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DIFFERENT BASES IN INVESTIGATION OF 3
√
2

Mitja Lakner1, Peter Petek2, Marjeta Škapin Rugelj3

The problem tackled is the nature of the continued fraction expansion of
3
√
2: are the partial quotients bounded or not. Numerical experiments suggest an

even stronger result in the lines of Kuzmin statistics. We apply different sets of

bases for the ambient vector space V connected with the adjunction ring Z[ 3
√
2].

As a result we get a criterion for continued fraction convergents in terms of their

coefficient vectors from a lattice.
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1. Introduction

Stability of invariant circles in K.A.M. theory depends on the respective ro-

tation number. The most stable circle has ϕ = −1+
√
5

2 , the golden mean ratio, as
its rotation number, all partial quotients equal bi = 1. As in [8] boundness of par-
tial quotients would be a bonus in representation on a computer. Here however,
experiments strongly suggest the opposite. Also cubic irrationals are interesting
in studying quasiperiodic motion [3], [9]. Here we investigate 3

√
2 and its adjunc-

tion ring. It is a common belief that the partial quotients of 3
√
2 are not bounded,

supported by extensive computations, but no proof.
Even more, computations suggest that their relative frequencies in the limit

obey the Kuzmin law P (bn = k) = log2
(k+1)2

k(k+2) . In [12] several algebraic numbers

were used in computations, among them 3
√
2, 4

√
2, 5

√
2 and good accordance was found

with Kuzmin’s statistics, for 3
√
2 even too good. So later in [6] and [2] larger samples

were taken and the anomaly seemed to disappear. We played the same game, only
we had the advantage of more sophistical computation tools that evolved in the
years in between. The experimental results supporting of the stronger hypothesis
instigated us to try towards some theoretical results.

Questions about ”big” partial quotients still linger and tease us, although some
explanation was given in a special case, using elliptic modular functions [13], [4]. In
this paper we work towards the proof of
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Hypothesis. The partial quotients of 3
√
2 are not bounded.

Only a very limited partial result is given, helping to recognize possible convergents
and estimating the next partial quotient.

2. Adjunction ring Z[ 3
√
2]

In the adjunction ring Z[ 3
√
2] we have the unit ρ = 1+ 3

√
2+ 3

√
4 and its inverse

σ = −1 + 3
√
2, ρσ = 1. Obviously the continued fraction expansions for 3

√
2 and σ

differ only in the starting partial quotient, so we may consider approximations to σ.
In order to improve approximations, we construct a series of vector space bases of
R3.

A multiplicative norm is defined in Z[ 3
√
2] as follows: for x = a+ b 3

√
2 + c 3

√
4,

its norm is N(x) = a3 +2b3 +4c3 − 6abc = x · x′ · x′′ where x′ = a+ωb 3
√
2+ω2c 3

√
4,

x′′ = a+ ω2b 3
√
2 + ωc 3

√
4 and ω = e

2πi
3 is 3rd root of unity.

Division in general leads to the corresponding field Q[ 3
√
2]. Carrying out the

rationalization of the denominator as in

1

x
=

x′ · x′′

N(x)
=

a2 − 2bc+ (2c2 − ab) 3
√
2 + (b2 − ac) 3

√
4

N(x)

gives the elements of Q[ 3
√
2] in the form a+ b 3

√
2 + c 3

√
4 where a, b, c are fractions.

3. The ambient vector space V

Instead of (1, 3
√
2, 3

√
4) we use the algebraic basis (ρ, 1, σ) and elements a +

b 3
√
2 + c 3

√
4 = w of Z[ 3

√
2] are expressed by

w = x · ρ+ y · 1 + z · σ
= c · ρ+ (a− 2c+ b) · 1 + (b− c) · σ.

