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BLIND GPS LOCALIZATION: ENHANCING POSITIONING
ACCURACY IN GPS-DENIED ENVIRONMENTS

Cismas Alexandru!, Cismas Ioana?, Popescu Decebal?

This paper presents a method for locating a subject using the trian-
gulation method. Three drones were used to transmit signals to a point, with
the research focusing on identifying and mitigating potential delays that affect
the determination of Time of Arrival (ToA). The study details, through precise
measurements, the delays caused by communication protocols, the execution time
of instructions on microcontrollers, and the modulation time at the radio module
level. The obtained results highlight the feasibility of performing measurements
while acknowledging the trade-off in precision they entail.

Keywords: localization, drone, Time of Arrival (ToA), processing delays, mi-
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1. Introduction

We are going through a difficult period full of wars and weapons that are
more and more sophisticated. The UAV industry is in continuous development, and
one of the technological directions is the identification of new positioning methods
that are independent of satellites. During combat, one of the main objectives is to
destroy communications. An enemy that is not able to communicate or convey its
position will not be able to follow effective tactics or battle strategies. Organization
before and during a fight ensures a predictable course and mitigates the loss of
human life. Information from the field is vital to ensure this organization. One
of these pieces of information is the position of specific equipment or soldiers, and
to be able to determine the position, we have several means at our disposal. The
primary way of positioning is GPS, but with the reception of satellite signals as its
operating principle, there is equipment that is capable of jamming exactly these
signals.
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Localization, in essence, is a fundamental aspect of navigation, enabling
UAVs to perform a diverse range of complex tasks, including mapping, surveil-
lance, search, rescue, and precise delivery. The challenge of localization is not
only to determine geographical coordinates but also to understand the orientation,
speed, and trajectory of the UAV in a three-dimensional space. The complexity of
this task is amplified by the dynamic environments in which UAVs often operate,
requiring robust and adaptive localization solutions.

The motivation for research in this area is driven by the growing demand
for drones that can operate autonomously in diverse environments. As UAVs
become more prevalent, accurate and reliable localization becomes essential to
ensure safety, efficiency, and compliance with regulatory standards. In addition,
as drones are increasingly integrated into the airspace with human-crewed aircraft,
the accuracy of location systems becomes crucial for maintaining the integrity of
air traffic control systems and avoiding collisions.

Advances have influenced the evolution of location techniques in sensor tech-
nology, signal processing, and machine learning. Traditional localization methods,
such as GPS-based systems, are being complemented or replaced by sophisticated
algorithms that exploit visual, acoustic, and inertial cues. These emerging ap-
proaches offer increased resilience to signal degradation, environmental obstacles,
and interference, which are limitations of GPS-dependent methods.

In addition, integrating artificial intelligence and computer vision has intro-
duced the possibility of semantic localization, where UAVs can understand and
interact with their environment based on visual recognition of landmarks and fea-
tures. This capability improves location accuracy and extends the operational
range of UAVs into areas without GPS signals, such as indoor spaces or dense
urban environments.

Given the strategic importance of UAV localization and the rapid pace of
technological innovation in this area, it is timely and relevant to explore the current
state of research and development.

2. State of the art

Uncrewed aerial vehicles (UAVs) have emerged as a promising solution for
time-critical location-based applications such as search and rescue operations, en-
vironmental monitoring, and security surveillance [[l, 2, B]. However, designing
UAV networks that can perform complex missions while keeping complexity low
presents significant challenges. A vital issue is UAV intelligence (UAV-I), defined
as its ability to process information and make decisions [4]. Deploying UAV-I across
the network can help reduce on-board complexity but also affects autonomy and
latency [5].

Recent work has studied various architectures for low-complexity UAV net-
works. One popular approach involves UAV-to-UAV (U2U) communication, in
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which each UAV operates with local information [6, [7]. While this approach en-
ables fast decisions, limited context awareness can reduce estimates’ accuracy. An
alternative is integrating UAVs with cellular infrastructure for increased awareness
through edge/cloud support [8, 9]. However, this reduces autonomy and reliance
on stable connectivity.

