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THE MILLING MOMENTS PREDICTION USING A
NEURAL NETWORK MODEL

Elena Luminita OLTEANU', Daniel Petru GHENCEA?, Claudiu Florinel BiSU3

This paper presents an approach to optimize cutting parameters during
milling by using the artificial neural networks (ANN). The aim is to analyze the
cutting parameters influence (feed and cutting speed) on the torsor of mechanical
actions, on the cutting moments respectively. To highlight the cutting moments
generated by the milling process was developed a complex experimental protocol
based on three-dimensional dynamometric measurements. The cutting moments are
integrated and predicted using back-propagation neural networks method. Finally it
is proposed a model that provides a good agreement between the measured values
and calculated numerical values.

Keywords: cutting parameter prediction, cutting moments, milling, artificial
neural network (ANN), cutting power.

1. Introduction

The development of the CNC machine tools with high speed machining
(HSM), of the cutting tools that have high wear resistance, of the metal materials
with high hardness or of the composite materials, requires the adjustment of the
cutting parameters.

There is also a close interdependence between the choice of cutting
parameters and power consumption. The feed, cutting speed and depth of cut are
the cutting process parameters that have direct influence on power consumption.

In order to determine the cutting power, a detailed analysis is required for
the mechanical actions arising from contact tool/chip/workpiece [1, 2, 3, 4, 5, 6].
The cutting forces were intensively studied [7, 8, 9], but the cutting moments still
have need further research [10, 11] demonstrating that they have a large influence
on the power consumption [11, 12]. The calculating formula of cutting power
contains both the forces and cutting moments. The term that includes the cutting
moments can represent up to 50% of the total mechanical power consumed during
the cutting process [3, 12, 13].
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The cutting moments have been taken into account in studies 18 years ago
[1, 14], where the researchers demonstrated the existence of a moment vector
applied directly to the tool tip, and this moment it isn't the exclusive result of an
arm. With the development of the six components dynamometer designed in the
Research Laboratory of the University Bordeaux 1, the moments at the cutting
tools tip have been observed.

The cutting moment’s importance in the cutting processes has been shown
through various studies. The mechanical actions theory is based on the torsor
theory being validated by highlighting of the moments at the tool tip, during
turning [1, 15, 16], drilling [17] and milling [11]. These studies demonstrate that
the power consumed by the M.z moment is considerable. Especially for high
speed machine tools, it is necessary to take into account the moments, because
their importance in the assessment of the cutting power is directly dependent on
the rotational speed of the workpiece in turning or the spindle speed in milling [2].

A theoretical analysis on the cutting moments is difficult to perform and
there are problems in establishing mathematical models and handling of these
models, therefore it is proposed an approach using the artificial neural networks
(ANN) [8].

In recent years, artificial neural networks (ANN) proved to be one of the
most powerful computer modeling techniques and it is successfully used in
various fields of engineering for modeling complex relationships that are difficult
to describe with physical models. Artificial neural networks have been widely
applied in modeling many cutting operations such as turning, drilling and milling
[8]. Several researchers have used artificial neural networks (ANN) to predict the
influence of cutting parameters on the rate of production, the cost of production
[18] or to predict the influence of cutting parameters on surface roughness [19, 20,
21, 22], the tool wear [23, 24] or the cutting force [8, 9].

In this paper, the evolution of the cutting moments with the purpose of
developing a mathematical model able to integrate the complete torsor of the
mechanical actions, it is highlighted. Experimental optimizing of the cutting
parameters involves numerous experimental tests and a solution to this can be
ANN. Neural networks enables the possibility of the mechanical actions
prediction for modeling complex physical phenomena generated in the cutting
process. Regarding this issue, ANN does not require the specific wording of
physical relations with other words they just need the experimental results. Neural
networks are a solution for optimizing the cutting parameters [18] taking into
account the diversity of working conditions that occur during cutting process.
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2. Experimental Setup and Procedure

In this study, a complex experimental setup was designed and realized to
highlight the presence of cutting moments to the cutter tooth tip. Milling tests
have been performed in order to assess the cutting parameters that have influence
on the mechanical action, especially on the cutting moments at the tooth tip of the
milling cutter.

Tests were performed on a vertical machining center with 3 axis type
FIRST MCV300, which can provide 11 kW maximum spindle power and 8000
rpm spindle speed. Workpiece material is 42CrMo4 steel with dimensions
45x88mm, mounted on the dynamometer. In order to perform the moments
evolution analysis at tooth tip it was used a milling cutter with one tooth. The
cutting tool used is a milling cutter type R365-080Q27-S15M of 80 mm diameter,
with insert that has 65° the approach angle. For measuring of the forces and
moments in milling, 9257B Kistler dynamometer was used. Tests were carried out
along the X axis and the correlation between the dynamometers framework and
the machine tool framework was set. Parameters used for mechanical actions
analysis were the feed f. [mm/tooth] and the cutting speed v. [m/min], while the
depth of cut g, [mm] was constant throughout the tests. Therefore, in order to
evaluate the influence of the feed or of the cutting speed was carried out tests with
different levels of feed and different levels of cutting speed, table 1.