Now, let V = R3 be the 3-dimensional space endowed with the usual scalar product
⟨a,b⟩ and cross product a × b. Vectors can be written as ordered triplets V =
{v = (x, y, z);x, y, z ∈ R} and we define a linear mapping η : Z[ 3

√
2] → Z3 ⊂ V by

η(x · ρ + y · 1 + z · σ) = (x, y, z), the resulting image consisting of all vectors with
integer entries, multiplication inherited from Z[ 3

√
2]. Taking into account that

x · ρ+ y · 1 + z · σ = (x+ y − z) + (x+ z)
3
√
2 + x

3
√
4

we can define the norm function in the whole V :

Ñ(x, y, z) = (x+ y − z)3 + 2(x+ z)3 + 4x3 − 6(x+ y − z)(x+ z)x (1)

Multiplication with σ will prove very important and we observe that

η(σ · w) = Sη(w)

where the matrix

S =

 0 0 1
1 0 −3
0 1 −3

 ,

by the way, represents a hyperbolic toral authomorphism [5].
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4. Interaction among different bases in V

The term basis comes in several ways in mathematics. Our discussion needs
it in two appearances:

• as the basis of a number system (ρ in our case),
• as the basis of a vector space (different bases of V here).

The first usage figures in our paper [11], here we are concerned with the second
one. We can think of the basis B0 = ((1, 0, 0), (0, 1, 0), (0, 0, 1)) as the canonical one.
And we shall also write B0 = (s−1, s0, s1) as we shall denote η(σj) = sj , and noting
Ssj = sj+1 we have

s0 = (0, 1, 0), s1 = (0, 0, 1), s2 = (1,−3,−3), s3 = (−3, 10, 6),
s4 = (6,−21,−8), s5 = (−8, 30, 3), s6 = (3,−17, 21),

and we may also need the ones with negative indices
s−1 = (1, 0, 0), s−2 = (3, 3, 1), s−3 = (12, 10, 3),
s−4 = (46, 39, 12), s−5 = (177, 150, 46), s−6 = (681, 577, 177),

as well as the inverse matrix

S−1 =

3 1 0
3 0 1
1 0 0

 ,

which we also meet in the Jacobi-Perron algorithm [1]. Further we define the series
of bases Bj = (sj−1, sj , sj+1) for all integer j. These are good bases for our purposes
as

Lemma 4.1. Elements of Z3 have integer coefficients in each basis Bj.

Proof. Let v be an element from Z3. If we multiply expansion

v = αsj−1 + βsj + γsj+1

by integer element matrix S−j , we get vector with integer components

S−jv = αs−1 + βs0 + γs1 = (α, β, γ).

�

Besides the series of bases Bj we also define the conjugate series B∗
j in the

following manner.
For start s∗0 = (1, 0, 0) and with the adjoint matrix

S∗ =

0 1 0
0 0 1
1 −3 −3


we define vectors s∗j+1 = S∗s∗j for positive and negative indices. So we have

s∗−3 = (46, 12, 3), s∗−2 = (12, 3, 1), s∗−1 = (3, 1, 0), s∗0 = (1, 0, 0),
s∗1 = (0, 0, 1), s∗2 = (0, 1,−3), s∗3 = (1,−3, 6).

Remark 4.2. Comparing with the vectors sj = (xj , yj , zj) we see that

s∗j = (xj−1, xj , xj+1) = (zj−2, zj−1, zj).
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The bases series B∗
j = (s∗j−1, s

∗
j , s

∗
j+1) again providing integer coefficients for

Z[ 3
√
2]. The two bases series shall be useful in further computations.
The action of linear transformation S is best understood in terms of its eigen-

values and eigenspaces. One eigenvalue is real, smaller then 1, and two are complex
conjugate greater than 1

λ1 = σ = −1 + 3
√
2,

λ2 = σ′ = −1 + ω 3
√
2 = −1−

3√2
2 + i

2

√
3 3
√
2,

λ3 = σ′′ = −1 + ω2 3
√
2 = −1−

3√2
2 − i

2

√
3 3
√
2.

