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EXISTENCE AND STABILITY OF EQUILIBRIA 

OF SOME ODE SYSTEMS 
 

Paul FLONDOR1 
 

 The existence and stability of equilibria of some ODE system connected 
with some models in biology are considered. 

 
Keywords: System of ODE, equilibrium, stability. 

 
 Introduction 
In the following the existence and stability of equilibria of two differential 
systems are considered. This kind of systems is used to model some enzymatic 
reactions in biology [1,3]. A similar analysis was given for a somewhat different 
system in [2]. The notations used have their origin in the biological problems and 
we keep them as such. For the interpretation of the constants see [1,2]. 

 
I. Consider the system of ODE:  
 

 
  𝑐𝑐′ = −(𝑘𝑘− + 𝜎𝜎)𝑐𝑐 + 𝑘𝑘+𝑚𝑚𝑚𝑚(𝑐𝑐)  

                                                                                                                    (1)  

                𝑚𝑚′ = 𝑏𝑏 − 𝑑𝑑𝑑𝑑 − 𝑘𝑘+𝑚𝑚𝑚𝑚(𝑐𝑐) + 𝑘𝑘−𝑐𝑐 

 

in 𝐷𝐷 = (0,𝑍𝑍) × (0,∞);  b, d, 𝑘𝑘+,𝑘𝑘−,𝜎𝜎 > 0,   𝑓𝑓 ∈ 𝐶𝐶1[0,𝑍𝑍], 𝑍𝑍 > 0,  
𝑓𝑓(𝑐𝑐) > 0,𝑓𝑓(𝑍𝑍) = 0, 𝑓𝑓strictly decreasing, 𝑐𝑐 = 𝑐𝑐(𝑡𝑡),𝑚𝑚 = 𝑚𝑚(𝑡𝑡), 𝑡𝑡 ≥ 0 .  
All these conditions are natural in the biological case. 
 Example. 𝑓𝑓(𝑐𝑐) = 𝑍𝑍 − 𝑐𝑐. 
 The study of the existence of global solutions of (1) can be done along the 
same lines of a similar discussion in [2] and we omit it. 
 Proposition. The system (1) is cooperative. 
 Proof. Let us denote by 𝐹𝐹,𝐺𝐺 the right hands of the system. In fact we have: 

𝐹𝐹𝑚𝑚′ = 𝑘𝑘+𝑓𝑓(𝑐𝑐) > 0 in 𝐷𝐷,𝐺𝐺𝑐𝑐′ = −𝑘𝑘+𝑚𝑚𝑓𝑓 ′(𝑐𝑐) + 𝑘𝑘− > 0. 
It follows, for example, that the sets 𝐷𝐷++ and 𝐷𝐷−− are invariant [5] (see also the 
figure below). 
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Fig.1  Phase portrait for the case 𝑓𝑓(𝑐𝑐) = 𝑍𝑍 − 𝑐𝑐 

 
 Proposition. There are no periodic solutions of (1). 
 Proof. 𝐹𝐹𝑐𝑐′ = −(𝑘𝑘− + 𝜎𝜎) + 𝑘𝑘+𝑚𝑚𝑓𝑓 ′(𝑐𝑐) < 0,𝐺𝐺𝑚𝑚′ = −𝑑𝑑 − 𝑘𝑘+𝑓𝑓(𝑐𝑐) < 0,   and 
the result follows  from the Bendixon criterion. 
 
 Finding the equilibria. 

In order to determine the equilibria of the system (1) we need to solve the 
(algebraic)  system 

 
−(𝑘𝑘− + 𝜎𝜎)𝑐𝑐 + 𝑘𝑘+𝑚𝑚𝑚𝑚(𝑐𝑐) = 0 

  (2) 
                                   𝑏𝑏 − 𝑑𝑑𝑑𝑑 − 𝑘𝑘+𝑚𝑚𝑚𝑚(𝑐𝑐) + 𝑘𝑘−𝑐𝑐 = 0  

 
 
By adding the equations we get 𝑏𝑏 = 𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜎𝜎 (a condition which is 

independent of𝑓𝑓). So  we have 𝑚𝑚 = 𝑏𝑏−𝜎𝜎𝜎𝜎
𝑑𝑑

 and from the first equation of (2) we get 

that (𝑘𝑘− + 𝜎𝜎)𝑐𝑐 = 𝑘𝑘+ 𝑏𝑏−𝜎𝜎𝜎𝜎
𝑑𝑑

𝑓𝑓(𝑐𝑐) . Let us denote, for the moment, 𝑎𝑎 = (𝑘𝑘−+𝜎𝜎)𝑑𝑑
𝑘𝑘+

 and 
define 𝑔𝑔(𝑐𝑐) = (𝑏𝑏 − 𝜎𝜎𝜎𝜎)𝑓𝑓(𝑐𝑐) − 𝑎𝑎𝑎𝑎 . 