Over the past decade, Simultaneous Localization and Mapping (SLAM) tech-
niques have enabled significant advances in UAV navigation capabilities. Early
implementations of SLAM relied primarily on global navigation satellite system
(GNSS) signals that suffer from errors and unavailability in specific environments
[17]. However, recent work has demonstrated the feasibility of visual-inertial
SLAM using onboard cameras and _inertial measurement units to perform loca-
tion and mapping without GNSS [18§, [19].

The integration of multiple sensors has also improved UAV perception abil-
ities. Multimodal sensor fusion addresses concatenated data from cameras, light
detection and range estimation (LiDAR) scanners, and other exteroceptive sensors
to build dense 3D representations of environments [20, 21]. Techniques such as
iterative point_clouds match points from different spatial positions to obtain con-
sistent maps [22, 23]. Dempster-Shafer theory and fuzzy logic have been applied
to deal with uncertainties arising from sensor noise and imperfect data association
24, 25].

Advances in visual odometry now allow UAVs to track their position in-
crementally using sequences of camera images [26, 27]. When combined with
on-board inertial measurements, visual-inertial odometry provides robust state es-
timates even during rapid motion [19, [18]. The resulting trajectories can then
be merged with maps constructed using structure from motion or simultaneous
localization and mapping further to refine localization accuracy [28, 29].

Recent work on the mapping front has focused on semantic mapping, which
labels objects and properties in 3D maps [30, B1]. Deep learning approaches use
large datasets to train neural networks for tasks such as object detection, segmen-
tation, and classification directly from sensor data [32]. Labelled maps aid scene
understanding and enable applications involving object interaction and manipula-
tion.

More recently, research has focused on the use of emerging wireless tech-
nologies. Cellular networks show promise for control beyond line-of-sight and
long-distance operation. Moreover, with the launch of 5G, beyond 5G (B5G) and
6G networks, cellular localization may see widespread use for SUAV [33]. Simul-
taneously, artificial intelligence/machine learning (AI/ML) techniques are gaining
attention due to their ability to learn environmental properties and adapt to dy-
namic conditions [33].
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3. Proposed solution and context description

All these techniques seek to ensure an efficient way of positioning an object
in space. In terms of positioning, especially when talking about outdoor locations,
the most widely used technique is GPS. There are so many applications where
GPS is used, and we could say that any device that requires outdoor use adopts
the technology. Emerging technologies that aim to define new methods of outdoor
location promise to create redundant solutions that will allow, on the one hand,
more accurate locations but also provide a backup for devices where positioning is
vital.

In our scenario, the need for a backup for positioning is essential because, in
multiple war cases, the GPS signal is jammed, and devices can no longer receive
it. Jamming devices perform very well when targeted to specific frequencies, tech-
nologies, or protocols. For our proposed system, a backup solution is triangulation
using drones.

In a scenario where the GPS signal is affected by jamming, and the drone
is used to locate a point by triangulation, several viable methods exist for deter-
mining the drone’s precise position. Three promising solutions for the future are
the relative positioning of the drone within a swarm, position determination by
interpretation of the surrounding space and fixed point flight mode.

If we have a group of drones operating cooperatively, they can communicate
with each other and exchange information about position and other parameters.
Using this data, each drone can calculate its relative position to the others. By
using distributed localization algorithms, drones can collaborate to obtain precise
positions in a coordinated way.

Drones can be equipped with advanced sensors, such as stereo, lidar, or radar
cameras, which allow them to collect information about their surroundings. By an-
alyzing the data obtained, drones can identify landmarks or unique features in the
landscape and determine their position about them. Image processing algorithms
or machine learning techniques can be used to interpret the data and estimate the
drone’s position with significant accuracy.

If drones are equipped with advanced radio modules, they can communicate
with the device to exchange information. The new generation of radio modules
provides parameters that allow accurate distance determination using a single
transmitter and receiver by calculating the time it takes for the radio signal to
travel between the drone and the device.