The eigenvectors being h and g ± ik where

h = 1
6(

3
√
2, 2− 2 3

√
2 + 3

√
4,− 3

√
2 + 3

√
4)

.
= (0.209987, 0.177926, 0.05458),

g = 1
12(−

3
√
2, 4 + 2 3

√
2− 3

√
4, 3

√
2− 3

√
4)

.
= (−0.104993, 0.411037,−0.02729),

k =
√
3

12 (
3
√
2,−2 3

√
2− 3

√
4,− 3

√
2− 3

√
4)

.
= (0.181854,−0.592829,−0.410976).

We can also compute the rotation angle θ = π − arctan
√
3 3√2

2+ 3√2

.
= 146.20 and after

some computation we can express sj = σjh + 2ρ
j
2 (g cos(jθ) − k sin(jθ)), Sg =√

ρ(g cos θ − k sin θ) and Sk =
√
ρ(g sin θ + k cos θ).

The norm (1) takes zero value on the union of the eigenplane P spanned by
vectors g, k and the eigenline of h. Except for the origin, there is no rational point
(x, y, z) of zero norm.

The basic vectors sj with increasing positive j are approaching the invariant
plane and for negative j being almost colinear to the eigenvector h.

On the other hand we can construct the eigenbasis Be = (h,g,k) and the
conjugate eigenbasis.

To make the conjugate eigenbasis, we compute the vector products

h∗ = g × k, g∗ = h× k, k∗ = h× g

and they constitute the conjugate eigenbasis B∗
e

h∗ = −
√
3

36 (1 + 3
√
2+ 3

√
4, 1,−1+ 3

√
2)

.
= (−0.185104,−0.0481125,−0.0125055),

g∗ = −
√
3

36 (−2 + 3
√
2 + 3

√
4,−2, 2 + 3

√
2)

.
= (−0.0407668, 0.096225,−0.156843),

k∗ = 1
12(

3
√
2− 3

√
4, 0, 3

√
2)

.
= (−0.02729, 0, 0.104993).

Later we shall need also the mixed product

[h,g,k] =
−
√
3

36
= −M

.
= −0.0481125.

The plane P ∗ of the vectors g∗,k∗ is the invariant plane of S∗.

Lemma 4.3. The vectors h∗,g∗ ± ik∗ are eigenvectors of the matrix S∗.
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Proof. First we find the scalar products:

⟨S∗h∗,g⟩ = ⟨g × k, Sg⟩ = ⟨g × k,
√
ρ(g cos θ − k sin θ)⟩ = 0,

⟨S∗h∗,k⟩ = ⟨g × k, Sk⟩ = ⟨g × k,
√
ρ(g sin θ + k cos θ)⟩ = 0.

So it is clear S∗h∗ is orthogonal to both g and k and therefore colinear to h∗ itself,
therefore an eigenvector with a real eigenvalue, the only one being σ, therefore
S∗h∗ = σh∗. The other two cases demand a little more work to tell apart the two
complex eigenvalues, of course unless we want to go into direct computation. �

We can also express the vectors s∗j in terms of the conjugate eigenbasis

s∗j = −2
√
3

3
√
2
(
σjh∗ + ρ

j
2 (g∗ cos(jθ − π

3
)− k∗ sin(jθ − π

3
))
)

and infer a connection between the basis and conjugate basis via the matrix

T =

3 1 0
1 0 0
0 0 1

 ,

namely s∗j = T sj and also connecting the eigenbasis with conjugate eigenbasis

Th = −2
√
3

3
√
2h∗, Tg =

√
3 3
√
2

2
(−g∗ −

√
3k∗), Tk =

√
3 3
√
2

2
(
√
3g∗ − k∗).

We shall also need some scalar and cross products of the basis vectors.

