0, T ], and the condition (12)
on the interval [0, T ].

Theorem 1.2. Assume that φ(x, y), ψ(x, y) ∈ C(Q̄xy), f(x, y, t), g(x, y, t) ∈ C(D̄T ), ω(x, y) ∈

C(Q̄xy),
1∫
0

1∫
0

ω(x, y)g(x, y, t)dxdy ̸= 0 (0 ≤ t ≤ T ), h(t) ∈ C2[0, T ], and the compatibility

conditions
1∫

0

1∫
0

ω(x, y)φ(x, y)dxdy = h(0),

1∫
0

1∫
0

ω(x, y)ψ(x, y)dxdy = h′(0), (13)

holds. Then the problem of finding a classical solution of (1)-(4), (12) is equivalent to the

problem of determining the functions u(x, y, t) ∈ C̃2,2,2(D̄T ) and a(t) ∈ C[0, T ], satisfying
the conditions (1)-(4) and the relation

h′′(t)− α

1∫
0

1∫
0

ω(x, y)∆ut(x, y, t)dxdt− β

1∫
0

1∫
0

ω(x, y)∆u(x, y, t)dxdt =

= a(t)

1∫
0

1∫
0

ω(x, t)g(x, y, t)dxdy +

1∫
0

1∫
0

ω(x, t)f(x, y, t)dxdy, 0 ≤ t ≤ T. (14)

Proof. Let {u(x, y, t), a(t)} be a classical solution of (1)-(4), (12). Further, assuming h(t) ∈
C2[0, T ] and differentiating (12) twice, we have

1∫
0

1∫
0

ω(x, y)utt(x, y, t)dxdy = h′′(t), 0 ≤ t ≤ T. (15)

Further, multiplying both sides of the Equation (1) by the functions ω(x, y) and
integrating with respect to x and y over the interval [0, 1], we have

d2

dt2

1∫
0

1∫
0

ω(x, y)u(x, y, t)dxdy − α

1∫
0

1∫
0

ω(x, y)∆ut(x, y, t)dxdy−

−β
1∫

0

1∫
0

ω(x, y)∆u(x, y, t)dxdy =
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= a(t)

1∫
0

1∫
0

ω(x, y)g(x, y, t)dxdy +

1∫
0

1∫
0

ω(x, y)f(x, y, t)dxdy, 0 ≤ t ≤ T. (16)

From (16), taking into account (15), it follows the fulfillment of (14).
Now, suppose that {u(x, y, t), a(t)} is a solution to problem (1)-(4), (14). Then from

(14) and (16) we find

d2

dt2

 1∫
0

1∫
0

ω(x, y)u(x, y, t)dxdy − h(t)

 = 0, 0 ≤ t ≤ T. (17)

By virtue of (2) and compatibility conditions (13), we have

1∫
0

1∫
0

ω(x, y)u(x, y, 0)dxdy − h(0) =
1∫
0

1∫
0

ω(x, y)φ(x, y)dxdy − h(0) = 0,

1∫
0

1∫
0

ω(x, y)ut(x, y, 0)dxdy − h′(0) =
1∫
0

1∫
0

ω(x, y)ψ(x, y)dxdy − h′(0 = 0.

(18)

From (17), (18) we conclude that

1∫
0

1∫
0

ω(x, y)u(x, y, t)dxdy − h(t) = 0, 0 ≤ t ≤ T,

i.e. the condition (12) is satisfied. □

2. Existence and uniqueness of the classical solution of the inverse bound-
ary value problem

We shall seek the first component u(x, y, t) of classical solution {u(x, y, t), a(t)} of the
problem (1)-(4), (14) in the form

u(x, y, t) =

∞∑
n=1

∞∑
k=1

uk,n(t) cosλkx sin γny, (19)

where

λk =
π

2
(2k − 1), k = 1, 2, ..., γn =

π

2
(2n− 1), n = 1, 2, ...,

uk,n(t) = 4

1∫
0

1∫
0

u(x, y, t) cosλkx sin γnydxdy, k, n = 1, 2, ....