4. Implementation

Three drones that may also have surveillance or reconnaissance functions can
be used to achieve a triangulation system for the devices. We conducted a test
scenario using 3 DJI Mavic Pro drones on which we mounted end devices using
LoRa communication technology. These were mounted on LoRa using external
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phone charging batteries and powered via a USB cable. These were attached to
the drone legs.

Determining location using Time of Arrival (ToA) poses several challenges
related to device time synchronization. LoRa, as a communication protocol, does
not provide a ToA determination mechanism, so to set up such a system, a clock
synchronization mechanism must first be implemented. Initially, the first commu-
nication tests via the LoRa protocol were using a 8-bit microcontroller. While the
microcontroller is powerful enough for actual communication, it lacks the granu-
larity for precise clock synchronization. Thus, it was necessary to switch to a more
powerful microcontroller.

To determine the timestamp granularity required to achieve 10-meter accu-
racy in distance measurements, we can use the distance and time of flight formula:

Distance = ToA X ¥gignal (1)

Using radio waves at a speed of about 3 x 108 m/s, we substitute the known

values:
10m

- 3x108m/s

So, to achieve 10-meter accuracy in distance measurements using radio waves
at a speed of about 3 x 10®m/s, a granularity of about 33 nanoseconds would be
required during the timestamp. These calculations are based on ideal assumptions
and may vary in practice due to factors such as jitter, interference, and other
environmental factors.

For the tests conducted, we used a Raspberry Pi, taking into account the
errors caused by clock drift. Since we did not have the possibility to use GPS for
real-time synchronization, it was necessary to mitigate some of these errors.

To determine the error, we used a DS3231 real-time clock, which according
to the datasheet, has an accuracy of 2 ppm when the operating temperature is
between 0 and 40 degrees, meaning 0.17 s/day. We synchronized the Raspberry
Pi’s clock with the DS3231 clock and let it run for 12 days. At the end of the 12
days, we compared the time value read on the Raspberry Pi with the time value
on the DS3231. The time difference between the Raspberry Pi and the real-time
clock was about 40 seconds. Given that the real-time clock has a deviation over a
12-day period of about 2 seconds, we get a deviation of the Raspberry Pi clock of
42 seconds over 12 days, which is an error of about 40 ppm.

The 40 ppm error can translate to an error of 3.5 seconds/day or 40 ps/s. A
signal travels a distance of 10 m, thus:

At ~ 33 ns (2)

Distance 10m
v 3x108m/s
If we do the calculation at this granularity and relate the error to this unit

of time, respectively to this measurement accuracy, we conclude that the error can
be ignored.

Time = =334 x107%s = 33ns (3)
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5. Experimental results and discussion

The initial synchronization is crucial, and we achieve this by utilizing the sig-
nal from a GPS. This method proves effective, with many of the modules exhibiting
an error of less than 1 ppm. Subsequently, we perform clock synchronization us-
ing a Python update script. This script initializes the GPS module, waits for the
module to be calibrated with the satellites, and then synchronizes the clock.

Determining the Time of Arrival (ToA) is a complex process that involves
calculating a series of delays. The time measured from when the time is read from
the hardware device to when the departure timestamp is compared to the arrival
timestamp is not simply the time the signal travels through the air.

We identify a series of delays that must be considered to accurately determine
the time a signal travels through the air: delay due to the sequence of instructions,
delay in transmitting the packet via the SPI protocol, delay in processing the
packet, time the signal spends in the air.

