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IMPLEMENTATION OF A HOME APPLIANCE MOBILE
PLATFORM BASED ON COMPUTER VISION: SYSTEM
CONFIGURATION AND CALIBRATION

Florin-Dan SECUIANU?, Ciprian LUPU?

This paper is a continuation of our previous studies on the implementation of
a mobile platform based on computer vision and Raspberry Pi hardware, precise
indoor navigation. Thus, we implemented a prototype version of a robot that can
recognize targets using machine learning and computer vision based algorithms.
Further, the platform was improved to achieve complete autonomy, indoor mapping
and navigation, and self-charging. We showed that it is possible to create an
affordable, completely autonomous robot that can navigate and detect targets. The
present study has two main objectives. The first one is to build a platform that uses
computer vision algorithms to detect objects, processes and aggregates the
information acquired from various sensors, shares it with other devices, and has
capabilities of remote and automated reconfiguration of the main program loop and
logging results. The second objective is to improve the precision of the localization
and navigation by adjusting the data received from the digital compass to the
specifics of the environment and the hardware setup of the mobile unit.

Keywords: Raspbian, Raspberry Pi, Python, Wi-Fi, debugging, self-charging,
digital compass calibration

1. Introduction

Lately, the interest in obtaining fully autonomous robots able to map,
localize targets, self-charge with energy and perform various tasks indoors has
increased. The use of autonomous and highly cooperative robots that are able to
perform predefined tasks without human supervision is going to transform the
future of almost all activities such as agriculture, mining, services and so on.

Such applications include search and find systems indoors, assisting
humans with various tasks [1], inspecting areas and reading meters [2], delivery of
products inside cafes, hotels, and even fully automated outdoor robots [3-8]. Other
applications include collaboration between heterogeneous robots to perform
coordinated search and rescue missions over a given area [9]. Many applications
use Digital Magnetic Compass (DMC) as part of the Simultaneous Localization
and Mapping (SLAM) functionality of the systems [10-14].
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Although there are numerous papers in the literature treating different
topics on robots, our careful literature search revealed that currently our platform
is the only one combining Raspberry Pi, digital compass, video camera, and
ultrasonic sensors to map and navigate indoors using custom built navigation
algorithms, as well as self-recharging using wireless charging technology. In
addition, it should be stressed that not only the hardware configuration is original,
being designed and assembled using various hardware components, but also the
software procedures that achieve the described functions are custom built, and the
machine learning models for object recognition were trained in-house. This paper
is a continuation of our previous studies [15,16] where we presented the
implementation of an autonomous robot that uses computer vision software and
affordable Internet of Things (10T) Raspberry Pi hardware and sensors to map an
indoor area and navigate, as well as implementing energetic autonomy via self-
charging configuration and software. The first version of the platform was built on
a simple 3 wheels robot, based on a Raspberry Pi mini-computer. The software
program that was written using the Python language was able to recognize
specific targets (signs) using our own trained “Haar feature based cascade
classifiers” and the functions provided by the OpenCV computer vision library
(see Fig. 1). Thanks to one ultrasonic sensor, the robot was also able to detect
physical boundaries and navigate pseudo-randomly in the environment, moving
between several targets [15]. The prototype proved that it was possible to build an
affordable robot with a lot of processing power that can use the recent advances in
terms of hardware and software to intelligently navigate without much human
supervision.

Fig. 1. Object detected using Haar Classifier [15]

The second version of the platform that was built [16] brought new
software modules that were written to create, store, and update the map of the
environment and to calculate the optimal paths between locations. Some other
new software modules were implemented to perform the self-recharging
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procedure. The platform built at this stage provides all the necessary functions
required for complete autonomy: self-recharging with energy (wirelessly),
improved navigation capabilities that combine the information provided by
multiple sensors (see the evolution of the mobile robot platforms, Fig. 2).

Fig. 2. Mobile robot versions. From left to right: 1 [14], 2 [15], and 3 [last version]

The software written makes use of the data from the camera and computer vision
to detect targets, data from ultrasonic sensors to detect the boundaries of the
environment, and the data from the newly added digital compass to save, load,
and update the map (see Fig. 3) and to achieve precise localization. The objective
was to build an affordable, mobile platform that is fully-autonomous that can
operate and perform various tasks in an indoor environment.
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Fig. 3. Example of maps: initial (left side) and updated scan (right side)

The cost of the hardware for both versions combined was around EUR
400-500. The software algorithms were designed and implemented by the authors,
and used available platforms and open-source libraries: Linux OS, Python,
OpenCV. The platform does not carry maintenance costs, moreover constant
upgrades of the connected software modules are available so that the platform can
make use of performance improvements or bug fixes. Thanks to the modular
architecture of the software that we implemented, the platform can be easily
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adapted to perform as designed and described using other hardware components:
different chassis, control boards, sensors, digital compass.