Lemma 4.4. The scalar products of basis vectors are as follows:

⟨s∗n, sk⟩ = ⟨s∗0, sk+n⟩

with ⟨s∗0, s−2⟩ = 3, ⟨s∗0, s−1⟩ = 1, ⟨s∗0, s0⟩ = 0, ⟨s∗0, s1⟩ = 0, ⟨s∗0, s2⟩ = 1, and ⟨s∗0, s3⟩ =
−3.

Proof. Since ⟨s∗n, sk⟩ = ⟨S∗ns∗0, sk⟩ = ⟨s∗0, Snsk⟩ = ⟨s∗0, sk+n⟩ we only need to read off
the first component of sj as s∗0 = (1, 0, 0). �

Lemma 4.5. For two consecutive basis vectors we have the cross product

s−j × s−j+1 = s∗j

and if we jump by one index: s−j−1 × s−j+1 = −s∗j−1 + 3s∗j .

Proof. Setting unknown coefficients α, β, γ: s−j × s−j+1 = αs∗j−1+βs∗j + γs∗j+1 and
taking scalar products in turn with s−j−1, s−j , s−j+1 we get

1 = α · 3 + β · 1 + γ · 0

0 = α · 1 + β · 0 + γ · 0

0 = α · 0 + β · 0 + γ · 1

and from here α = γ = 0 and β = 1. Likewise we prove the second formula. �
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5. The shortest coefficient vector and convergents

The vector (0, p,−q) = η(p− qσ) can as any vector be expanded with respect
to any basis Bj and the coefficients are integers.

In [11], using the number system with basis ρ, we expressed (0, p,−q) with a
wider choice of vectors, but the coefficients were limited to 0,1,2 or 3: (0, p,−q) =∑n

j=k ajsj . Whereas here, since each time only 3 vectors form the algebraic basis,
we must allow all integer coefficients.

Should p
q be a convergent to σ, we can control the size of the these coefficients,

provided j has been chosen appropriately.

Definition 5.1. Let p
q be a convergent to σ and a = (a1, a2, a3) the coordinates of

η(p − qσ) = (0, p,−q) = a1sj−1 + a2sj + a3sj+1 in the basis Bj , and |ρ−
j
4a| length

of reduced coefficient vector. Basis Bk is called appropriate for the convergent p
q , if

the vector a′ = ρ−
k
4 a is the shortest of all vectors ρ−

j
4a, j ∈ N.

Example 5.2. From the table of convergents [11, 15] for σ we take p = 1251, q =
4813 that is just preceding the relatively big partial quotient b11 = 14, so that
|δ| < 1

14 in the estimate p− qσ = δ
q .

Which j should we take to make the vector a′ as small as possible? Here
are some results in the Table 1. We see that the appropriate j and Bj to give the
shortest a′ is j = 11.

j a |a′|
8 (20,-69,-33) 5.34

9 (-9,27,20) 1.68

10 (0,-7,-9) 0.39

11 (-7,-9,0) 0.28

12 (-30,-21,-7) 0.65

13 (-111,-97,-30) 1.89

Table 1. Appropriate vector

Theorem 5.3. Let p
q be a convergent to σ, Bj its appropriate basis. Then for its

reduced coefficient vector we have |a′| < 2.01.

Proof. We can write p = qσ + δ
q with |δ| < 1

(0, p,−q) = ps0 − qs1 = p(h+ 2g)− q(σh+ 2
√
ρ(g cos θ − k sin θ))

and when we rearrange the terms

(0, p,−q) =
δ

q
h+ q

3
√
2
√
3(
√
3g + k) +

2δ

q
g,

we see what happens to either term under action of S−j with growing j. The first
term grows exponentially with ρj in the direction of the eigenvector h, the second
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decreases with ρ−
j
2 and rotates in the eigenplane, and the last term also decreases

a = S−j(0, p,−q) = ρj
δ

q
h+ ρ−

j
2 q2

3
√
2
√
3(g cos(jθ +

π

6
) + k sin(jθ +

π

6
))

+ ρ−
j
2
2δ

q
(g cos(jθ) + k sin(jθ)). (2)

But if we put Kj = qρ−
3j
4 we get

a = S−j(0, p,−q) = ρ
j
4
δ

Kj
h+ ρ

j
4Kj2

3
√
2
√
3(g cos(jθ +

π

6
) + k sin(jθ +

π

6
))

+ ρ−
5j
2
2δ

Kj
(g cos(jθ) + k sin(jθ)).