Then, 𝑔𝑔(0) = 𝑏𝑏𝑏𝑏(0) > 0 and 𝑔𝑔(𝑍𝑍) = −𝑎𝑎𝑎𝑎 < 0 so there is a point 𝑐𝑐0 ∈
(0,𝑍𝑍) such that 𝑔𝑔(𝑐𝑐0) = 0. 
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But as 𝑔𝑔′(𝑐𝑐) = −𝜎𝜎𝜎𝜎(𝑐𝑐) + (𝑏𝑏 − 𝜎𝜎𝜎𝜎)𝑓𝑓 ′(𝑐𝑐) − 𝑎𝑎 < 0 , 𝑔𝑔 is strictly decreasing 
and so 𝑐𝑐0 is the unique solution, in (0,𝑍𝑍), of the equation 𝑔𝑔(𝑐𝑐) = 0.  
Remark that if  𝑏𝑏

𝜎𝜎
< 𝑍𝑍 we get     𝑐𝑐0 < 𝑏𝑏

𝜎𝜎
 . We proved this way the following: 

 
Theorem. The system (1) has an unique equilibrium in (𝑐𝑐0,𝑚𝑚0),𝑚𝑚0 =

𝑏𝑏−𝜎𝜎𝑐𝑐0
𝑑𝑑

,  in 𝐷𝐷.  Moreover 𝑐𝑐0 < 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑏𝑏
𝜎𝜎

,𝑍𝑍�. 
Remark. If 𝑓𝑓 ≤ 𝑔𝑔 and if 𝑐𝑐𝑓𝑓0, 𝑐𝑐𝑔𝑔0 the solutions corresponding to 𝑓𝑓,𝑔𝑔  then 

𝑐𝑐𝑓𝑓0 ≤  𝑐𝑐𝑔𝑔0. 
It would be useful to study the dependence of 𝑐𝑐0 on 𝑏𝑏; for example, one 

can consider  𝑏𝑏 a  control parameter. In order to do that let us suppose, making a 
choice, that    𝑏𝑏 < 𝜎𝜎𝜎𝜎  and apply the implicit function theorem to the equation  
ℎ(𝑐𝑐, 𝑏𝑏) = (𝑏𝑏 − 𝜎𝜎𝜎𝜎)𝑓𝑓(𝑐𝑐) − 𝑎𝑎𝑎𝑎 = 0 (the first equality being a notation) . We have 
that: ℎ𝑐𝑐′ = −𝜎𝜎𝜎𝜎 + (𝑏𝑏 − 𝜎𝜎𝜎𝜎)𝑓𝑓 ′ − 𝑎𝑎 < 0 ,  ℎ𝑏𝑏′ = 𝑓𝑓 > 0 so the globally defined 
function (see the previous proof) 𝑐𝑐0(𝑏𝑏) is of class 𝐶𝐶1and increasing.  
Moreover we have that  0 < 𝑐𝑐0(𝑏𝑏) < 𝑏𝑏

𝜎𝜎
. Extend this function by putting 𝑐𝑐0(0) = 0 

and observe that we get a continuous function. 
 
 Stability.   
The Jacobian matrix of the system (1) is: 
 

𝐽𝐽(𝑐𝑐,𝑚𝑚) = �
−(𝑘𝑘− + 𝜎𝜎) + 𝑘𝑘+𝑚𝑚𝑓𝑓 ′(𝑐𝑐) 𝑘𝑘+𝑓𝑓(𝑐𝑐)

−𝑘𝑘+𝑚𝑚𝑓𝑓 ′(𝑐𝑐) + 𝑘𝑘− −𝑑𝑑 − 𝑘𝑘+𝑓𝑓(𝑐𝑐)
� 

 
As easy computation shows that det𝐽𝐽(𝑐𝑐,𝑚𝑚) > 0 and   tr𝐽𝐽(𝑐𝑐,𝑚𝑚) < 0 .  
It follows that the matrix  𝐽𝐽(𝑐𝑐,𝑚𝑚) is stable for every (c,m).  
(It is the "form" of the matrix which matters). So we obtain the following: 
 
Theorem. The unique echilibrium of the system (1) is asymptotically stable. 
In fact, one can prove that the equilibrium is globally asymptotically stable. 
 