Then applying the formal scheme of the Fourier method, for determining of unknown
coefficients uk,n(t) (k = 1, 2, ...;n = 1, 2, ...), from (1) and (2) we have

u′′k,n(t) + αµ2
k,nu

′
k.n(t) + βµ2

k,nuk,n(t) = Fk,n(t; a), k, n = 1, 2, ..., 0 ≤ t ≤ T, (20)

uk,n(0) = φk,n, u
′
k,n(0) = ψk,n, k, n = 1, 2, ..., (21)

where

µ2
k,n = λ2k + γ2n, k, n = 1, 2, ...,

Fk,n(t; a) = fk,n(t) + a(t)gk,n(t), k, n = 1, 2, ...,

fk,n(t) = 4

1∫
0

1∫
0

f(x, y, t) cosλkx sin γnydxdy, k, n = 1, 2, ...,
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gk,n(t) = 4

1∫
0

1∫
0

g(x, y, t) cosλkx sin γnydxdy, k, n = 1, 2, ...,

φk,n = 4

1∫
0

1∫
0

φ(x, y) cosλkx sin γnydxdy, k, n = 1, 2, ...,

ψk,n = 4

1∫
0

1∫
0

ψ(x, y) cosλkx sin γnydxdy, k, n = 1, 2, ....

Now suppose that
α2π2

8
− β > 0.

Solving problem (20), (21), we find

uk,n(t) =
1

γk,n
[(µ2,k,ne

µ1,k,nt − µ1,k,ne
µ2,k,nt)φk,n + (eµ2,k,nt − eµ1,k,n

t)ψk,n+

+

t∫
0

Fk,n(τ ; a)(e
µ2,k,n(t−τ) − eµ1,k,n(t−τ))dτ

 , (22)

where

µi,k,n = −
αµ2

k,n

2
+ (−1)iµk,n

√
α2µ2

k,n

4
− β (i = 1, 2),

γk,n = µ2,k,n − µ1,k,n = 2µk,n

√
α2µ2

k,n

4
− β.

After substituting expressions described by (22) into (19), we obtain

u(x, y, t) =

∞∑
k=1

{
1

γk,n
[(µ2,k,ne

µ
1,k,n

t − µ1,k,ne
µ
2,k,n

t)φk,n+

+(eµ2,k,n
t − eµ1,k,n

t)ψk,n+

+

t∫
0

Fk,n(τ ; a)(e
µ
2,k,n

(t−τ) − eµ2,k,n
(t−τ))dτ

 cosλkx sin γny. (23)

From (14), taking into account (19), we have

a(t)v(t) = h′′2(t)−
1∫

0

1∫
0

ω(x, y)f(x, y, t)dxdy+

+

∞∑
k=1

∞∑
n=1

pk,nµ
2
k,n(αu

′
k,n(t) + βuk,n(t)), 0 ≤ t ≤ T, (24)

where

v(t) ≡
1∫

0

1∫
0

ω(x, y)g(x, y, t)dxdy, pk,n =

1∫
0

1∫
0

ω(x, y) cosλkx sin γnydxdy. (25)

Differentiating (22) twice, yields

u′k,n(t) =
1

γk,n
[µ1,k,nµ2,k,n(e

µ1,k,nt − eµ2k,nt)φk,n+
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+(µ2,k,ne
µ2,k,nt − µ1,k,ne

µ1,k,nt)ψk,n+

+

t∫
0

Fk,n(τ ; a)(µ2,k,n
eµ2,k,n(t−τ) − µ1,k,ne

µ1,k,n(t−τ))dτ

 , (26)

u′′k,n(t) =
1

γ
k,n

[µ1,k,nµ2,k,n(µ1,k,ne
µ1,k,nt − µ2,k,ne

µ2,k,nt)φk,n+

+(µ2
2,k,ne

µ2,k,nt − µ2
1,k,ne

µ1,k,nt)ψk,n+

+

t∫
0

Fk,n(τ ; a)(µ
2
2,k,ne

µ2,k,n(t−τ) − µ2
1,k,ne

µ1,k,n(t−τ))dτ

+ Fk,n(t; a). (27)

By virtue of (20) and (27) we have:

αµ2
k,nu

′
k,n(t) + βµ2

k,nuk,n(t) = Fk,n(t;u, a)− u′′k,n(t) =

= − 1

γ
k,n

[µ1,k,nµ2,k,n(µ1,k,ne
µ1,k,nt − µ2,k,ne

µ2,k,nt)φk,n+

+(µ2
2,k,ne

µ2,k,nt − µ2
1,k,ne

µ1,k,nt)ψk,n+

+

t∫
0

Fk,n(τ ; a)(µ
2
2,k,ne

µ2,k,n(t−τ) − µ2
1,k,ne

µ1,k,n(t−τ))dτ

 . (28)

In order to obtain an expression for the second component a(t) of the solution
{u(x, y, t), a(t)} of problem (1)-(4), (14), we substitute expression (28) into (24):

a(t) = [v(t)]−1

h′′(t)−
1∫

0

1∫
0

ω(x, y)f(x, y, t)dxdy +

+

∞∑
k=1

∞∑
n=1

pk,n
γ

k,n

[µ1,k,nµ2,k,n(µ1,k,ne
µ1,k,nt − µ2,k,ne

µ2,k,nt)φk,n+

+(µ2
2,k,ne

µ2,k,nt − µ2
1,k,ne

µ1,k,nt)ψk,n+

+

t∫
0

Fk,n(τ ; a)(µ
2
2,k,ne

µ2,k,n(t−τ) − µ2
1,k,ne

µ1,k,n(t−τ))dτ

 . (29)

Thus, the solution of problem (1) - (4), (14) was reduced to the solution of system
(23), (29) with respect to unknown functions u(x, y, t) and a(t).

It is easy to see that a(t) is a solution to equation (29), then a pair {u(x, y, t), a(t)}
of functions u(x, y, t) and a(t) will be a solution to problem (1)-(4), (14). Therefore, the
problem posed is reduced to determining a(t) from equation (29).

The following theorem is valid

Theorem 2.1. Suppose that the data of problem (1)-(4), (14) satisfy the following condi-
tions:

A) α > 0, β > 0, α2

8 − β > 0;

B) φ(x, y), φx(x, y), φxx(x, y), φy(x, y), φxy(x, y), φyy(x, y) ∈ C(Q̄xy),
φxxy(x, y), φxyy(x, y), φxxx(x, y), φyyy(x, y) ∈ L2(Qxy),
φx(0, y) = φ(1, y) = φxx(1, y) = 0, 0 ≤ y ≤ 1,
φ(x, 0) = φy(x, 1) = φyy(x, 0) = 0, 0 ≤ x ≤ 1;
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C) ψ(x, y), ψx(x, y), ψy(x, y), ψxx(x, y), ψxy(x, y), ψyy(x, y) ∈ C(Q̄xy),
ψxxy(x, y), ψxyy(x, y), ψxxx(x, y), ψyyy(x, y) ∈ L2(Qxy),
ψx(0, y) = ψ(1, y) = ψxx(1, y) = 0, 0 ≤ y ≤ 1,
ψ(x, 0) = ψy(x, 1) = ψyy(x, 1) = 0, 0 ≤ x ≤ 1;

D) f(x, y, t), fx(x, y, t), fy(x, y, t), fxx(x, y, t), fxy(x, y, t), fyy(x, y, t) ∈ C(DT ),
fxxx(x, y, t), fxxy(x, y, t), fxyy(x, y, t), fyyy(x, y, t) ∈ L2(DT ),
fx(0, y, t) = f(1, y, t) = fxx(0, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ T,
f(x, 0, t) = fy(x, 1, t) = fyy(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T ;

E) g(x, y, t), gx(x, y, t), gy(x, y, t), gxx(x, y, t), gxy(x, y, t), gyy(x, y, t) ∈ C(DT ),
gxxx(x, y, t), gxxy(x, y, t), gxyy(x, y, t), gyyy(x, y, t) ∈ L2(DT ),
gx(0, y, t) = g(1, y, t) = gxx(0, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ T,
g(x, 0, t) = gy(x, 1, t) = gyy(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T ;

F) h(t) ∈ C2[0, T ], v(t) ≡
1∫
0

1∫
0

ω(x, t)g(x, y, t)dxdy ̸= 0, 0 ≤ t ≤ T

Then problem (1)-(4), (14) has a unique solution.