First we represent the vector a′ = ρ−
j
4a = a′′ + a′′′ with

a′′ =
δ

Kj
h+ 2Kj

3
√
2
√
3(g cosαj + k sinαj),

a′′′ = ρ−
5j
4
2δ

Kj
(g cos jθ + k sin jθ),

where αj = jθ + π
6 . As for a′′ we write the square of its norm as a sum of three

terms

|a′′|2 =
δ2|h|2

K2
j

+ 12
3
√
4K2

j |g cosαj + k sinαj |2 + 4δ
3
√
2
√
3⟨h,g cosαj + k sinαj⟩

= T1 + T2 + T3.

The last term is estimated independently of Kj

|T3| < 4 · 1 · 3
√
2
√
3max

α∈R
⟨h,g cosα+ k sinα⟩ < 0.894896. (3)

Denote F (Kj , αj) = T1+T2 =
δ2|h|2
K2

j
+12 3

√
4K2

j |g cosαj +k sinαj |2 and to eliminate

the dependence on αj and δ we define another function

G(Kj) =
|h|2

K2
j

+ 12
3
√
4K2

j max
α∈R

|g cosα+ k sinα|2

or inserting the numerical values

G(Kj) <
0.07873129

K2
j

+ 12.95559953K2
j = H(Kj),

observing that F (Kj , αj) < H(Kj). The values of both functions depend only on
the choice of j, the variable Kj assumes discrete values from a geometric series as

Kj = qρ−
3j
4 . The function H(x) = a

x2 +bx2 as a function of continous variable x > 0

features just one minimum at x0 = 4
√

a
b with value H(x0) = 2

√
ab, but the discrete

variable Kj shall almost certainly miss this minimum point. We shall further denote
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by x′ the unique solution to the equation H(x′) = H(x′ρ−
3
4 ). Indeed the equation

H(x′) = H(x′ρ−
3
4 ) reads

a

x2
+ bx2 =

a

x2ρ−
3
2

+ bx2ρ−
3
2

and we can easily solve it x′ = 4
√

a
bρ

3
8 = x0ρ

3
8 , with H(x′) =

√
ab(ρ

3
4 + ρ−

3
4 ).

However within the interval [x′ρ−
3
4 , x′] there is exactly one Kj and this defines

also the choice of j. To determine j we have

x′ρ−
3
4 < Kj < x′,

x′ρ−
3
4 < qρ−

3j
4 < x′.

Taking logarithms lnx′ − 3
4 ln ρ < ln q − 3j

4 ln ρ < lnx′ and dividing by (−3
4 ln ρ)

we get

1− 4 lnx′

3 ln ρ
> j − 4 ln q

3 ln ρ
> −4 lnx′

3 ln ρ
, (4)

1 +
4(ln q − lnx′)

3 ln ρ
> j >

4(ln q − lnx′)

3 ln ρ
,

j =

[
1 +

4(ln q − lnx′)

3 ln ρ

]
∈ N.

Thus we have F (Kj , αj) < H(Kj) < H(x′).

Inserting numerical values gives x0 = 0.279205, x′ = 0.462761, x′ρ−
3
4 = 0.168457,

H(x′) = 3.142064 and so F (K,α) < 3.142064, which together with the estimate (3)
yields

|a′′| <
√
3.142064 + 0.894896 < 2.009219.