 
 II. Consider the system: 
 

    𝑐𝑐1′ = −(𝑘𝑘1− + 𝜎𝜎1)𝑐𝑐1 + 𝑘𝑘1+𝑚𝑚𝑚𝑚(𝑐𝑐1) 

      𝑐𝑐2′ = −(𝑘𝑘2− + 𝜎𝜎2)𝑐𝑐2 + 𝑘𝑘2+𝑚𝑚𝑚𝑚(𝑐𝑐2)             (3) 

            𝑚𝑚′ = 𝑏𝑏 − 𝑑𝑑𝑑𝑑 − 𝑘𝑘1+𝑚𝑚𝑚𝑚(𝑐𝑐1) − 𝑘𝑘2+𝑚𝑚𝑚𝑚(𝑐𝑐2) + 𝑘𝑘1−𝑐𝑐1 + 𝑘𝑘2−𝑐𝑐2 
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The conditions on the coefficients are similar to those of (1). The functions 𝑓𝑓 ∈
𝐶𝐶1[0,𝑍𝑍1], g ∈ 𝐶𝐶1[0,𝑍𝑍2] and have similar properties of those in (1). 
We shall consider the problem of the existence and stability of equilibria of (3). 
  
 Finding the equilibrium. 
For existence of equilibria we need to solve the system: 
 

−(𝑘𝑘1− + 𝜎𝜎1)𝑐𝑐1 + 𝑘𝑘1+𝑚𝑚𝑚𝑚(𝑐𝑐1) = 0 

−(𝑘𝑘2− + 𝜎𝜎2)𝑐𝑐2 + 𝑘𝑘2+𝑚𝑚𝑚𝑚(𝑐𝑐2) = 0           (4) 

𝑏𝑏 − 𝑑𝑑𝑑𝑑 − 𝑘𝑘1+𝑚𝑚𝑚𝑚(𝑐𝑐1) − 𝑘𝑘2+𝑚𝑚𝑚𝑚(𝑐𝑐2) + 𝑘𝑘1−𝑐𝑐1 + 𝑘𝑘2−𝑐𝑐2 = 0 

  

By adding the equations we get that  𝑏𝑏 = 𝑑𝑑𝑑𝑑 + 𝜎𝜎1𝑐𝑐1 + 𝜎𝜎2𝑐𝑐2 (independent of 
𝑓𝑓,𝑔𝑔). 
It follows that 𝑚𝑚 = 𝑏𝑏−𝜎𝜎1𝑐𝑐1−𝜎𝜎2𝑐𝑐2

𝑑𝑑
  and from the first two equations we obtain the 

system: 
𝑎𝑎1𝑐𝑐1 = (𝑏𝑏 − 𝜎𝜎1𝑐𝑐1 − 𝜎𝜎2𝑐𝑐2)𝑓𝑓(𝑐𝑐1) 

𝑎𝑎2𝑐𝑐2 = (𝑏𝑏 − 𝜎𝜎1𝑐𝑐1 − 𝜎𝜎2𝑐𝑐2)𝑔𝑔(𝑐𝑐2) 

 
where  𝑎𝑎1 = (𝑘𝑘1−+𝜎𝜎1)𝑑𝑑

𝑘𝑘1
+ ,  𝑎𝑎2 = (𝑘𝑘2−+𝜎𝜎2)𝑑𝑑

𝑘𝑘2
+  . 

 
Let us get rid of some indices and put  𝑐𝑐1 = 𝑥𝑥, 𝑐𝑐2 = 𝑦𝑦. The system becomes: 
 

𝑎𝑎1𝑥𝑥 = (𝑏𝑏 − 𝜎𝜎1𝑥𝑥 − 𝜎𝜎2𝑦𝑦)𝑓𝑓(𝑥𝑥) 
                 (5) 

𝑎𝑎2𝑦𝑦 = (𝑏𝑏 − 𝜎𝜎1𝑥𝑥 − 𝜎𝜎2𝑦𝑦)𝑔𝑔(𝑦𝑦) 
 
Obviously one can suppose  𝑏𝑏 > 𝜎𝜎1𝑥𝑥 + 𝜎𝜎2𝑦𝑦.  
The system (5) will be solved by substitution. By using the result for the system 
(2) we  can solve the first equation of (5) with respect to 𝑥𝑥, for every 0 ≤ 𝑦𝑦 ≤ 𝑏𝑏

𝜎𝜎2
. 