Here we present the results of our exhaustive study on building the
complete platform of the autonomous robot, including the software configuration
and the operating system, communication and control of the robot via Wi-Fi from
the software developer point of view, configuration of the camera and computer
vision software, the software tools and modules, information on the hardware
used such as the extension board, sensors and motion, the self-charging feature,
the calibration and use of the digital compass. We studied the calibration of the
digital compass to the specific conditions of the testing environment and we
propose an original solution for accurate positioning and movement irrespective
of the observed distortion factors.

The calibration of the compass and the proposed algorithms resulted in a
higher precision of pose and navigation. We studied and implemented a procedure
that can adjust the readings of the digital compass to be as close as possible to the
real orientation. Most importantly, our original method, which aggregates data
from multiple sources, digital compass, video camera, ultrasonic distance sensors,
is efficient in correcting the position on map and orientation of the mobile robot.
Secondly, configuring the platform to allow remote transfer of executable code
and data sharing at any time opens infinite possibilities, such as adding new
software sub-routines on-the-fly, adding the capability to detect new objects via
machine-learning algorithms trained on live images transmitted by the mobile
robot, updating the live map with information added automatically by other
devices or even human operators.

2. Software configuration
2.1. Operating system

The software programs that enable the functionality of our robot on the
Raspberry Pi (R-Pi) board use high-level programming languages. The programs
need the functionalities provided by an operating system that include access to
hardware resources such as storage, memory, and CPU, and access via
communication ports/interfaces to hardware components that can be attached to
the board: video cameras, analog and digital sensors, Wi-Fi and Bluetooth enabled
devices.We used the documentation provided by the manufacturer for the
“Raspberry Pi 3 Model B Rev 1.2” board and installed "Raspbian GNU/Linux 8
(Jessie) 4.9.35-v7+" operating system, the minimum version to support R-Pi 3
[17]. We used a laptop with Windows OS and SD card writer capability to install
the OS on a 6GB SD card via the R-Pi imager utility also provided by the
manufacturer. Once the card was inserted in the R-Pi, we attached it to a TV via a
HDMI cable, to a router via an Ethernet cable, to wireless keyboard and mouse
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via a wireless receiver connected to the one of the USB ports and powered up the
R-P1 by connecting a USB power supply.

2.2. Wireless connection and control of the R-Pi

The next steps included changing the default password for user ‘pi’ and
configuring access to Wi-Fi networks, so that the board can connect to the local
Wi-Fi and other wireless access points (AP) that we used later on, e.g. AP enabled
on mobile devices (smartphones) to allow wireless connections between our R-Pi
and the development devices (laptop) without the need of a standard wireless
router.

V2]
Eile View Help
|Enter a VNC Server address or search
&7 ’ |
N
Raspi-via-Android-AP Rpi-via-Android-AP-2 Rpi-via-router
Rpi-via-router - Properties == a X

General Options Expert

VNC Server: ‘192.118.0.171
Name: ‘Rpi-vwa-router ‘

Labels

To nest labels, separate names with a forward slash (/)

Enter a label name, or press Down to apply existing labels

Security
Encryption: Let VNC Server choose
[ Authenticate using single sign-on (SSO) if possible

Authenticate using a smartcard or certificate store if possible

Fig. 4. VNC viewer connection between laptop and R-Pi

In order to be able to connect wirelessly to our R-Pi from a laptop, we
enabled Secure Shell (SSH) and Virtual Network computing (VNC) interfaces via
the R-Pi configuration utility and set-up a specific value for the private IP address
the device requests when connecting to Wi-Fi networks. We used this
documentation to configure the remote access via VNC [18].

The next step was to install a VNC viewer software on our development
laptop, connect to R-Pi and continue with the next steps without the need of the
monitor/TV, keyboard or mouse attached to it (Fig. 4).
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Securely transferring files between computers can be done with the ‘scp’
command in terminal, e.g.