Let take ε = 2.01− 2.009219 = 0.000781. We approximate a′′′

|a′′′| < ρ−
5j
4
2 · 1
Kj

max
θ∈R

|g cos θ + k sin θ| < ρ−
5j
4
1.649395

x′ρ−
3
4

< ε

from where we get j ≥ 6 and the desired inequality follows for these j.
If j ≤ 5 we get from the inequality (4) condition on q

5− 4 ln q

3 ln ρ
≥ j − 4 ln q

3 ln ρ
> −4 lnx′

3 ln ρ

and q has to be smaller than 73. There is only five convergents with such q and
from the Table 2 we see, that computed |a′| satisfies our inequality. �

Remark 5.4. Over the first 10000 convergents we numerically find that |a′| < 1.753.
The adjacent Figure 1 shows the statistics in dots, |a′|, for these convergents.

Also the other way round, if coefficients are small enough, we are dealing with
a convergent. The following theorem is however a rather coarse one.

Theorem 5.5. Let a = (a1, a2, a3) ∈ Z3 be the coefficient vector for the basis Bj,

j ∈ N such that ⟨a, s∗j ⟩ = 0 and |a| < 1
3ρ

j
4 . Then the resulting vector a1sj−1+a2sj +

a3sj+1 = (0, p,−q) yields a continous fraction convergent p
q .
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p/q |a′|
1/3 1.151

1/4 0.581

6/23 0.928

7/27 0.870

13/50 0.415

Table 2. First five convergents

Out[106]=

2000 4000 6000 8000 10 000

0.5

1.0

1.5

Figure 1. Length of vectors a′

Proof. We multiply the equation (2) with the conjugate vectors h∗,g∗,k∗ to obtain

⟨h∗,a⟩ = ρj
δ

q
⟨h∗,h⟩ (5)

⟨g∗,a⟩ = ρ−
j
2 q2

3
√
2
√
3⟨g∗,g⟩ cos(jθ + π

6
) + ρ−

j
2
2δ

q
⟨g∗,g⟩ cos(jθ) (6)

⟨k∗,a⟩ = ρ−
j
2 q2

3
√
2
√
3⟨k∗,k⟩ sin(jθ + π

6
) + ρ−

j
2
2δ

q
⟨k∗,k⟩ sin(jθ) (7)

Inserting the conditions of the theorem, we can estimate |δ|
q using (5):

|δ|
q

< ρ−
3j
4
|h∗|
3M

. (8)

Using (6) and (7) we get

q · 2 3
√
2
√
3 cos(jθ +

π

6
)M = ρ

j
2 ⟨g∗,a⟩ − 2

δ

q
M cos(jθ),

q · 2 3
√
2
√
3 sin(jθ +

π

6
)M = −ρ

j
2 ⟨k∗,a⟩ − 2

δ

q
M sin(jθ).

We square and add up the last two equations to eliminate the sines and cosines

q2(2
3
√
2
√
3M)2 = ρj(⟨g∗,a⟩2+⟨k∗,a⟩2)+ρ

j
2
4δ

q
M(⟨k∗,a⟩ cos(jθ)−⟨g∗,a⟩ sin(jθ))+4δ2

q2
M2
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and estimate q2(2 3
√
2
√
3M)2 < ρ

3j
2

|g∗|2+|k∗|2
9 + 4|h∗|

9 (|g∗|+ |k∗|) + ρ−
3j
2

4|h∗|2
9 .

Using (8) and last inequality we can estimate

|δ| < |h∗|
18M2 3

√
2
√
3

√
|g∗|2 + |k∗|2 + 4ρ−

3j
2 |h∗|(|g∗|+ |k∗|) + 4ρ−3j |h∗|2

which is smaller than 0.48 for j ≥ 2. For j = 1 condition |a| < 1
3ρ

1
4 < 0.47 implies

nonexistance of such integer vector. So we show |δ| < 1
2 , that is enough for our

conclusion. �

From the proof we can also infer the implications of an even smaller |a| on the
|δ| and consecutively the next partial quotient B.

