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EXISTENCE AND STABILITY OF EQUILIBRIA
OF SOME ODE SYSTEMS

Paul FLONDOR!

The existence and stability of equilibria of some ODE system connected
with some models in biology are considered.
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Introduction
In the following the existence and stability of equilibria of two differential
systems are considered. This kind of systems is used to model some enzymatic
reactions in biology [1,3]. A similar analysis was given for a somewhat different
system in [2]. The notations used have their origin in the biological problems and
we keep them as such. For the interpretation of the constants see [1,2].

I. Consider the system of ODE:

¢ ==k~ +0o)c+k*mf(c)
(1)
m =b—dm—k™mf(c)+k ¢

inD = (0,2) x (0,00); b,d, k*k~,0 >0, feC0,Z], Z>0,
f(c) >0,f(Z) = 0, fstrictly decreasing, ¢ = c(t), m =m(t), t =0 .
All these conditions are natural in the biological case.

Example. f(c) =Z —c.

The study of the existence of global solutions of (1) can be done along the
same lines of a similar discussion in [2] and we omit it.

Proposition. The system (1) is cooperative.

Proof. Let us denote by F, G the right hands of the system. In fact we have:

Fn=k*f(c)>0inD,G. = —k*mf'(c)+ k™ > 0.

It follows, for example, that the sets D,, and D__ are invariant [5] (see also the
figure below).
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Fig.1 Phase portrait for the case f(c) =Z — ¢

Proposition. There are no periodic solutions of (1).
Proof. F, = —(k~ +0) + ktmf'(c) <0,G,, = —d —k*f(c) <0, and
the result follows from the Bendixon criterion.

Finding the equilibria.
In order to determine the equilibria of the system (1) we need to solve the
(algebraic) system

—(k™+0)c+ktmf(c)=0

(2)
b—dm—k™mf(c)+k c=0

By adding the equations we get b = dm + oc (a condition which is

independent off). So we have m = % and from the first equation of (2) we get

(k™ +0)d
kt

and

that (k™ +o)c = k™ %f(c) . Let us denote, for the moment, a =
define g(c) = (b — ac)f(c) — ac.

Then, g(0) = bf(0) >0 and g(Z) = —aZ < 0 so there is a point ¢, €
(0,Z) such that g(c,) = 0.
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Butas g'(c) = —af(c) + (b —oc)f (c) —a < 0, g is strictly decreasing
and so ¢, is the unique solution, in (0, Z), of the equation g(c) = 0.

Remark that if g <Zweget ¢, < g . We proved this way the following:

Theorem. The system (1) has an unique equilibrium in (cy, my), mgy =
, inD. Moreover ¢, < min {b Z}.

-
g

Remark. If f < g and if s, c4o the solutions corresponding to f, g then

b—O'CO

CfO < CgO-

It would be useful to study the dependence of ¢, on b; for example, one
can consider b a control parameter. In order to do that let us suppose, making a
choice, that b < oZ and apply the implicit function theorem to the equation
h(c,b) = (b — ac)f(c) — ac = 0 (the first equality being a notation) . We have
that: h, = —of + (b—oc)f —a <0 , h,=f >0 so the globally defined
function (see the previous proof) c,(b) is of class C'and increasing.
Moreover we have that 0 < ¢y(b) < %- Extend this function by putting c¢,(0) = 0

and observe that we get a continuous function.

Stability.
The Jacobian matrix of the system (1) is:

Jem) = (—(k‘ +0) + ktmf (c) k*f(c) )

—k*mf'(c) + k- —d —k*f(c)

As easy computation shows that det/(c,m) > 0 and tr/(c,m) < 0.
It follows that the matrix J(c, m) is stable for every (c,m).
(It is the "form™ of the matrix which matters). So we obtain the following:

Theorem. The unique echilibrium of the system (1) is asymptotically stable.
In fact, one can prove that the equilibrium is globally asymptotically stable.
I1. Consider the system:

¢; = —(ki + o)cy + kimf(c;)
c; = —(k; + 03)c; + k3mg(cy) 3
m =b—dm—kimf(c)) — kimg(c,) + kic, +kc,
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The conditions on the coefficients are similar to those of (1). The functions f €
C1[0,Z,], g € C*[0, Z,] and have similar properties of those in (1).
We shall consider the problem of the existence and stability of equilibria of (3).