‘scp<pathl>/<filenamel> pi@<ip_address_rpi>:/home/pi/<path2>/<filename2>’.
B

® [ ‘pl@raspberryplw ‘ A test033.py - /home/p H A Python 3.4.2 Shell
File Edit Format Run Options Windows Help File Edit Shell Debug Options Windows Help
#!/usr/bin/env python Python 3.4.2 (default. Oct 19 2014, 13:31:11)
t cv2 [GCC 4.9.1] on linux
m i2clibraries 12c_hmc58831 Type "copyright”, "credits"” or "license()" for mc
>>> RESTART ====
# OpenCV >>>
initVideoCapture(): Initializing video capture...
print( "Initializing video capture...") SUCCESS: width= 640 height= 480 channels= 3
capture = cv2.VideoCapture(0) degrees, minutes: 151 29
capture.isOpened(): >>>
(ret, frame) = capture.read()
ret:
(h, w, ch) = frame.shape
ESS; width=", w, "height=", h, "channels=", ch)

print("SUCCES

capture.release()
capture = 0

capture.release()
capture = 0

capture:
print(“FAILURE"™)

capture

# compass
DECLINATION_DEG = 1.23
DECLINATION_MIN = 0

f initCompass():
hmc58831 = i2c_hmc58831.12¢_hmc58831(1)
hmc58831.setContinuousMode( )
hmc58831.setDeclination(DECLINATION_DEG, DECLINATION_MIN)
(degrees, minutes) = hmc58831.getHeading()
print(“degrees, minutes: ", degrees, minutes)
hmc58831
initVideoCapture()
initCompass()

Fig. 5. Python 3 software development framework

2.3. Connecting the camera and installing the computer vision
software
One of the main strengths of our robot is the use of computer vision for
detection of objects. We use an original R-Pi camera module V2. There is an
option in the R-Pi configuration panel to enable the module. Note that image can
be also acquired by attaching to R-Pi any type of camera via the USB interface.

2.4. Software tools and modules

The choice for high-level programming languages was Python. This is an
interpreted, general purpose language, very popular in the scientific community.
The decision was based on the fact that we could easily use open-source software
libraries for reading data from sensors and for running computer vision
algorithms. We used Python 2.7 in the early phase of development and then
upgraded to version 3.7.2. Writing, running and troubleshooting our own software
package was straightforward (Fig. 5). Data from sensors is read via open source
Python libraries.
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3. Hardware configuration

3.1. Extension board

The robot that we built was created by combining hardware parts from
various manufacturers, some open source software (OS - Raspbian, computer
vision libraries, libraries for serial port access), and our in-house software code
that controls the robot and enables the required functionalities.
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Fig. 6. Hardware configuration of GPG-2 board [19]

The R-Pi on our robot does not allow by itself to transfer power to
electrical motors. This is done with the help of an extension board connected to R-
Pi via the serial port. The extension board we used is GoPiGo 2 (GPG-2) and is
produced by Dexter Industries. The board is based on an ATMEGA328
microcontroller which handles the communication between the board and the R-
Pi. [19], as can be seen in Fig. 6. The documentation provided by the
manufacturer contains information about the hardware and high-level
programming code language e.g. Python to help communication with the ports.

3.2 Sensors

The GPG-2 board contains one Inter-Integrated Circuit (12C) port, which
we used to connect a digital compass, one digital, and one analog port to which
we attached two ultrasonic distance measuring sensors. The manufacturer
provided the scripts necessary to install all the necessary dependencies for the
libraries provided, as well as tests for troubleshooting and debugging. Using the
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software modules with Python is straightforward by importing them into our
software.

3.3 Motion
Controlling the electrical motors is possible via two power outputs of the
extension board.

Fig. 7. Robot chassis by PiBorg [20]

The motors and the chassis of the robot were provided by another
manufacturer, PiBorg. The model used is a rugged, aluminum based, with the
most powerful motor version available at the time [20], as can be seen in Fig. 7.
We used only the chassis, the four electric motors and the custom location to
insert the R-Pi video camera.