Proof. Equation (29) can be written as:

a(t) = b(t) +

t∫
0

G(t, τ)a(τ)dτ, (30)

where

b(t) = [v(t)]−1

h′′(t)−
1∫

0

1∫
0

ω(x, y)f(x, y, t)dxdy +

+

∞∑
k=1

∞∑
n=1

pk,n
γ

k,n

[µ1,k,nµ2,k,n(µ1,k,ne
µ1,k,nt − µ2,k,ne

µ2,k,nt)φk,n+

+(µ2
2,k,ne

µ2,k,nt − µ2
1,k,ne

µ1,k,nt)ψk,n+

+

t∫
0

fk,n(τ)(µ
2
2,k,ne

µ2,k,n(t−τ) − µ2
1,k,ne

µ1,k,n(t−τ))dτ

 ,

G(t, τ) = −[v(t)]−1
∞∑
k=1

∞∑
n=1

pk,ngk,n(τ)

γ
k,n

(µ2
2,k,ne

µ2,k,n(t−τ) − µ2
1,k,ne

µ1,k,n(t−τ)).

It is easy to see that

µ3
k,n ≤ (λ2k + γ2k)(λk + γn) = λ3k + λ2kγn + γ2nλk + γ3n,

|γk,n| >
α√
2
µ2
k,n, |µi,k,n| ≤ αµ2

k,n (i = 1, 2),

|µ1,k,nµ2,k,n| = βµ2
k,n(i = 1, 2), |pk,n| ≤ ∥ω(x, y)∥C(Q̄xy)

.

Taking into account these relations, taking into account the conditions of Theorem
1.2, we can show that

∥b(t)∥C[0,T ] ≤
∥∥[v(t)]−1

∥∥
C[0,T ]


∥∥∥∥∥∥h′′(t)−

1∫
0

1∫
0

ω(x, y)f(x, y, t)dxdy

∥∥∥∥∥∥
C[0,T ]

+

+2
√
2

( ∞∑
n=1

∞∑
k=1

µ−2
k,n

) 1
2

∥ω(x, y)∥C[Q̄xy]
[β ∥φxxx(x, y)∥L2(Qxy)

+

+β ∥φxxy(x, y)∥L2(Qxy)
+ β ∥φxyy(x, y)∥L2(Qxy)

+ β ∥φyyy(x, y)∥L2(Qxy)
+
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+α ∥ψx(x, y)∥L2(Qxy)
+ α ∥φy(x, y)∥L2(Qxy)

+

+α
√
T (∥fxxx(x, y, t)∥L2(DT ) + ∥fxxy(x, y, t)∥L2(DT ) +

+ ∥fxyy(x, y, t)∥L2(DT ) + ∥fyyy(x, y, t)∥L2(DT ))]}, (31)

|G(t, τ)| ≤ 2
√
2Tα

∥∥[v(t)]−1
∥∥
C[0,T ]

( ∞∑
n=1

∞∑
k=1

µ−2
k,n

) 1
2

∥ω(x, y)∥C[Q̄xy]
×

×(∥gxxx(x, y, t)∥L2(DT ) + ∥gxxy(x, y, t)∥L2(DT ) +

+ ∥gxyy(x, y, t)∥L2(DT ) + ∥gyyy(x, y, t)∥L2(DT )). (32)

Due to estimates (31) and (32), the Voltaire-type linear integral equation (30) has a
unique solution from C[0, T ].

Let us show that u(x, y, t) ∈ C̃2,2,2(D̄T ). In fact, from (22), (26) implies that
uk,n(t), u

′
k,n(t) ∈ C[0, T ] and{ ∞∑

n=1

∞∑
k=1

(µ3
k,n ∥uk,n(t)∥C[0,T ])