Finding the equilibrium.
For existence of equilibria we need to solve the system:
—(ki +0)cy +kimf(c) =0
—(k; + 03)c, + kzmg(cy) =0 4)
b —dm—kimf(c;) — kimg(c,) +kici+k;c, =0

By adding the equations we get that b = dm + o;c; + g,c, (independent of
f9).

It follows that m =

b—O'1C1—O'2C2

and from the first two equations we obtain the

system:
a;c; = (b —o0y¢1 — 03¢3)f(€1)
ayc; = (b —o1¢; — 0,¢2)g(c2)
kT d k5 d
where q, = $atad o (keon)
kl kZ

Let us get rid of some indices and put ¢; = x, ¢, = y. The system becomes:

a;x = (b —oyx — 0, y)f (x)
®)
ay = (b —o1x — 0,¥)9(y)

Obviously one can suppose b > g;x + d,y.

The system (5) will be solved by substitution. By using the result for the system
(2) we can solve the first equation of (5) with respect to x, for every 0 < y < 03.

2
We obtain a function x = x(y) satisfying the equation

a:x(y) = (b~ 01x(y) = 02)f (x(z)) for every y € [0, 2]

This function is continous, nonincreasing and x(y) < b2 for 0 < y < 63,

b g1 2
X(J—Z): 0.

Now let us introduce x(y) in the second equation of (5). We get the equation:
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(*) azy = (b — 01x(y) — 027)9(¥).
We now prove that this equation has an unique solution in (0, 63).
2

In order to do this consider the continuous function
) = (b - o1x(y) —02y)g(y) — ay.
Remark that ¢(0) > 0 and ¢ (b) < 0 so at least one solution exists. In order to

02

prove uniqueness consider the derivative of ¢ on (0, 03); one obtains
2

9'(y) = (mox'(y) — ) g(¥) + (b — 0:1x(yY) — 5:9)9'(¥) — az;
by using the implicit function theorem we have that

a2f ()

) = e 0 = b — 00D — )
and we see that if —a;x'(y) — g, < 0 then ¢ (y) < 0 and so the uniqueness of
the solution will follow.
But

01021 (¥) o =
a; + o1 f(y) — (b= o1x(y) — a9)f '(¥) , 2
_ ob—0x)+ay)f ) —ao,
a; + o1 f(y) — (b —o1x(y) — 029)f ' (¥)
and so we have the following:
Theorem. The system (4) has an unique solution (cy, ¢z, Mo)-

Stability.
The jacobian matrix of the system (3) is
—(ki + 01) + kimf’ 0 ki f
J = 0 —(k; + 03) + kimg' kig
ky — kimf’ ky —kimg' —d—kif—kig

Let us make the notations :

A= (ki +0)—kimf ,B=(k; +0,) —kimg, C=d+kif+kig,
u=kifv=kigB=ki —kimf,y=k; —kimg.

Clearly A,B,C,u,v,B,y >0and A > B,B>y,C >u+v.

The matrix becomes,
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—-A 0 u -A 0 -u
Ji =< 0 -B v ) which is similar to ( 0 -B —v) :

B v =C B -~y ~C
In order to prove the stability of J is enough to prove the positive stability of the
matrix

A 0 u
M = <O B v) . This is a P-matrix (all principal minors are positive).
B v C
Indeed the only not obvious fact is that detM > 0.
But detM = A(BC —vy) — Bufs > A(B(u+v) —vy) — Buf =
= ABu + ABv — Avy — Buff = Bu(A—B) + Av(B—y) > 0.
For a 3x 3 P-matrix (x;;) the condition for positive stability is

X13X32X21+X12X23X31
X11X22X33 > > :

The matrix M obviously satisfies this condition.

Theorem. The unique equilibrium of the system (3) is asymptotically stable.
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