3.4. Self-recharging feature

To solve the problem of energetic autonomy, we took the approach of
wireless charging. We used a rechargeable battery pack (RBP) manufactured by
Romoss, with one input (mini-USB) and two outputs (USB). The input is
connected to a wireless power receiver. When the receiver coil on the robot is
connected or in the proximity of the transmitter coil placed on the fixed base
charging station, the battery pack is charging. One of the outputs is connected to
the R-Pi board via a USB to mini USB cable, and the other output is connected to
the GPG-2 board via a DC booster cable (USB to 2.1mm). The cable contains an
integrated boost converter from 5V to 12V, thus providing constant voltage to the
board that controls the electrical motors. When the RBP’s input is connected to an
energy source, because of the internal switch, there is a short drop in power output
to R-Pi. Due to the fact that R-Pi is sensible to voltage fluctuation, this will cause
a restart of the operating system. In order to resume the operation, the script that
contains the main loop of the program executed by our robot is added as one of
the programs to be run automatically by the OS on restart, using crontab and
@reboot. The main program script saves the current state and time in a file. On
start, data is loaded from the file so that the program can switch from ‘locking to
charger’ state to ‘charging’. Since we use a booster to provide constant voltage to
the GPG-2 board and there is no information about the current charging
percentage of the battery, a constant of 8 hours is used to decide when the robot is
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fully charged and can resume other activities. The electrical scheme of the power
flow is represented in Fig. 8.

5V 5V RPi
220V 15v é % RBP
5V B 12vGPG

Fig. 8. Electrical scheme of the power flow

3.5. Digital compass calibration.

The digital compass we used is model HM5883L.

In the following section we describe the calibration process, the data and
the results. The values of the magnetic field on the three axes x, y, and z can be
read from the registers of the digital compass, via the serial bus. The heading is
calculated using the values for x and y axes, and a correction is applied to take
into account the local declination where the measurement takes place. The source
code for calculating the heading is:

headingRad = math.atan2(value_y, value_x)
headingRad += self.declination
if (headingRad < 0):
headingRad += 2*math.pi
if (headingRad > 2*math.pi):
headingRad -= 2*math.pi

Consequently we created an experiment and the robot was programmed to

measure and store the calculated heading in steps of 5 degrees, between 0 and
360, in triplicates and also stored the corresponding measurements taken with a

compass.

Table 1
Sample of calculated heading — C(x), real heading — R(x), and difference (error) — D(x)
C(x) [deg] R(x) [deg] D(x) [deg]
70 60 10
73 65 8
76 70 6
80 75 5
83 80 3
87 85 2
90 90 0
94 95 -1
96 100 -4
100 105 -5
103 110 -7
105 115 -10
109 120 -11
112 125 -13
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We were particularly interested in orthogonal movements in the ‘Xy’ plane
so that the robot keeps its heading precisely on two orthogonal axes and their four
directions: front, back, left, and right. For each entry in the table (C(x) — the
calculated value of the angle for every x degrees; R(x) — the real value
corresponding to calculated C(x); D(x) — the difference between C(x) and R(x)),
we calculated the deviation from the real values and observed the sum of
deviation squares in steps of 90 degrees:

Dev = /D(0)2 + D(90)% + D(180)% + D(270)? (1)
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Fig. 9. The error between the calculated and real value of the heading

Sample of calculated data (72 data measurements repeated three times) are
presented in Table 1 and plotted in Fig. 9 (red line). We then placed the robot on
the initial starting position, which is the origin of the map, aligned it perpendicular
to the base, and rotated the digital compass with 5 degrees, so that Dev will be
kept to the minimum value while the robot is moving along the orthogonal
directions. This allows the robot to measure correctly its orientation in the four
interesting directions (Fig. 10).

20

15

Dev, degrees

0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
C(x), degrees

Fig. 10. Dev function
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We observed there are multiple positions where the deviation calculated
above is minimum, at 5, 100, 202, and 282 degrees. The software program that we
wrote to enable precise positioning and navigation contains a procedure that
rotates the robot until a desired heading is reached. Because of the time difference
between the moment when the robot reads the heading and the moment it actually
stops rotating, there is an inherent difference between the desired heading and the
real one. In order to minimize this error of alignment, we control the rotation
speed based on the difference between the current and the desired heading. When
the difference is higher than a threshold, the robot rotates at maximum speed.
When the difference is lower than the threshold, we decrease the speed so that the
program can stop the rotation as close as possible to the desired heading. In order
to have a more precise measurement at any given angle, we measured and
eliminated the soft-iron errors.