We obtain a function 𝑥𝑥 = 𝑥𝑥(𝑦𝑦) satisfying the equation 
 𝑎𝑎1𝑥𝑥(𝑦𝑦) = (𝑏𝑏 − 𝜎𝜎1𝑥𝑥(𝑦𝑦) − 𝜎𝜎2𝑦𝑦)𝑓𝑓(𝑥𝑥(𝑦𝑦)) for every  𝑦𝑦 ∈ �0, 𝑏𝑏

𝜎𝜎2
� . 

This function is continous, nonincreasing and 𝑥𝑥(𝑦𝑦) < 𝑏𝑏−𝜎𝜎2𝑦𝑦
𝜎𝜎1

 for  0 ≤ 𝑦𝑦 < 𝑏𝑏
𝜎𝜎2

, 

  𝑥𝑥( 𝑏𝑏
𝜎𝜎2

)= 0. 
Now let us introduce 𝑥𝑥(𝑦𝑦) in  the second equation of (5). We get the equation: 
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(∗) 𝑎𝑎2𝑦𝑦 = (𝑏𝑏 − 𝜎𝜎1𝑥𝑥(𝑦𝑦) − 𝜎𝜎2𝑦𝑦)𝑔𝑔(𝑦𝑦). 

We now prove that this equation has an unique solution in (0, 𝑏𝑏
𝜎𝜎2

). 
 
In order to do this consider the continuous function 

𝜑𝜑(𝑦𝑦) = (𝑏𝑏 − 𝜎𝜎1𝑥𝑥(𝑦𝑦) − 𝜎𝜎2𝑦𝑦)𝑔𝑔(𝑦𝑦) − 𝑎𝑎2𝑦𝑦. 
Remark that 𝜑𝜑(0) > 0 and 𝜑𝜑 � 𝑏𝑏

𝜎𝜎2
� < 0 so at least one solution exists. In order to 

prove uniqueness consider the derivative of 𝜑𝜑 on (0, 𝑏𝑏
𝜎𝜎2

); one obtains 
𝜑𝜑′(𝑦𝑦) = (−𝜎𝜎1𝑥𝑥′(𝑦𝑦) − 𝜎𝜎2)𝑔𝑔(𝑦𝑦) + (𝑏𝑏 − 𝜎𝜎1𝑥𝑥(𝑦𝑦) − 𝜎𝜎2𝑦𝑦)𝑔𝑔′(𝑦𝑦) − 𝑎𝑎2; 

by using the implicit function theorem we have that  

𝑥𝑥 ′(𝑦𝑦) = −
𝜎𝜎2𝑓𝑓(𝑦𝑦)

𝑎𝑎1 + 𝜎𝜎1𝑓𝑓(𝑦𝑦) − (𝑏𝑏 − 𝜎𝜎1𝑥𝑥(𝑦𝑦) − 𝜎𝜎2𝑦𝑦)𝑓𝑓 ′(𝑦𝑦)
 

and we see that if  −𝜎𝜎1𝑥𝑥′(𝑦𝑦) − 𝜎𝜎2 ≤ 0 then 𝜑𝜑′(𝑦𝑦) < 0 and so the uniqueness of 
the solution will follow.  
But 

𝜎𝜎1𝜎𝜎2𝑓𝑓(𝑦𝑦)
𝑎𝑎1 + 𝜎𝜎1𝑓𝑓(𝑦𝑦) − (𝑏𝑏 − 𝜎𝜎1𝑥𝑥(𝑦𝑦)− 𝜎𝜎2𝑦𝑦)𝑓𝑓 ′(𝑦𝑦)

− 𝜎𝜎2 =

=
𝜎𝜎2(𝑏𝑏 − 𝜎𝜎1𝑥𝑥(𝑦𝑦) + 𝜎𝜎2𝑦𝑦)𝑓𝑓 ′(𝑦𝑦) − 𝑎𝑎1𝜎𝜎2

𝑎𝑎1 + 𝜎𝜎1𝑓𝑓(𝑦𝑦) − (𝑏𝑏 − 𝜎𝜎1𝑥𝑥(𝑦𝑦) − 𝜎𝜎2𝑦𝑦)𝑓𝑓 ′(𝑦𝑦)
< 0 

and so we have the following: 
Theorem. The system (4) has an unique solution (𝑐𝑐10, 𝑐𝑐20,𝑚𝑚0). 
 
