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RANKING OF SOME MOST COMMONLY USED NON-
TRADITIONAL MACHINING PROCESSES USING ROV AND 

CRITIC METHODS 

Miloš MADIĆ1, Miroslav RADOVANOVIĆ2 

The increased usage of advanced materials in the modern industry has 
resulted in a wider application of non-traditional machining processes (NTMPs). 
The right choice of the most appropriate NTMP is critical to the success and 
competitiveness of a manufacturing company. Selection of the most appropriate 
NTMP for a given machining application can be viewed as a multi-criteria decision 
making (MCDM) problem which involves many conflicting criteria. This paper 
introduces the use of an almost unexplored MCDM method, i.e. range of value 
(ROV) method for solving the NTMPs selection problems. MCDM model for ranking 
four NTMPs such as laser beam cutting, plasma arc cutting, abrasive water-jet 
cutting and oxy-fuel cutting was developed considering nine different techno-
economical criteria. In order to determine the relative significance of considered 
criteria the CRITIC (Criteria Importance through Inter criteria Correlation) method 
was used. The proposed approach offers objective approach and systematical and 
relatively simple computational procedure for determination of complete ranking of 
competitive NTMPs.  

Keywords: Non-traditional machining processes, multi-criteria decision making, 
ROV, CRITIC, ranking. 

1. Introduction 

In today's industry, a number of non-traditional machining processes 
(NTMPs) are increasingly being used for machining of a wide spectrum of 
materials. The NTMPs were developed in response to new and unusual machining 
requirements that could not be satisfied by conventional machining methods. 
These requirements and the resulting commercial and technological importance of 
NTMPs include [1]: (i) the need to machine newly developed metals and non-
metals (having improved technological properties such as high strength, high 
hardness, high toughness, etc.), (ii) the need for unusual and/or complex part 
geometries that cannot be easily accomplished and in some cases are impossible 
to achieve by conventional machining methods, and (iii) the need to avoid surface 
damage that often accompanies the stresses created by conventional machining 
methods. 
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Each NTMP is a complex multi-input/multi-output machining process 
characterized by its unique process capabilities, advantages and limitations. 
Although majority of NTMPs can fulfill the requirements of high surface quality, 
low tolerance, low surface damage, automation, flexibility, productivity etc., the 
best one for a given machining application may not be equally efficient under 
other conditions and requirements. Therefore, NTMPs users must assess different, 
and in some cases opposite criteria, which characterize NTMPs such as material 
removal rate, accuracy, environmental operating characteristics, material 
properties, cost, and the existing constraints to select the most appropriate process 
[2-5]. Moreover, as the price of machine tools for NTMPs is very high it has 
become more and more important to make proper selection since inadequate 
selection has long-term consequences on the business of the entire company. 

To consistently support the above-mentioned selection and deal with a 
number of technical and economic criteria different methodologies were proposed 
in literature. Mourão et al. [2] proposed the use of axiomatic design theory for 
comprehensive analysis of different NTMPs. However, it was observed from the 
literature that different multi-criteria decision making (MCDM) methods were 
predominantly applied to this purpose. Integrated preference ranking organization 
method for enrichment evaluation (PROMETHEE) and geometrical analysis for 
interactive aid (GAIA) method [3], analytic hierarchy process (AHP) and 
technique for order preference by similarity to ideal solution (TOPSIS) methods 
[4, 6], evaluation of mixed data (EVAMIX) method [5], digraph-based approach 
[7], analytic network process (ANP) [8], data envelopment analysis (DEA) 
method [9], fuzzy TOPSIS method [10] and multi-objective optimization on the 
basis of ratio analysis (MOORA) method [11] were previously applied by past 
researchers for solving NTMPs selection problems. 

Although a good amount of research work was already been carried out by 
the past researchers on NTMPs selection and ranking, this paper introduces the 
use of an almost unexplored MCDM method, i.e. the range of value (ROV) 
method. Till date, this method has very limited applications in the machining 
domain. 

In this paper, firstly a MCDM model for ranking four NTMPs such as 
laser beam cutting (LBC), plasma arc cutting (PAC), abrasive water-jet cutting 
(AWJC) and oxy-fuel cutting (OFC) was defined. Nine different techno-
economical criteria were included in the MCDM model. In order to determine 
relative significance of the considered criteria the CRITIC method was used. The 
proposed approach based on the combination of ROV and CRITIC methods has 
the advantage of determination of relative significance of criteria i.e. criteria 
weights using objective approach and systematical and relatively simple 
computational procedure. 
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2. Competing methods of cutting 

In today’s industry LBC, PAC, AWJC and OFC are one of the most 
commonly used NTMPs. These processes are widely used for cutting flat sheet 
and plate material as well as to trim formed parts. They are particularly used for 
processing difficult-to-machine materials such as titanium, stainless steel, high-
strength temperature-resistant alloys, ceramics, composites, super alloys, etc. 