Lemma 5.6. If in the above theorem |a| < ∆
3 ρ

j
4 ,∆ < 1, we can estimate the next

partial quotient B to the convergent p
q by

B >
2

∆2
− 2.

Proof. From the well known estimate [10]

1

(B + 2)q2
<

∣∣∣∣pq − σ

∣∣∣∣ < 1

Bq2

we find 1
B+2 < |δ| or B > 1

|δ| − 2.

But from the above proof, if instead of 1
3 , we put

∆
3 , we have |δ| < ∆2 · 0.48 < ∆2 · 12

and the estimate from lemma follows. �

Example 5.7. In our numerical experiment we found for j = 750, ∆ = 0.03906, next
B = 4941 = b619 (well known big partial quotient [11, 15]) with lemma suggesting
B > 1308.

5.1. The problem of the shortest lattice vector

Our case the lattice Λj = {a ∈ Z3,a ⊥ s∗j}. Gauss reduction process mimics

the euclidian algorithm. Let’s have a basis z1, z2, such that |z1| < |z2|. Choose k so
that

−1

2
|z1|2 < ⟨z2 − kz1, z1⟩ ≤

1

2
|z1|2

so k ∈ Z is the nearest integer to ⟨z2,z1⟩
|z1|2 .

Now, set the new z2 := z2 − kz1 and compare: if |z1| < |z2| the process
terminates, our shortest vector is z1, else we interchange z1 ↔ z2 and start again.
In some steps we get the shortest lattice vector [14].

Remark 5.8. In higher dimensions the so called LLL-algorithm [14], [7] is similar
to Gramm-Schmidt orthogonalization to generalize the Gauss process.

Example 5.9. Here is how we carried out this process for j = 7, i.e. z1 = s−6,
z2 = s−7 and we have the shortest vector a = (−7, 1, 0). Combining −7s6 + 1s7 =
(0, 59,−227) we read off the quotient 59

227 which does appear in the sequence of
approximants (Table 3).



Different bases in investigation of 3
√
2 161

n z1 z2 |z1|2 ⟨z1, z2⟩ k

1 (681,577,177) (2620,2220,681) 828019 3185697 4

2 (-104,-88,-27) (681,577,177) 19289 -126379 -7

3 (-47,-39,-12) (-104,-88,-27) 3874 8644 2

4 (-10,-10,-3) (-47,-39,-12) 209 896 4

5 (-7,1,0) (-10,-10,-3) 50 60 1

6 (-3,-11,-3) (-7,1,0) 139 10 0

Table 3. Shortest lattice vector

We carried out the shortest vector algorithm for j = 2 until j = 1000. The
resulting |a′| were, as shown in the dotted Figure 2, all below 1. Only 21 of them
did not result in continued fraction approximants (marked with squares).

Out[100]=

500 1000 1500 2000 2500 3000

0.2

0.4

0.6

0.8

1.0

Figure 2. Length of vectors a′ resulting from the shortest vector algorithm

6. χ2-test of distribution of partial quotients

We applied χ2-test to compare observed frequencies of partial quotients of 3
√
2

with theoretical frequencies P (bn = k) = log2
(k+1)2

k(k+2) . Using [15] we computed 75 000

partial quotients and divided them into R groups consisting of numbers 1, 2, 3, . . . ,
R−1 and of all numbers over R−1. Let Oi be the observed frequency of the ith group

and Ei its expected frequency. The value of the test statistic is X2 =
∑R

i=1
(Oi−Ei)

2

Ei
.

If the partial quotients the hypothesized distribution, X2 has, approximately, a χ2

distribution with R − 1 degrees of freedom. Since all the P-values for R ≤ 100 are
above 0.05 we can not reject the hypothesis that the partial quotients of 3

√
2 follow

the distribution law of Kuzmin.
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