 
 Stability. 
The jacobian matrix of the system (3) is 
 

      J  = �
−(𝑘𝑘1− + 𝜎𝜎1) + 𝑘𝑘1+𝑚𝑚𝑚𝑚′ 0 𝑘𝑘1+𝑓𝑓

0 −(𝑘𝑘2− + 𝜎𝜎2) + 𝑘𝑘2+𝑚𝑚𝑚𝑚′ 𝑘𝑘2+𝑔𝑔
𝑘𝑘1− − 𝑘𝑘1+𝑚𝑚𝑚𝑚′ 𝑘𝑘2− − 𝑘𝑘2+𝑚𝑚𝑚𝑚′ −𝑑𝑑 − 𝑘𝑘1+𝑓𝑓 − 𝑘𝑘2+𝑔𝑔

� 

 
Let us make the notations : 
 𝐴𝐴 = (𝑘𝑘1− + 𝜎𝜎1) − 𝑘𝑘1+𝑚𝑚𝑓𝑓 ′ ,𝐵𝐵 = (𝑘𝑘2− + 𝜎𝜎2) − 𝑘𝑘2+𝑚𝑚𝑔𝑔′,   𝐶𝐶 =  𝑑𝑑 + 𝑘𝑘1+𝑓𝑓 + 𝑘𝑘2+𝑔𝑔 , 
𝑢𝑢 = 𝑘𝑘1+𝑓𝑓, 𝑣𝑣 = 𝑘𝑘2+𝑔𝑔,𝛽𝛽 = 𝑘𝑘1− − 𝑘𝑘1+𝑚𝑚𝑓𝑓 ′, 𝛾𝛾 =  𝑘𝑘2− − 𝑘𝑘2+𝑚𝑚𝑔𝑔′.   
Clearly 𝐴𝐴,𝐵𝐵,𝐶𝐶, 𝑢𝑢, 𝑣𝑣,𝛽𝛽, 𝛾𝛾 > 0 and 𝐴𝐴 > 𝛽𝛽,𝐵𝐵 > 𝛾𝛾,𝐶𝐶 > 𝑢𝑢 + 𝑣𝑣 . 
 
The matrix becomes, 
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𝐽𝐽 = �
−𝐴𝐴 0 𝑢𝑢
0 −𝐵𝐵 𝑣𝑣
𝛽𝛽 𝛾𝛾 −𝐶𝐶

�  which is similar to  �
−𝐴𝐴 0 −𝑢𝑢
0 −𝐵𝐵 −𝑣𝑣
−𝛽𝛽 −𝛾𝛾 −𝐶𝐶

�  .  

In order to prove the stability of 𝐽𝐽 is enough to prove the positive stability of the 
matrix 

𝑀𝑀 = �
𝐴𝐴 0 𝑢𝑢
0 𝐵𝐵 𝑣𝑣
𝛽𝛽 𝛾𝛾 𝐶𝐶

�  . This is a P-matrix (all principal minors are positive).  

Indeed the only not obvious fact is that det𝑀𝑀 > 0. 
But det𝑀𝑀 = 𝐴𝐴(𝐵𝐵𝐵𝐵 − 𝑣𝑣𝑣𝑣) − 𝐵𝐵𝐵𝐵𝐵𝐵 > 𝐴𝐴(𝐵𝐵(𝑢𝑢 + 𝑣𝑣) − 𝑣𝑣𝑣𝑣) − 𝐵𝐵𝐵𝐵𝐵𝐵 = 

= 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵(𝐴𝐴 − 𝛽𝛽) + 𝐴𝐴𝐴𝐴(𝐵𝐵 − 𝛾𝛾) > 0 . 
For a 3× 3 P-matrix (𝑥𝑥𝑖𝑖𝑖𝑖) the condition for positive stability is 

𝑥𝑥11𝑥𝑥22𝑥𝑥33 > 𝑥𝑥13𝑥𝑥32𝑥𝑥21+𝑥𝑥12𝑥𝑥23𝑥𝑥31
2

 .  
The matrix 𝑀𝑀 obviously satisfies this condition. 
 
Theorem. The unique equilibrium of the system (3) is asymptotically stable. 
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