To determine these delays, we reduced the time the signal spends in the air
to 0 by shortening the distance to 20 cm. This means that the measured time
reflects only the internal delays of the system.

o Ty - Delay due to the sequence of instructions

e Tsp1 Tx - Delay in transmitting the packet via the SPI protocol at transmis-
sion

® Thoc Tx - Delay in processing the packet at transmission

® Thod Tx - Delay in modulating the packet at transmission

e T.; - Time the signal spends in the air (which tends to 0 in the test case)

® Themod Rrx - Delay in demodulating the packet at reception

® Thoc rx - Delay in processing the packet at reception

e Tsp1 rx - Delay in transmitting the packet via the SPI protocol at reception
The formula for calculating the total time, Tiytar, is:

T'total = Tseq + TSPIfTX + TprociTX + TmodiTX + Tair + TdemodiRX + TprociRX + TSPIfRX

(4)

In the case where the distance is very short (20 cm), T,;, can be considered
negligible. Thus, the formula becomes:

Tiotal = Tseq +Tsp1 X+ Tproc. X + Tmod TX + Tdemod RX + Tproc rx +7sp1 rx (D)

Measuring the time between reading the clock from the transmitter and
reading the clock from the receiver in this scenario allows us, under real test
conditions, to isolate only the time the signal spends in the air. This measurement
will be made using an auxiliary device, an oscilloscope, because it has very high
precision and can measure signals with very fine granularity. The oscilloscope is
crucial in accurately measuring the time the signal spends in the air, as it can
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capture and display the signal’s waveform, allowing us to precisely determine the
time it takes for the signal to travel from the transmitter to the receiver. We will
generate an external interrupt when the transmitter’s clock is read and another
external interrupt when the receiver’s clock is read.

The external interrupt is actually an instruction that raises a pin from logical
0 to logical 1. The first pin is on the transmitting device, and the second on the
receiving equipment. This way, we will calculate the total time.

FIGURE 1. Diagram of Delays in Determining Time of Arrival (ToA)

In the Figure m, it can be seen that the time measured with the oscilloscope
is 3.160 ms. We can thus extrapolate the measurements taken at greater distances,
considering this as the constant component given by the aforementioned delays.
This constant component, represented by the 3.160 ms measurement, is crucial in
our calculations as it allows us to isolate the time the signal spends in the air by
subtracting it from the total time, thereby providing a more accurate measurement
of the ToA.

To improve accuracy and highlight the delays, we conducted a series of addi-
tional measurements with utmost thoroughness. We measured the time between
two instructions of raising the microcontroller pin from logical 0 to logical 1 and
then back to logical 0 as shown in Figure JJ. This time allows us to subtract from
the total time to isolate the delay between the two clock readings for synchroniza-
tion.

In our case, this time is 12.90 ps, resulting in the effective time between the
two clock readings being:

3.160ms — 12.90ps = 3.160 ms — 0.01290 ms = 3.1471 ms

Thus, the time remaining between the clock readings at transmission and
reception is 3.1471 ms.
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FIGURE 2. Measurement of Instruction Time for Pin State Change

After time synchronization on the 4 Raspberry Pls, 3 being used on the drone
and 1 being used on the device, the data packet transmission script was executed.
The data packets are composed of an ID, by which the source of the signal was
known, the timestamp that allows the Time of Arrival (ToA) calculation, and the
coordinates of the drones, which were known at the time of launch.

The 3 devices were mounted on drones, as shown in Figure B, and raised to
a height of 150 meters, with a distance between the drones’ launch points and the
point where the device is located, as shown in Table 1.

TABLE 1. Drone/device coordinates

Drone Latitude | Longitude | Distance
First drone | 44°59°47”N | 26°12’23”E | 3778 m
Second drone | 44°57°56”N | 26°14’03"E | 2951 m
Third drone | 44°57'57"N | 26°16’48"E | 1890 m
Device 44°58’56”N | 26°14'18"E

The initial data was erroneous because the system was turned on before
the drones were lifted into the air, as the drones and the device were very close
together. The received data, as mentioned above, consists of an ID, the timestamp,
which we need to calculate distances, and the coordinates for reference. The data
for each of the 3 drones are shown in Table 2.