From the technological point of view, each of these NTMPs is a very 
complex machining process governed by a large number of machining parameters 
(input variables). A unique characteristic of these processes is that there is no 
direct contact between the tool and the workpiece, as well as the ability to 
concentrate large amounts of energy per unit area. The non-contact nature of 
NTMPs means that there is no tool wear, no tool storage costs, no tool setup time, 
no deformation of the cut surface and no slippage with only light fixturing [12].  

Although these cutting technologies offer many advantages, there are 
some drawbacks and limitations. For instance, AWJC can produce tapered edges 
on the kerfs of workpiece being cut. Similarly, inadequate selection of processing 
parameters may result in burr and heat affected zone (HAZ) formation in LBC. 
These and other examples can limit the potential applications of NTMPs 
particularly if post-processing is needed in order to achieve the requirements of 
the finished part. 

2.1. Plasma arc cutting  

The objective of the PAC is to concentrate a large amount of energy on a 
small surface of a workpiece which leads to intensive heating of the material 
surface. The source of energy is high temperature and high speed ionized gas. The 
gas is ionized using a direct current passing between the cathode (inside the 
nozzle) and anode (workpiece). The plasma jet cuts the material by releasing the 
energy spent for the plasma gas ionization upon hitting the workpiece surface. 
The removal of the melted material from the cutting zone is done by the action of 
plasma jet kinetic energy [13]. PAC is used for electrically conductive materials, 
and is particularly useful for metals with high thermal conductivity because of the 
concentrated energy input [12]. 

2.2. Abrasive water jet cutting  

AWJC uses a jet of high pressure and velocity water and abrasive particles 
to cut the material by means of erosion. High-pressure water starts at the pump, 
and is delivered through special high-pressure plumbing to the orifice in cutting 
head. The water jet exits an orifice at a very high speed. In the mixing chamber of 
the cutting head, the abrasive particles are introduced and injected into the jet 
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stream. The jet stream of water and abrasive particles, focused by focusing tube, 
exits the cutting head, impinges onto the material and does the required action of 
cutting [14]. The top of the cut is smooth because of the high energy of the jet, but 
becomes rougher and striated lower in the workpiece because abrasive particles 
are scattered [12]. 

2.3. Laser beam cutting  

LBC is the process of melting or vaporizing material in a very small, well-
defined area. The processes of heating, melting, and evaporation are produced by 
the laser beam, affecting a workpiece surface. Laser beam is a cutting tool able to 
cut almost all materials, focused into a very small spot of 0.1…0.2 mm in 
diameter concentrating thousands of watts. The power density for cutting steels is 
typically 105-106 MW/m2 [15]. The high power density of the focused laser beam 
in the spot melts or evaporates material in a fraction of a second, and coaxial jet of 
an assist gas removes the evaporated and molten material from the cutting zone. 
Depending on the workpiece material, the assisting gas can be inert (helium, 
argon, etc.) or reactive (oxygen). Inert gas is used when cutting plastics, wood, 
etc., whilst oxygen is employed when cutting metals, those metals where 
oxidation of the metal can provide extra heat [16]. 

2.4. Oxy-fuel cutting  

OFC or flame cutting is an economical method for cutting steel that 
provides good dimensional tolerances. Using gases, acetylene and oxygen, to 
produce a controlled flame, this technology cheaply burns through carbon steel 
and most alloys, producing near-net shapes with relative ease. OFC is a chemical 
reaction between pure oxygen and steel to form iron oxide. The commonly used 
cutting torch provides a hot flame to preheat the steel (to its “kindling 
temperature” of around 480º C), but this flame does not do the actual cutting. This 
is done by a high pressure jet of pure oxygen, which is delivered at the center of 
the preheat flame. As a result of rapid combustion process, burning steel leaves 
behind molten material called slag, which is basically iron oxide. Steel is unique 
because the slag it creates melts at a slightly lower temperature than the parent 
metal. The slag is formed as a liquid in the heat of combustion and is easily blown 
away as a fine spray when aided by the flow of more oxygen. This is a key factor, 
which allows the uncut metal to remain intact, with a smooth, square cut face, 
while letting the cut continue and burn adjacent material [17]. Only metals whose 
oxides have a lower melting point than the base metal itself can be cut with this 
process. Otherwise as soon as the metal oxidizes it terminates the oxidation by 
forming a protective crust. Only low carbon steel and some low alloys meet the 
above condition and can be cut effectively with the OFC [18]. 
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2.5. Comparison of competitive NTMPs 