2

} 1
2

≤ 4

( ∞∑
n=1

∞∑
k=1

(λ3k |φk,n|)2
) 1

2

+

+4

( ∞∑
n=1

∞∑
k=1

(λ2kγn |φk,n|)2
) 1

2

+ 4

( ∞∑
n=1

∞∑
k=1

(λkγ
2
n |φk,n|)2

) 1
2

+

+4

( ∞∑
n=1

∞∑
k=1

(γ3n |φk,n|)2
) 1

2

+
4

α

( ∞∑
n=1

∞∑
k=1

(λk |ψk,n|)2
) 1

2

+
4

α

( ∞∑
n=1

∞∑
k=1

(γn |ψk,n|)2
) 1

2

+

+
4
√
T

α


 T∫

0

∞∑
n=1

∞∑
k=1

(λk |fk,n(τ)|)2dτ


1
2

+

 T∫
0

∞∑
n=1

∞∑
k=1

(γn |fk,n(τ)|)2dτ


1
2

+

+
4
√
T

α
∥a(t)∥C[0,T ]


 T∫

0

∞∑
n=1

∞∑
k=1

(λk |gk,n(τ)|)2dτ


1
2

+

+

 T∫
0

∞∑
n=1

∞∑
k=1

(γn |gk,n(τ)|)2dτ


1
2

 ,

{ ∞∑
n=1

∞∑
k=1

(µ3
k,n

∥∥u′k,n(t)∥∥C[0,T ]
)2

} 1
2

≤ 4
√
2β

α

( ∞∑
n=1

∞∑
k=1

(λ3k |φk,n|)2
) 1

2

+

+
4
√
2β

α

( ∞∑
n=1

∞∑
k=1

(λ2kγn |φk,n|)2
) 1

2

+
4
√
2β

α

( ∞∑
n=1

∞∑
k=1

(λkγ
2
n |φk,n|)2

) 1
2

+

+
4
√
2β

α

( ∞∑
n=1

∞∑
k=1

(γ3n |φk,n|)2
) 1

2

+

+4
√
2

( ∞∑
n=1

∞∑
k=1

(λ3k |ψk,n|)2
) 1

2

+ 4
√
2

( ∞∑
n=1

∞∑
k=1

(λ2kγn |ψk,n|)2
) 1

2

+

+4
√
2

( ∞∑
n=1

∞∑
k=1

(λkγ
2
n |ψk,n|)2

) 1
2

+ 4
√
2

( ∞∑
n=1

∞∑
k=1

(γ3n |ψk,n|)2
) 1

2

+
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+4
√
2T


 T∫

0

∞∑
n=1

∞∑
k=1

(λ3k |fk,n(τ)|)2dτ


1
2

+

 T∫
0

∞∑
n=1

∞∑
k=1

(λ2kγn |fk,n(τ)|)2dτ


1
2

+

+

 T∫
0

∞∑
n=1

∞∑
k=1

(λkγ
2
n |fk,n(τ)|)2dτ


1
2

+

 T∫
0

∞∑
n=1

∞∑
k=1

(γ3n |fk,n(τ)|)2dτ


1
2

+

+4
√
2T ∥a(t)∥C[0,T ]


 T∫

0

∞∑
n=1

∞∑
k=1

(λ3k |gk,n(τ)|)2dτ


1
2

+

+

 T∫
0

∞∑
n=1

∞∑
k=1

(λ2kγn |gk,n(τ)|)2dτ


1
2

+

+

 T∫
0

∞∑
n=1

∞∑
k=1

(λkγ
2
n |gk,n(τ)|)2dτ


1
2

+

 T∫
0

∞∑
n=1

∞∑
k=1

(γ3n |gk,n(τ)|)2dτ


1
2


or { ∞∑

n=1

∞∑
k=1

(µ3
k,n ∥uk,n(t)∥C[0,T ])

2

} 1
2

=

= 4 ∥φxxx(x, y)∥L2(Qxy)
+ 4 ∥φxxy(x, y)∥L2(Qxy)

+ 4 ∥φxyy(x, y)∥L2(Qxy)
+

+4 ∥φyyy(x, y)∥L2(Qxy)
+

4

α
∥ψx(x, y)∥L2(Qxy)

+

+
4

α
∥ψy(x, y)∥L2(Qxy)