4.0

(VAR M A/N MA\

N
o

o
o

S

n
o

D(x) corrected, degrees
A { N
o

w
[S)

&
o

50 }

-6.0

C(x), degrees

Fig. 11. Absolute error deviation after soft-iron correction

7.0

6.0

Dev corrected, degrees
w » o
o o o

g
=}

=
o

0.0

0O 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
C(x), degrees

Fig. 12. Dev function after soft-iron correction



52 Florin-Dan Secuianu, Ciprian Lupu

As described in [10], the soft iron distortion arises from the interaction of
the earth’'s magnetic field and any magnetically soft material surrounding the
compass. We applied a correction to the calculated heading and reduced the
heading errors, as seen in Figs. 11 and 12 above.

Algorithm of automatic correction of digital compass data. We studied and
implemented a solution to calibrate the digital compass of the robot in order to
minimize the positioning errors. The algorithm uses data from multiple sources:
the digital compass, the video camera, and the ultrasonic sensor. Here we describe
the procedure that runs when the robot is positioned at the charging base, or in any
location that is labelled with one of the known images that the computer vision
subroutine can recognize. The digital compass is attached in a fixed position on
the top side of the robot, at the height empirically determined to reduce the
electromagnetic influence of the battery pack, motors and chassis. The robot is
rotated in small steps, with consecutive commands, around his vertical axis, and
the number of rotation commands is counted. Since the friction coefficient
between the surface and the robot’s wheels is not known, and in this step the
algorithm does not control the value of the rotation angle in one rotation step, this
is a value that can vary and has to be determined. With the help of the subroutine
that is also used for determining if a target image is in the center of the snapshot
acquired from the video camera, we can identify the approximate moment when
the robot has performed a complete 360 rotation. In step 1, the algorithm stores
the number of rotation commands per 360 degrees and repeats the cycle a few
times, e.g. 72 steps will result in a 5 degree rotation per step. In step two, the robot
performs several rotation cycles, storing the data from the digital compass,
mapping the rotation angle and the data from the digital compass. In step three,
the read data is converted accordingly by adding or subtracting the offset, so that
the direction of the base becomes the new ‘North’ and data for all the other angles
will be adjusted accordingly to match the real orientation of the robot. As
described earlier, the robot will navigate in the environment using 90 degree
rotations, straight forward and backward movements so we need these to be
precise. In step four of the calibration, the robot performs a few cycles of 90
degree rotations, analyzing the position of the target with respect to the center of
the image. If it is not centered, the calibration loop returns to step 1 to acquire new
data, and saves the average values. The calibration process ends when the robot
can perfectly align with the “North” after a few 360 rotation cycles.

4. Conclusions

This paper presents how we achieved full autonomy of a mobile robot
platform using affordable materials and in-house built software. A detailed
description of the software and hardware modules of the proposed and
implemented mobile platform was provided. It proposes solutions to completely
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configure and build an autonomous mobile robot. A novel procedure for very
precise indoor positioning and navigating was designed and implemented, using
the DMC technology. The platform advanced from the stage where the robot was
able to move and locate targets using a pseudo-random search algorithm, to the
current stage where the platform has the memory of the previously acquired
sensor data stored as a map, and is able to calculate optimal paths for moving
around between objectives. One of the key factors is the calibration of the digital
compass to reduce the reading errors for any direction, so the precision of
positioning and navigation is dramatically improved. This opens the possibility of
various applications such as substitution of humans in hazardous environments,
active monitoring and surveillance of indoor and outdoor spaces, guidance of
humans in offices, museums or storage areas, delivery of goods, vacuum cleaning,
lawn mowing, farming. Due to the versatility of the platform supported by high
processing power and advanced connectivity, the main program loop can be
upgraded on the fly to include artificial intelligence based functionalities such as
scene, object, and face recognition. It is also independent of the hardware used for
navigation, so it can be easily transferred to bigger and more powerful hardware.

Future research lines will be along description of the current navigation
algorithms that were implemented, analyzing and improving the navigation in
terms of complexity, execution speed and scalability, ‘live’ collaboration between
multiple devices in achieving fast mapping and optimal navigation solutions,
calculating the paths for devices in a swarm of e.g. vacuum cleaners in order to
cover every ‘square’ of a shared map in the most optimal way. We will study and
implement a novel precise and orthogonal positioning on target waypoints by
comparing multiple solutions. We will add new functionalities based on machine
learning algorithms and artificial intelligence e.g. automatic labelling of scanned
areas on the map, automatic generation of waypoints and the corresponding ML
detection algorithms, and correction of position based on waypoints.
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