Comparing the above-mentioned NTMPs, Ion [12] highlighted a few rules 
of thumb that can be applied when considering process selection: 

• LBC normally provides the best combination of quality and productivity 
with homogeneous materials less than about 3 mm in thickness, when the 
equipment is in use for at least 16 hours per day. 

• Thicker materials may be cut more quickly with PAC at the expense of 
edge quality. 

• OFC is preferred for one-off jobs or short production runs in which quality 
is not of prime importance. 

• Non-thermal cutting methods such as AWJC are more suitable for 
composite and inhomogeneous materials, but they are relatively slow. 
A comparison of NTMPs requires both technical and economic criteria to 

be considered. Naturally, if the required technical quality can be achieved by 
using several processes, then the one with the lowest cost is chosen. Similarly, if 
the cost of using different processes is similar, then the one providing the highest 
quality is the preferred option. The techno-economical features of PAC, AWJC, 
LBC and OFC are given in Table 1 [12]. 

Table 1 
Typical techno-economical features of cutting processes [12] 

 M MT 
(steel, mm) 

MKW 
(mm) 

HAZ 
(mm) 

EQ  
(relative)

SHD 
(mm)

EI 
(relative)

CS 
(relative) 

P 
(relative) 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

LBC all 
homogenous 30 0.1 0.05 square, 

smooth 0.5 low 1 high 

AWJC all 
homogenous 100 0.7 0 square, 

smooth 1.5 low 1 medium-
low 

PAC metallic 50 1 0.4 beveled 1.5 high 0.1 medium 

OFC metallic 300 2 0.6 square, 
rough 20 medium 0.01 low 

M – materials, Max thickness – MT, Minimal kerfs width – MKW, Heat affected zone – HAZ, 
Edge quality – EQ, Smallest hole diameter – SHD, Energy input – EI, Capital cost – CS, 
Productivity – P 

3. Range of value method 

The ROV method was proposed by Yakowitz et al. [19]. The procedure of 
the application of the ROV method is simple and consists of the following steps: 
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Step 1: The ROV method starts with setting the goals and identification of 
the relevant criteria for evaluating available alternatives. 

Step 2: In this step, based on the available information about the 
alternatives, decision-making matrix or decision table is set. Each row refers to 
one alternative, and each column to one criterion. The initial decision matrix, X, 
is: 
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where xij is the performance measure of i-th alternative with respect to j-th 
criterion, m is the number of alternatives and n is the number of criteria. 

Step 3: In this step performance measures of alternatives are normalized – 
defining values ijx  of normalized decision-making matrix X . 
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For beneficial criteria, whose preferable values are maximal, 
normalization is done by using linear transformation [20]: 
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For non-beneficial criteria, whose preferable values are minimal, 
normalization is done by: 
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Step 4: The application of the ROV method involves the calculation of the 
best and worst utility for each alternative. This is achieved by maximizing and 
minimizing a utility function. For a linear additive model, the best utility (ui

+) and 
the worst utility (ui

-) of i-th alternative are obtained using the following equations 
[20]: 
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If +− > 'ii uu , then alternative i outperforms alternative i’ regardless of the 
actual quantitative weights. If it is not possible to differentiate the alternatives on 
this basis then a scoring (enabling subsequent ranking) can be attained from the 
midpoint, which can be calculated as [20]: 

2

+− +
= ii

i
uuu                                            (7) 

Step 5: In this final step the complete ranking of the alternatives is 
obtained on the basis of ui values. Thus, the best alternative has the highest ui 
value and the worst alternative has the lowest ui value. 

4. CRITIC method 

Criteria weights are affected as much from characteristics of the criteria as 
from subjective point of view of the decision makers. Such subjective weighting 
of the criteria is usually shaped by the decision makers experience, knowledge 
and perception of the problem. However this leads to doubt about reliability of the 
results. To overcome such problems, objective weighting approaches are used 
[21]. 