+
4
√
T

α
(∥fx(x, y, t)∥L2(DT ) + ∥fy(x, y, t)∥L2(DT ))+

+
4
√
T

α
∥a(t)∥C[0,T ] (∥gx(x, y, t)∥L2(DT ) + ∥gy(x, y, t)∥L2(DT )),{ ∞∑

n=1

∞∑
k=1

(µ3
k,n

∥∥u′k,n(t)∥∥C[0,T ]
)2

} 1
2

≤ 4
√
2β

α
∥φxxx(x, y)∥L2(Qxy)

+

+4 ∥φxxx(x, y)∥L2(Qxy)
+ 4 ∥φxxy(x, y)∥L2(Qxy)

+ 4 ∥φxyy(x, y)∥L2(Qxy)
+

+
4
√
2β

α
∥φxxy(x, y)∥L2(Qxy)

+
4
√
2β

α
∥φxyy(x, y)∥L2(Qxy)

+

+
4
√
2β

α
∥φyyy(x, y)∥L2(Qxy)

+ 4
√
2 ∥ψxxx(x, y)∥L2(Qxy)

+

+4
√
2 ∥ψxxy(x, y)∥L2(Qxy)

+ 4
√
2 ∥ψxyy(x, y)∥L2(Qxy)

+

+4
√
2 ∥ψyyy(x, y)∥L2(Qxy)

+ 4
√
2T (∥fxxx(x, y, t)∥L2(DT ) + ∥fxxy(x, y, t)∥L2(DT ) +

+ ∥fxyy(x, y, t)∥L2(DT ) + ∥fyyy(x, y, t)∥L2(DT ))+

+4
√
2T ∥a(t)∥C[0,T ] (∥gxxx(x, y, t)∥L2(DT ) + ∥gxxy(x, y, t)∥L2(DT ) +

+ ∥gxyy(x, y, t)∥L2(DT ) + ∥gyyy(x, y, t)∥L2(DT )).

From the last relation it is clear that the function u(x, y, t) is continuous and has con-
tinuous derivatives ux(x, y, t), uxx(x, y, t), uy(x, y, t), uxy(x, y, t), uyy(x, y, t), uxxx(x, y, t),
uyyy(x, y, t), ut(x, y, t), utx(x, y, t), uty(x, y, t), utxx(x, y, t), and utyy(x, y, t) in DT .



Inverse boundary value problem for a pseudohyperbolic equation 75

Now, from (20) it is easy to see that{ ∞∑
n=1

∞∑
k=1

(µk,n

∥∥u′′k,n(t)∥∥C[0,T ]
)2

} 1
2

≤ 2

α{ ∞∑
n=1

∞∑
k=1

(µ3
k,n

∥∥u′k,n(t)∥∥C[0,T ]
)2

} 1
2

+

+β

{ ∞∑
n=1

∞∑
k=1

(µ3
k,n ∥uk,n(t)∥C[0,T ])

2

} 1
2

+
∥∥∥∥fx(x, y, t) + fy(x, y, t)∥C[0,T ]

∥∥∥
L2(Qxy)

+

+
∥∥∥∥a(t)(gx(x, y, t) + gy(x, y, t))∥C[0,T ]

∥∥∥
L2(Qxy)

]
.

From this it is clear that utt(x, y, t) is continuous in DT . It is easy to check that
equation (1) and conditions (2)-(4), (14) are satisfied in the usual sense. Thus, the solution
to problem (1)-(4), (14) is a pair of {u(x, t), a(t)}. By virtue of Theorem 1.1, it is unique. □

Using Theorem 1.2 and Theorem 2.1, we obtain the unique solvability of problem
(1)-(4), (12).

Theorem 2.2. Let all the conditions of Theorem 1.2 and the compatibility conditions (13)
be satisfied. Then problem (1)-(4), (12) has a unique classical solution.

3. Conclusions

The aim of the work was to study the unique solvability of an inverse boundary value
problem with an unknown right-hand side for a third-order pseudohyperbolic equation with
an additional integral condition. For this purpose, first an auxiliary inverse boundary value
problem was considered and proved its equivalence to the original problem in a certain sense.
Then using the Fourier method the existence and uniqueness of a solution to an auxiliary
problem is proved. Furthermore, based on the equivalency of these problems, the existence
and uniqueness theorem for the classical solution of the original inverse problem is proved.
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