Table 1
Feed rate and cutting speed
Exp. a, f Ve
No. [mm] | [mm/tooth] | [m/min]
1 0.050
2 0.075
3 0.100 152.30
4 0.125
5 0.150
6 0.50 125.66
7 150.80
8 0.100 163.36
9 170.93
10 201.06

3. Prediction of cutting moments with artificial neural network

Cutting parameters are the most important factors influencing the process
plans. The optimal selection of cutting parameters leads to a cutting actions
reduction so and the power consumption reduction and thus the reduction of costs.
This study proposes to realize the prediction of cutting parameters using artificial
neural networks (ANN). Neural networks are a very popular tool and proved to be
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very good for solving optimization problems, for adaptive control of machine
tools or for pattern recognition. Using artificial neural networks for fast
determination of optimum cutting parameters during milling is suitable when the
time is not long enough for deep analysis [18].

To use neural networks, more and more commercial software products are
available. For this study was used Visual Gene Developer software 1.7 (Build
762/ 2014, freeware) developed by the Department of Chemical Engineering and
Materials Science - University of California-Davis [25] and is based on a standard
learning algorithm with back-propagation. The starting point for using neural
networks are the numeric data collected from the experimental measurements.

Next it will be presented the ANN prediction of the moments generated in
the milling process. Through this model it’s achieved the cutting parameters
prediction taking into account mechanical actions criterion, where in addition to
the cutting forces are considered the cutting moments.

The back-propagation algorithm is used, one of the best known and with it
can be approximated nonlinear functions as proved to be the cutting moments
evolution in previous studies [26]. To transport the Mgz, M,z and M.r measured
cutting moments at the tooth tip of the milling cutter it’s requires the knowledge
of the F,, F), and F. cutting forces generated by the milling process. Considering
that the research aims the moments analysis, the ANN responds to the three-
dimensional moments prediction. The cutting moments calculated at tooth tip of
the milling cutter on the three axes M.y, M,y and M.y were predicted for different
levels of feed and then of the cutting speed. To validate the ANN model, the
prediction results are compared with measured experimental results.

The choice of the number of neurons, hidden layers, function activation
and training algorithm are very important for satisfactory results.

The optimal number of hidden layers and neurons/hidden layer is difficult
to say before [27]. In general, one hidden layer is sufficient to solve most
problems. Exceptionally, it can use two, at most three hidden layers. Typically,
the neurons number afferent of the input and output layers are dictated by the
nature of the application. Neurons of the hidden structures have very important
role to detect features, regularities contained in training patterns. Too many
hidden neurons/layers can adversely affect the generalization ability of ANN.

At the same time, it leads to increase the volume of the data to be
processed and therefore to the increase of the workout stage duration. A small
number of neurons is not enough to create a proper internal representation of data
and can lead to a big square mean error during the training epochs and thus to a
big error for test data and for workout data. In conclusion, the optimal number of
hidden neurons will be determined experimentally.



The milling moments prediction using an neural network model 145

The input parameters in the model are: the feed and cutting speed while the
cutting moments on the three directions are output variables. The training mode as
well as the routes used in the prediction process is shown in the Fig. 1.
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Fig. 1. Neural network map analysis

Links between levels of the hidden layers nodes through which
information flows are represented by lines that can have a palette of colors from
violet (corresponding to the negative numbers (-1)) to red (corresponding to the
positive numbers (+1)). It notes that in the Fig. 1 predominate the bright green and
turquoise colors, so information flows are concentrated around zero. The width of
the line is proportional to the weight factor in absolute value or the threshold
value.

For the purpose of applying the model are used experimental data
presented by the series of real numbers (for one revolution when the milling cutter
is totally engaged in the workpiece), table 2.
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Table 2
Input and Output data

EXp f Ve F, X F, v F. z MYE A/[yE MzE

No. | [mm/rev] | [m/min] [N] [N] [N] [Nm] [Nm] [Nm]

1 0.050 188.812 175.903 112.580 | 15.100 | 19.337 6.683
2 0.075 278.931 248.963 133.331 | 26.121 | 25.685 | 12.328
3 0.100 152.30 306.457 251.862 172.546 | 28.232 | 28.446 | 11.484
4 0.125 278.901 261.260 128.509 | 26.620 | 22.631 9.993
5 0.150 263.153 337.677 149.017 | 35.979 | 25.283 | 14.692
6 125.66 540.649 377.868 185.791 | 40.118 | 43.531 | 18.022
7 150.80 343.323 296.494 136.001 | 33.058 | 32.254 | 14.380
8 0.100 163.36 590.759 472.839 | 224.243 | 47.920 | 42.441 | 26.529
9 170.93 342,728 281.571 129.913 | 36.378 | 36.338 | 11.801
10 201.06 343 415 354.950 157.791 | 36.306 | 26.928 | 21.628

Because the Visual Developer Gene software (VGD) works with numbers
series contained in the closed interval [-1, 1] the data will be divided so that to fit
in this interval. In this study, it has been considered the following configuration of
neural networks:

1 input variable (feed rate f; cutting speed v.)