CRITIC method, which was proposed by Diakoulaki et al. in 1995 [22], is 
objective method for determination of criteria weights which includes the 
intensity of the contrast and the conflict that is contained in the structure of the 
decision making problem. It belongs to the class of correlation methods and is 
based on the analytical examination of decision matrix to determine the 
information contained in the criteria by which the alternatives are evaluated. To 
determine the criteria contrast the standard deviation of normalized criterion 
values by columns and the correlation coefficients of all pairs of columns are used 
[23]. 

Consider a initial decision matrix, ij m n
X x

×
⎡ ⎤= ⎣ ⎦ , where xij is the performance 

measure of i-th alternative with respect to j-th criterion, m is the number of 
alternatives and n is the number of criteria. The first step in the application of the 
CRITIC method is to normalize the initial decision matrix using the following 
equation: 
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where: ( )max max , 1,...,j ijx x i m= =
 
and ( )min min , 1,...,j ijx x i m= = . 

In the process of criteria weights determination both standard deviation of 
the criterion and its correlation between other criteria are included. In this regard, 
the weight of the j-th criterion wj is obtained as [21, 23]: 
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where Cj is the quantity of information contained in j-th criterion determined as: 
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where σj is standard deviation of the j-th criterion and rij is the correlation 
coefficient between the j-th and i-th criteria. 

Based on the above analysis, it can be concluded that higher value of Cj 
implies a greater amount of information that is obtained from the given criterion, 
and thus the relative significance of the criterion for a given decision making 
problem is higher [23]. 

5. Results and discussion 

In this section the application of the combined ROV-CRITIC approach for 
ranking NTMPs considering nine different techno-economical criteria was 
discussed.  

It could be seen that four techno-economical features of NTMPs i.e. 
materials, edge quality, energy input and productivity are expressed in linguistic 
terms. Therefore, prior to the application of the ROV and CRITIC methods one 
need to convert these linguistic terms into crisp (real) values. In this paper this 
was performed in the range [0, 1] using the 11 point fuzzy scale [24]. Also, it has 
to be noted that among the techno-economical features i.e. selected criteria, 
materials, maximal thickness, edge quality and productivity are beneficial criteria 
where higher performance values are preferred. On the other hand, minimal kerf 
width, HAZ, smallest hole diameter, energy input and capital cost belong to the 
category of non-beneficial attributes where smaller performance values are 
preferred. 

5.1. Criteria weights determination 

In this section the application of the CRITIC method for criteria weights 
determination is discussed. First, the normalized decision matrix (Table 2), 
created by means of rij values, was developed according to Eq. 8. Here it should 
be noted that normalization does not take into account the type of criteria 
(beneficial or non-beneficial). 

Then for all criteria, values of standard deviations were obtained as: 
σj=(0.474; 0.458; 0.418; 0.478; 0.491; 0.484; 0.479; 0.471; 0.449). The values of 
correlation coefficient are then calculated (Table 3). 
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Finally, using Eqs. 9 and 10, criteria weights are determined as: w=(0.123; 
0.094; 0.087; 0.103; 0.125; 0.099; 0.114; 0.132; 0.124). 

Table 2 
Normalized decision matrix by CRITIC method 

 M MT 
(steel, mm) 

MKW 
(mm) 

HAZ 
(mm) 

EQ  
(relative)

SHD 
(mm)

EI 
(relative)

CS 
(relative) 

P 
(relative) 

C1 C2 C3 C4 C5 C6 C7 C8 C9 
LBC 0.425 0 0 0.083 1 0 0 1 1 

AWJC 1 0.259 0.316 0 1 0.051 0 1 0.183 
PAC 0 0.074 0.474 0.667 0 0.051 1 0.684 0.622 
OFC 0 1 1 1 0.396 1 0.5 0 0 

M – materials, Max thickness – MT, Minimal kerfs width – MKW, Edge quality – EQ, Smallest 
hole diameter – SHD, Energy input – EI, Capital cost – CS, Productivity - P 

 
Table 3 

Correlation coefficient values of criteria 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 
C1 1 -0.332 -0.542 -0.865 0.820 -0.497 -0.785 0.700 -0.055 
C2 -0.332 1 0.908 0.710 -0.213 0.979 0.113 -0.903 -0.824 
C3 -0.542 0.908 1 0.889 -0.586 0.903 0.504 -0.949 -0.808 
C4 -0.865 0.710 0.889 1 -0.809 0.796 0.743 -0.939 -0.452 
C5 0.820 -0.213 -0.586 -0.809 1 -0.300 -0.994 0.566 0.154 
C6 -0.497 0.979 0.903 0.796 -0.300 1 0.198 -0.955 -0.700 
C7 -0.785 0.113 0.504 0.743 -0.994 0.198 1 -0.477 -0.085 
C8 0.700 -0.903 -0.949 -0.939 0.566 -0.955 -0.477 1 0.625 
C9 -0.055 -0.824 -0.808 -0.452 0.154 -0.700 -0.085 0.625 1 