After receiving the timestamp, we calculated the distances from the drone
to the point we want to determine. In Table 3, we include the distances calcu-
lated using the timestamp and the actual distances according to the coordinates
determined in the field.
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TABLE 2. Received string data

Nr. crt. | Drone Received string
1 Drone 1 | #01;12:30:23672827335; 44.965833N;26.280011E
2 Drone 2 | #02;12:30:23957723884; 44.996431N;26.206430E
3 Drone 3 | #03;12:30:24272529325; 44.965634N;26.234218E
4 Drone 1 | #01;12:30:27204857344; 44.965839N;26.280002E
5 Drone 2 | #02;12:30:27675357285; 44.996434N;26.206418E
6 Drone 3 | #03;12:30:28172847225; 44.965634N;26.234223E
7 Drone 1 | #01;12:30:29372427542; 44.965842N;26.280020E
8 Drone 2 | #02;12:30:29465543693; 44.996419N;26.206445E
9 Drone 3 | #03;12:30:30172827142; 44.965634N;26.234229E

TABLE 3. Calculated distance vs accurate distance

Nr. Crt. Drone Calculated distance | Real distance
1 Drone 1 - Device 3323 m 3778 m
2 Drone 2 - Device 2961 m 2951 m
3 Drone 3 - Device 1750 m 1890 m
4 Drone 1 - Device 3812 m 3778 m
5 Drone 2 - Device 2563 m 2951 m
6 Drone 3 - Device 1852 m 1890 m
7 Drone 1 - Device 3523 m 3778 m
8 Drone 2 - Device 2438 m 2951 m
9 Drone 3 - Device 1452 m 1890 m

According to Table H, the distances obtained are varied, and the results
are not according to our initial estimates. This is due to the hardware device’s
inability to retain the time very precisely. The largest distance difference obtained
is 513 meters, which means that from our point we can determine an error zone
of approximately 500 meters, and defined as a _circle with the radius being the
difference mentioned above, as shown in Figure B.

The errors that arise are difficult to mitigate because the challenges we face
stem from the quality of the hardware devices used, particularly the Raspberry Pi,
which is not a real-time device. According to these results, we need to understand
the source of the significant variation in distances. To achieve this, we must
comprehend the errors that can affect the transmission.

Our results can suggest different possibilities. If there was a synchronization
error between the devices and assuming there were no other errors, such as no
delays in the processes executed on the Raspberry Pi and no transmission errors,
we can consider the following scenarios:

If there was an advanced desynchronization error, where the drone had an
advanced timestamp compared to the device, the measured distances would be
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smaller than the actual ones. This is because the transmission time would be
reduced by the desynchronization time, indicating that the signal had a shorter
Time of Arrival (ToA).

On the other hand, if there was a delayed desynchronization error, where the
drone had a delayed timestamp compared to the device, the measured distances
would be greater than the actual ones. This is because the transmission time
would be increased by the desynchronization time, indicating that the signal had
a longer ToA.

Second Drone

‘1hire "j?Bnr.\ First Drone
/ AN \Q
v

FIGURE 3. Device error area

In Figure , only one of the errors is depicted. If we were to represent multiple
measurements, we must understand that the point determined by the intersection
of the red circles will move within an error zone relative to the point labeled Device.

6. Conclusions

Determining distances using Time of Arrival (ToA) is a highly useful tech-
nique when GPS signals are unavailable. However, it is crucial to account for
additional delays such as device processing time and transmission delays that may
arise. Our objective was to determine the location of a subject using drones. Prior
to field testing with drones, laboratory tests were conducted to measure these ad-
ditional delays that can occur beyond the time the signal spends in the air. By
isolating these delays, we can achieve greater accuracy in the measured distances.
Laboratory tests identified issues related to device desynchronization and poten-
tial delays caused by multipath propagation. To address these errors in future
developments, we propose a communication protocol that eliminates the need for
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device synchronization, thereby limiting errors to processing times and transmis-
sion delays due to protocols and other factors. This protocol, once implemented,
will enhance the reliability and accuracy of the distance measurements, paving the
way for more precise drone localization. This approach will ensure more precise
localization by minimizing synchronization issues and accurately accounting for
the various processing and transmission delays.
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