3 output variables (cutting moments M.y, My, M-y)

3 hidden layers; 10 neurons on the hidden layer; learning rate - 0.01;
transfer function - hyperbolic tangent;

After setting the neural network configuration, the experimental data were
introduced. The training data set and, then, the data for the prediction have been
loaded.

4, Results and Discussion

To study the evolution and prediction of the cutting moments is chosen the
zone when the milling cutter is totally engaged in the workpiece so as to eliminate
transient effects generated during the milling process. The predictive analysis of
the cutting moments takes into account the qualitative characteristic of the
moment’s evolution in the cutting process.

After running the data shown in table 3 has been obtained:

Table 3
Prediction of cutting moments My, Myn @and M,y by using ANN
Exp. Measured Predicted Error
No. Mg Mg Mg M.y M,y M.y %

[Nm] [Nm] [Nm] [Nm] [Nm] [Nm]

15.100 19.337 6.683 17.190 | 21.268 7.703 | 13.85 9.98 | 15.25

26.121 25.685 12.328 | 25960 | 26.912 14.537 0.62 478 | 17.92

28.232 | 28.446 11.484 | 27.652 | 28.606 11.804 2.05 0.56 2.78

26.620 | 22.631 9.993 26.677 | 24.469 11.507 0.22 8.12 | 15.10

35.979 | 25.283 14.692 34217 | 27.110 15.048 4.90 7.23 242

AN |~ [WN|—

40.118 | 43.531 18.022 | 40.118 | 42.292 16.436 | 0.002 2.84 8.80
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7 33.058 | 32.254 14.380 | 38.283 | 36.789 16.945 | 15.80 | 14.06 | 17.83
8 47.920 | 42.441 26.529 | 43.445 | 38.863 | 22.449 9.33 8.43 | 15.37
9 36.378 | 36.338 11.801 39.343 | 36.614 12.996 8.15 0.75 | 10.12
10 | 36.306 | 26928 | 21.628 | 38.145 | 31.708 18.222 5.06 | 17.74 | 15.74

It is observed that, for feed, the maximum prediction error is 17.92%,
which means that the difference between measured and predicted moments is
around 2.2 Nm. For cutting speed the maximum prediction error is 17.83%, which
means that the difference between measured and predicted moments is around
2.5 Nm.

In the figures below it is presented the cutting moments evolution
according to the feed rate; the measured values was compared with the prediction
of ANN.
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It is presented the cutting moments evolution according to the cutting
speed; the measured values was compared with the prediction of ANN.
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Fig. 5. Moments at the tooth tip of milling cutter M, and M,y according to cutting speed v..
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Fig. 6. Moments at the tooth tip of milling cutter M, and M, yaccording to cutting speed v..
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Fig. 7. Moments at the tooth tip of milling cutter M, and M.y according to cutting speed v,

Mathematical description of the result moments is represented by a 4th
order polynomial function. The cutting moment’s evolution is variable depending
of the cutting parameters and it is influenced by dynamic characteristic of the tool
/chip/workpiece contact.

5. Conclusions

This study presented an approach for the prediction of cutting parameters
during milling using ANN. The tool used for predicting the cutting parameters
with neural network was Visual Gene Developer software. The model which gave
the satisfactory results is a model consists of 1 input layer, 3 hidden layers with 10
neurons and 3 outputs layers. It was used back-propagation learning algorithm.
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The error values for the cutting moments at the feed variation were maximum
17.92% and at the cutting speed variation were maximum 17.83%. The obtained
results show that ANN can easily be used to predict the effects of cutting
parameters on the milling moments. The moments have influence both on the
power consumption and the processing quality, being absolutely necessary to
integrate them in predictive models. By moments prediction it can by predicted
the energy consumed by the process, without having to accomplish measurements
which need time and the process quality is not influenced. Through the operating
algorithm improvement of the neural network it can be obtained much smaller
errors. In perspective, to obtain the most accurate results - the lowest possible
errors, will be essential conducting a campaign of experimental tests with varying
cutting parameters according to an experiences plan that take into account ANN
analysis. For the proposed model it is required determination of the error
coefficients of the model obtained from combining several experimental tests.
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