5.2. Application of the ROV method 

Now the step by step application procedure of the ROV method for 
ranking of the most commonly used NTMPs is as follows. Firstly, by using Eqs. 3 
and 4 for beneficial and non-beneficial criteria, respectively, the normalized 
decision-making matrix is obtained (Table 4). Subsequently, by using Eqs. 5 and 
6 the best and the worst utility functions for each NTMP were calculated. Finally, 
the ui values of all NTMPs with respect to the considered criteria were estimated 
by using Eq. 7. Table 5 exhibits results of the ROV method upon which complete 
ranking of the NTMPs was obtained. 
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Table 4 
Normalized decision matrix by the ROV method 

 M MT 
(steel, mm) 

MKW 
(mm) 

HAZ 
(mm) 

EQ  
(relative)

SHD 
(mm)

EI 
(relative)

CS 
(relative) 

P 
(relative) 

C1 C2 C3 C4 C5 C6 C7 C8 C9 
LBC 0.425 0 1 0.917 1 1 1 0 1 

AWJC 1 0.259 0.684 1 1 0.949 1 0 0.183 
PAC 0 0.074 0.526 0.333 0 0.949 0 0.316327 0.622 
OFC 0 1 0 0 0.396 0 0.5 1 0 

M – materials, Max thickness – MT, Minimal kerfs width – MKW, Edge quality – EQ, Smallest 
hole diameter – SHD, Energy input – EI, Capital cost – CS, Productivity - P 

Table 5 
Computational details of the ROV method and NTMPs rankings 

NTMPs ui
+ ui

- ui Rank 
LBC 0.3003 0.3946 0.3474 1 

AWJC 0.2942 0.3706 0.3324 2 
PAC 0.0838 0.2161 0.1500 4 
OFC 0.1431 0.1891 0.1661 3 

 
As could be seen from Table 5 by applying ROV and CRITIC methods, 

the ranking of the most commonly used NTMPs is obtained as LBC-AWJC-OFC-
PAC. LBC is observed to be the best NTMP as it provides a unique solution to a 
manufacturing requirement considering the techno-economical features. AWJC 
has the second preference and based on the utility function it is observed that this 
NTMP, considering selected techno-economical features, is similar to LBC. PAC 
and OFC are observed as the least favored NTMPs having much smaller utility 
values. 

6. Conclusions 

Selection of the most appropriate NTMP for a given machining application 
is complex MCDM problem involving a set of different and opposite criteria. A 
large number of mathematical methods and procedures were proposed previously 
to assist in systematical selection and ranking of competitive NTMPs. In this 
paper, an approach based on the combination of ROV and CRITIC methods was 
proposed for solving NTMPs selection and ranking problems. Firstly a MCDM 
model for ranking four NTMPs considering nine different techno-economical 
criteria was defined. The CRITIC method was applied in order to determine 
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relative significance of criteria in an objective manner. Subsequently, the ROV 
method was applied in order to obtain complete ranking of the competitive 
NTMPs which in descending order was obtained as LBC-AWJC-OFC-PAC.  

The ROV method can simultaneously take into account any number of 
criteria and offer a very simple computational procedure. In combination with 
fuzzy scales it can also deal with qualitative criteria. Moreover, this method 
requires least amount of mathematical computations. On the other hand CRITIC 
method ensures objective determination of criteria weights which eliminates 
subjective point of view of the decision maker, its experience, knowledge and 
perception of the decision making problem. 

All mathematical calculations of the combined approach can be easily 
implemented in MS Excel thus eliminating the need of using specialized MCDM 
software packages. Also it has to be noted that the calculation procedure is not 
affected by the introduction of any additional parameters as it happens in the case 
of some other MCDM methods. 

Different problems in manufacturing environment such as selection of 
machining center, selection of design, selection of cutting tools, cutting strategies 
etc. are just some typical examples in which the proposed approach as well as 
other MCDM methods and approaches can be effectively applied.  

Application of this combined approach in a wider range of MCDM 
problems in real-time manufacturing environment and development of decision 
support systems are future research scopes. Also, for further research, the results 
of this study can be compared with that of other MCDM methods. 
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